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Abstract: Heart disease is a significant public health problem, and early detection is crucial for
effective treatment and management. Conventional and noninvasive techniques are cumbersome,
time-consuming, inconvenient, expensive, and unsuitable for frequent measurement or diagnosis.
With the advance of artificial intelligence (AI), new invasive techniques emerging in research are
detecting heart conditions using machine learning (ML) and deep learning (DL). Machine learning
models have been used with the publicly available dataset from the internet about heart health; in
contrast, deep learning techniques have recently been applied to analyze electrocardiograms (ECG)
or similar vital data to detect heart diseases. Significant limitations of these datasets are their small
size regarding the number of patients and features and the fact that many are imbalanced datasets.
Furthermore, the trained models must be more reliable and accurate in medical settings. This study
proposes a hybrid one-dimensional convolutional neural network (1D CNN), which uses a large
dataset accumulated from online survey data and selected features using feature selection algorithms.
The 1D CNN proved to show better accuracy compared to contemporary machine learning algorithms
and artificial neural networks. The non-coronary heart disease (no-CHD) and CHD validation data
showed an accuracy of 80.1% and 76.9%, respectively. The model was compared with an artificial
neural network, random forest, AdaBoost, and a support vector machine. Overall, 1D CNN proved
to show better performance in terms of accuracy, false negative rates, and false positive rates. Similar
strategies were applied for four more heart conditions, and the analysis proved that using the hybrid
1D CNN produced better accuracy.

Keywords: heart disease; artificial intelligence; 1D CNN; diagnosis; feature selection

1. Introduction

Among all the chronic diseases in the world, heart disease is regarded as one of the
most alarming. Typical heart disease occurs because of a lack of blood supply to body parts,
including the heart itself [1]. Additionally, due to obstacles in coronary arteries or their
narrowing, the blood flow slows down, and heart failure happens [2]. Some heart disease
symptoms are dizziness, shortness of breath, swollen limbs, physical weakness, chest pain,
etc. [3]. Although the main underlying reason for heart disease is atherosclerosis, which
is plaque building in arteries, this buildup starts early in life. However, the symptoms
usually do not appear until the person is the age of around 50 or higher [4]. From 2010 to
2020, approximately 18.7% more deaths occurred due to CVD issues, with the number of
deaths increasing to around 19 million [5]. According to the World Health Organization
(WHO), about 17.90 million people globally died from cardiovascular disease in 2016 [6].
The European Society of Cardiology (ESC) published a report in which it was estimated
approximately 3.8 million people were identified with heart disease yearly. Within that
population, 50% of patients die within the first 1 to 3 years [7]. Besides negligence, many
diagnosed CVD patients cannot receive proper treatment due to financial challenges..
The following subsections discuss the recent research progress in heart disease diagnosis,
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specifically focusing on using deep learning. Afterward, the research goal of this manuscript
is addressed.

Conventional invasive methods for heart disease detection depend on laboratory
tests, physical tests, investigation by a physician, etc. [8]. Among the invasive techniques,
angiography and catheterization are prominent. Catheterization is a medical procedure in
which a thin, flexible tube called a catheter is inserted into a blood vessel to diagnose and
treat heart conditions. Angiography is a medical imaging technique that uses X-rays and a
contrast agent to visualize the blood vessels inside the body. Both methods suffer from lim-
itations, such as invasiveness (risking bleeding or infection), limited access, expensiveness,
or limited visualization, which hinders obtaining a scenario of a specific time, etc. [9,10].
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used
to detect and diagnose heart disease. Both modalities have limitations, which include
requiring the patient to be still in a particular position, exposure to ionizing radiation,
expensive procedures, inability to detect mild or early-stage heart disease, etc. [11,12]. The
limitations of ultrasound to detect heart disease are limited resolution, failure to detect
minor abnormalities, lack of ability to penetrate through bone or dense tissues, need for a
skillful operator, limited use for patients with pacemakers, etc. [13]. Figure 1 depicts the
different diagnostic techniques for heart disease.
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To solve the problems related to the existing noninvasive methods to identify heart
diseases, researchers have attempted to use the advancements in machine learning (ML) and
deep learning (DL) combined with easily acquirable vital signs such as an electrocardiogram
(ECG), photoplethysmography (PPG), phonocardiogram (PCG), etc. [14]. To elaborate,
the reasons behind choosing ML and DL are as follows. First, many popular ML and DL
algorithms are now available for use, which already have applications across different
types of biomedical data, such as clinical, genetic, imaging, biochemical, etc., to understand
diseases, develop new treatments, and improve patient care [15–18]. Second, with the
advancement of sensor technology, the acquisition of ECG, PPG, and PCG is becoming
more accessible than before. Third, compared to the manual observation of test results,
physical checkups, diagnostic tests, etc., ML and DL can dig up feature contributions that
may be hard for humans to comprehend. As shown in Figure 2, the typical attempts using
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ML and DL with clinical data or biomedical signals to detect heart disease can be divided
into four groups. Since researchers in this regard have performed numerous studies,
the whole research area is divided into several groups and discussed here to summarize
the development adequately. Group-(a) considers biomedical signals such as ECG or
PPG [19–23] as inputs. Since these signals are easy to acquire and smaller sensors are
available with a powerful capacity to process these signals, these are used as input directly.
After the information is obtained, the signals are preprocessed for noise cancellation and
normalization [24,25].
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With the preprocessed signal, the necessary features are extracted; depending on the
algorithm, the features are from the time domain, the frequency domain, or a combination
of both domains [24,26–31]. With all the extracted features, optimization of features is
attempted. Optimization is necessary to ensure all the finalized features are relevant and
nonredundant. Finally, those optimized features are fed into the ML algorithms to obtain
classification of heart disease. The limitations facing this group of studies are that, since the
method strictly depends on biomedical signals (such as ECG/PPG/PCG), it requires other
supplementary information to diagnose correctly. In addition, the extraction of features
depends on researchers, and there are no central or general guidelines for signal acquisition
or the number or types of features used in the algorithms. Because of these, it is not easy
to compare or combine results among experiments carried out in different studies. The
studies in group-(b) start with medical images as inputs to the process. Similar to the steps
in group-(a), this method moves through preprocessing (filtering for noise, smoothing
of images), feature extraction and selection, taking care of the part where the image is
cropped or selected, and texture/statistical features are selected. Finally, those features are
used with ML/DL algorithms to classify different heart conditions and diseases [32–37].
Since many high-quality images are required to train these models, the availability of such
large datasets remains the main challenge facing researchers. As well, the images from
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new patients need to maintain similar quality for the algorithm to perform with fewer
false results. Additionally, manual feature extraction has similar problems as in group-(a);
these studies must follow standardized guidelines to compare performance consistently.
Due to the availability of several datasets with clinical parameters, the studies in group-(c)
are prevalent among scientists [38–50]. Here, a specific list of clinical parameters is used
as input for the system; the number and types of parameters depend on which dataset
is selected. After removing the outliers and filling up the missing values, the exclusive
features are optimized using feature selection algorithms. The advantage of these studies is
that the clinical parameters are strictly measured in the case of a heart disease patient; thus,
they are already significant enough to be included. On the downside, nearly all the studies
are based on online databases.

In contrast, most datasets were not created for this purpose. Since feature numbers
cannot be increased or modified, starting with a dataset having a significantly high number
of features that are not only relevant but also nonredundant is essential [51]. In group-(d),
the input in the figure consists of biomedical signals. However, biomedical information
can be used here, such as clinical information, images from X-rays, ultrasound, CT scans,
MRI, etc., so any of these can be the starting point. In preprocessing steps, the information
is filtered/normalized/cleaned/smoothed for further use. Then, that information is used
as input for neural networks, and the neural network decides the weights of each input
and subsequent neuron nodes to produce classification results [38,52–62]. The general
limitations of this group are the same as the previous group of studies in the case of images
or biomedical signals as a starting point. On top of those limitations, the neural network
hyperparameters must be tuned perfectly for the model to be used for another dataset.
In the case of tabular format data (clinical parameters), a change in the chronology of the
parameters in the input should not change the outcome, which is a significant limitation
of these studies. Further, similar to the excellent performance of 2D convolutional neural
networks with feature extraction and classification for image input, 1D CNN has been
quite popular among researchers for biomedical data, such as ECG, PPG, PCG, etc., for
the classification of a heart condition such as arrhythmia [63–66]. A significant advantage
of using a 1D CNN for biomedical data is that it can learn local patterns in the data and
extract features which are relevant to the task at hand [67]. For biomedical data, whether
they are similar to ECG, which is sequential and time series data, or image type, such as
X-ray or MRI, the use of 1D/2D CNN is practical due to the ability of the CNN to extract
local patterns. However, to take advantage of 1D CNN for nonsequential tabular data
with no time-specific information, the main challenge is to ensure the model performance
is consistent, irrespective of feature order in the tabular data. There are several areas for
improvement in the use of machine learning and deep learning techniques for detecting
heart disease, as discussed above. These include increasing the size and diversity of
the dataset, addressing imbalances in the dataset, selecting, and optimizing the number
of features, selecting the appropriate model and fine-tuning its hyperparameters, and
expanding research to cover a broader range of heart conditions.

This work presents an intelligent decision-making model for diagnosing various
types of heart diseases using a 1-dimensional convolutional neural network. A dataset
was compiled from multiple records to accomplish this, and the data imbalance issue
was addressed through undersampling. The modified 1D CNN was then applied to the
tabular data, regardless of chronology. The results were compared to those from other
contemporary machine learning models. All computations and processing were conducted
using Google Colab and Python programming, including the TensorFlow framework. The
main contributions of this study are as follows:

A. Proposing a heart disease diagnosis model using the 1D CNN, making use of a large
dataset with clinical parameters;

B. Presenting the analysis of 1D CNN while dealing with dataset imbalance;
C. Comparing with contemporary ML algorithms, using performance evaluation metrics;
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D. Making recommendations, including tuned hyperparameters for 1D CNN and fea-
tured optimization algorithms for developing a system to diagnose heart disease in
its early stages.

The model can help medical practitioners provide early and appropriate medical
therapies by properly detecting many forms of cardiac problems. Better treatment strategies,
better patient outcomes, and, perhaps, even cheaper healthcare expenditures can result
from this. The model’s capacity for intelligent decision-making offers the possibility of early
diagnosis of heart problems, enabling people to take preventative measures to manage their
cardiovascular health. The model’s main contribution is its capacity to increase healthcare
quality, which will result in a healthier population and greater overall wellbeing. The paper
is structured as follows. Section 2 discusses the proposed technique in detail. In Section 3,
the data analysis using the proposed method is described. Section 4 presents the results
and performance analysis, and Section 5 discusses the overall experiments and limitations
of the research. The paper concludes in Section 6.

2. Proposed Technique

In this section, the proposed technique is discussed. After introducing the dataset and
bringing forth the imbalance in data, feature optimization is elaborated. Then, the model
based on a convolutional neural network is proposed to diagnose heart disease. Figure 3
provides a flow diagram showing the general idea behind the whole technique.
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2.1. Dataset Selection and Preparation

Among the renowned research in the field of heart disease detection, the datasets
which have been used most often are the Cleveland dataset [68], UCI repository dataset [69],
MIT–BIH dataset [70], several versions of the MIMIC dataset [71,72], etc. Among those,
the Cleveland dataset and UCI repository constitute clinical parameters. However, the
frequently used heart disease detection datasets have few records. The MIT–BIH dataset is
used mainly for diagnosing arrhythmia, since no other class information is available and
the number of samples is minimal. The only popular dataset with a large amount of data
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is the MIMIC dataset and its different versions. MIMIC, MIMIC II, and MIMIC III have
patient biosignals such as ECG, PPG, and ABP. Although those datasets are appropriate
for diagnosing issues for which no other clinical parameters are required, due to a lack of
class information about heart disease, these datasets could not be more helpful in detecting
specific heart diseases.

In this study, the database chosen was from the National Health and Nutrition Exam-
ination Survey by CDC [73]. The reasons behind the choice are that it is a large dataset
with a significantly higher number of relevant clinical parameters covering a wide range
of periods. Although the dataset was not available for input for the model, it is possible
to accumulate the data from several years and surveys. The dataset used in this study
was prepared by compiling NHANES data from 1999–2000 to 2017–2018. In NHANES,
different categories of data are stored in different sections of the database; for heart disease
diagnosis, the sections used are demographic, examination, laboratory, and questionnaire
data. Since the datasets involved both numerical responses as well as categorical responses,
there needed to be refinement in terms of eligibility for heart disease diagnosis and prepa-
ration for input to the algorithm for training. The patient’s record of heart diseases such as
coronary heart disease, stroke, heart attack, angina pectoris, and congestive heart disease
was used as a class variable for any ML or DL technique.

For example, the data documentation format from the section “examination” is shown in
Table 1. Here, 2017–2018 data documentation has been picked from the NHANES database.

Table 1. Data documentation of blood pressure, an example from NHANES [73].

Variable
Name Description Target Code Value Code Value Description

SEQN Respondent sequence number All age groups NA. NA

PEASCCT1 Blood Pressure Comment All age groups 1, 2, 3
Safety exclusion, SP refusal, time
constraint (Age was divided into
three groups named 1, 2, and 3)

BPXCHR 60 s HR (30 s HR × 2) 0–7 years 60–180 bits
per minute

Range of values in heart bit
per minute

BPAARM Arm selected 8 years and above 1, 2, 8 Right, left, could not obtain
(Correspond to 1, 2, and 8)

BPACSZ Coded cuff size 8 years and above 1, 2, 3, 4, 5
Infant, Child, Adult, Large, Thigh

(each number in code value
represents one age group)

BPXPLS 60 s pulse (30 s pulses × 2) 8 years and above 34–136 Range of number of pulses in 60 s

BPXPULS Pulse regular or irregular? All age groups 1, 2 Regular, irregular (1—regular,
2—irregular)

BPXPTY Pulse type 8 years and above 1, 2, 8 Radial (1), brachial (2), could not
obtain (8)

BPXML1 MIL: maximum inflation levels
(mmHg) 8 years and above 100–260 Range of values of blood pressure

in mmHg

BPXSY1 Systolic: Blood pres (1st rdg)
mmHg 8 years and above 72–228 Range of values of blood pressure

in mmHg

BPXDI1 Diastolic: Blood pres (1st rdg)
mmHg 8 years and above 0–136 Range of values of blood pressure

in mmHg

BPAEN1 Enhancement used 1st rdg 8 years and above 1, 2, 8 Yes (1), no (2), could not obtain (8)

BPXSY2 Systolic: Blood pres (2nd rdg)
mmHg 8 years and above 72–236 Range of values of blood pressure

in mmHg

BPXDI2 Diastolic: Blood pres (2nd rdg)
mmHg 8 years and above 0–136 Range of values of blood pressure

in mmHg
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Table 1. Cont.

Variable
Name Description Target Code Value Code Value Description

BPAEN2 Enhancement used 2nd rdg 8 years and above 1, 2, 8 Yes (1), no (2), could not obtain (8)

BPXSY3 Systolic: Blood pres (3rd rdg)
mmHg 8 years and above 72–238 Range of values of blood pressure

in mmHg

BPXDI3 Diastolic: Blood pres (3rd rdg)
mmHg 8 years and above 0–134 Range of values of blood pressure

in mmHg

BPAEN3 Enhancement used third reading 8 years and above 1, 2, 8 Yes (1), no (2), could not obtain (8)

BPXSY4 Systolic: Blood pres (4th rdg)
mmHg 8 years and above 72–234 Range of values of blood pressure

in mmHg

BPXDI4 Diastolic: Blood pres (4th rdg)
mmHg 8 years and above 0–118 Range of values of blood pressure

in mmHg

BPAEN4 Enhancement used 4th rdg 8 years and above 1, 2, 8 Yes (1), no (2), could not obtain (8)

These data were published in February 2020, focusing on three consecutive blood
pressure measurements and heart rate/pulse to obtain accurate BP numbers. Each data
documentation has a detailed description of the eligible sample, protocol and procedure,
and data processing and editing. Unlike the other datasets used in recent research articles,
this makes the NHANES the most organized and systematic collection of data that can be
used for heart disease diagnosis. In Figure 4, the distribution of patient class is depicted.
The dataset preparation process started with locating NHANES survey data from the
CDC website from 1999–2000 years until 2017–2018 years. Under each year, data sections
were named: demographics data, dietary data, examination data, laboratory data, and
questionnaire data. Based on the responses found about the presence and type of heart
disease, five separate datasets were prepared, one for each heart disease: stroke, heart
attack, coronary heart disease, congestive heart disease, and angina pectoris.
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Data preparation involves methods such as data cleaning, data normalization, data
encoding, data transformation, data imputation, etc. The necessity of all those methods or
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a subset of those depends on the dataset type and objective of the study. After collecting
the dataset from NHANES survey data as discussed before, the features were ‘SEQN’,
‘Gender’, ‘Age’, ‘Annual-Family-Income’, ‘Ratio-Family-Income-Poverty’, ‘X60-sec-pulse’,
‘Systolic’, ‘Diastolic’, ‘Weight’, ‘Height’, ‘Body-Mass-Index’, ‘White-Blood-Cells’, ‘Lym-
phocyte’, ‘Monocyte’, ‘Eosinophils’, ‘Basophils’, ‘Red-Blood-Cells’, ‘Hemoglobin’, ‘Mean-
Cell-Vol’, ‘Mean-Cell-Hgb-Conc.’, ‘Mean-cell-Hemoglobin’, ‘Platelet-count’, ‘Mean-Platelet-
Vol’, ‘Segmented-Neutrophils’, ‘Hematocrit’, ‘Red-Cell-Distribution-Width’, ‘Albumin’,
‘ALP’, ‘AST’, ‘ALT’, ‘Cholesterol’, ‘Creatinine’, ‘Glucose’, ‘GGT’, ‘Iron’, ‘LDH’, ‘Phospho-
rus’, ‘Bilirubin’, ‘Protein’, ‘Uric Acid’, ‘Triglycerides’, ‘Total-Cholesterol’, ‘HDL’, ‘Glyco-
hemoglobin’, ‘Vigorous-work’, ‘Moderate-work’, ‘Health-Insurance’, ‘Diabetes’, ‘Blood-
Rel-Diabetes’, and ‘Blood-Rel-Stroke’. As part of data preparation, the first step was to
drop the features that were not directly related or would not have any impact on the
training model. The following columns from the dataset were dropped: ‘SEQN’, ‘Annual-
Family-Income’, ‘Height’, ‘Ratio-Family-Income-Poverty’, ‘Health-Insurance’, ‘Lympho-
cyte’, ‘Monocyte’, ‘Eosinophils’, ‘Mean-Cell-Vol’, ‘Mean-Cell-Hgb-Conc.’, ‘Hematocrit’, and
‘Segmented-Neutrophils.’ Since not all the features were numerical, the categorical data
were transformed into numerical using one hot encoding method. The affected features
were ‘Gender (male/female)’, ‘Diabetes (Yes/No)’, ‘Blood-Rel-Diabetes (Yes/No)’, ‘Blood-
Rel-Stroke (Yes/No)’, ‘Vigorous-work (amount of V. work)’, and ‘Moderate-work (amount
of M. work)’. After that, the data normalization method was applied to make sure that
features with larger values did not dominate the ML algorithm. A significant issue that
required attention was the imbalanced state of available datasets, as shown in Figure 4.
Since all the studies with a substantial number of features or parameters have used datasets
available from medical centers or online, those datasets need to be balanced in many cases.
With the current constraint of the imbalanced dataset with medical data, which can be used
for heart disease diagnosis, before feeding data into the classification model, techniques
such as over-/undersampling, SMOTE, data augmentation, etc., can be used to minimize
the effect [63–65]. In this dataset, the method with the different class weights assigned to
class labels was implemented to solve the data imbalance problem.

2.2. Feature Selection

Since the dataset used in this study was in the form of clinical parameters, the next
step for the dataset was to select features that were not only relevant but also nonredundant.
Feature selection methods can be divided into three categories [74,75]: filter-based, wrapper-
based, and embedded-based. Filter-based feature selection ranks the features based on
different statistical tests. The filter-based method is independent of a classification model,
so there is no classifier bias due to no interaction with the classifier. However, there is
also no chance of fine-tuning possible using the classifier for the same reason. Due to the
advantages of interpretability and dimensionality reduction, the minimum Redundancy
Maximum Relevance (mRMR) has been used as a filter-based feature selection [76,77].

The wrapper-based method considers the performance of the selected classifier algo-
rithm using the feature in question. It shows better classification performance [77]. In this
study, recursive feature elimination (RFE) was used from the aspect of the wrapper-based
method. RFE was used for two main reasons: not only is the number of features to select
not fixed, but there can also be any number of algorithms to choose from while not confined
to one. These hyperparameters can be modified to obtain the optimum number of features
for the best classifier [78].

In the embedded-based method, the classifier changes its hyperparameters or internal
parameters to ensure the most effective weights in each feature are selected to achieve the
maximum accuracy for any chosen performance metrics. As such, the feature selection
step and model preparation happen in the same step in the embedded-based model,
unlike the other two methods. Studies have shown that, with a higher number of features,
the effectiveness of random forest to measure interactions among features accurately
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declines [79]. Additionally, the random forest does not automatically remove the redundant
features, which hampers the model’s performance [80].

On the other hand, the regularization-based methods (lasso, ridge, elastic, etc.) use
penalization. This can discard the redundant features (lasso) or decrease them to a minimal
value (elastic); on the other hand, these still detect the interactions among features [81,82].
Many studies have compared the performance of the different methods with different
classifiers and concluded that there is no such ‘perfect feature selection method’ for all
problem types [75,83–87]. That is why the feature selection method which was chosen
for this study is based on the ensemble method, where the feature selection methods are
combined so the different strengths can be combined [88]. Several studies have proved
that the ensemble-based feature selection method outperforms the single-feature selection
methods if the computational load is not a concern [89–91]. Along with performance,
the ensemble-based method also has proven to have more stability in the system by
allowing a minor change in data, which means becoming more robust [92]. In this study,
an aggregation-based ensemble method was applied, which allows combining the feature
set achieved from different methods into one set through either union (liberal approach)
or intersection (restrictive approach), or staying between those two using a threshold, as
shown in Figure 5.
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2.3. Convolutional Neural Network

A 2D convolutional neural network (CNN) is a type of neural network designed explic-
itly for image-processing tasks. It is composed of multiple layers of artificial neurons that
process and analyze images through the use of convolutional filters. The primary function
of a CNN is to extract features from an input image and use these features to classify the
image or make a prediction. A 2D CNN is called a “2D” network because it processes
images in two dimensions, with both width and height. One of the key advantages of a 2D
CNN is its ability to process images at different scales and orientations. Using multiple
convolutional layers with different-sized filters, a CNN can learn to recognize features
at different levels of abstraction, such as edges, shapes, and objects. A 2D convolutional
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neural network is a powerful tool for image processing tasks, such as object recognition
and image classification.

A 1D convolutional neural network (CNN) is a type of deep learning model designed
to process one-dimensional data sequences, such as time series or text. It is a variant of the
more general 2D CNN, which is designed to process two-dimensional data arrays such
as images. One of the critical features of a 1D CNN is its ability to learn local patterns or
features in the one-dimensional input data using a set of learnable convolutional filters
sliding over the data. For one-dimensional data, the 1D CNN has several significant
advantages. First, the computational complexity in 1D CNN is significantly lower than
in 2D CNN. Second, 1D hidden layers use a shallow architecture format (usually around
10k parameters to be tuned). Third, with typical architecture, 1D CNN can be calculated
using a standard computer. In contrast, for 2D CNN, the use of GPU is mandatory. Recent
studies proved that with limited labeled data and high-variation 1D data, the 1D CNN
showed superior performance [93–105].

In this study, the 1D CNN was used for structured data in a tabular format. However,
those were not time series data, meaning no time information or dependencies were
available. The typical use of 2D CNN is for image-based data, due to how CNN architecture
works; furthermore, in this study, the motivational reasons behind the 1D CNN are, first,
the same as for an image, which is a collection of pixel values with a limit in values, the
tabular data can be kept within a limit using a normalization technique. Second, the
position of pixels is critical in 2D CNN. Similarly, positioning features in input, which is
tabular formatted data, is critical. Hence, finding the correct position for the features in
the tabular list is challenging, which can be figured out using CNN architecture. Third,
we used feature optimization in this study since medical data have to be rational. This
helps the model to be more explainable. However, similar to 2D CNN, in 1D CNN, the
architecture is in charge of whether a specific feature strongly correlates to the class variable
or has a strong relationship with other features.

A convolution filter is a mathematical operation applied to an input image to extract
features or patterns from the image. A kernel, a small matrix of weights, defines the filter.
When the kernel is applied to the input image, it slides over the image, performing a dot
product between the entries in the kernel and the values of the pixels in the image at each
position. The dot product is then used to compute a new value for the pixel, which is added
to the output image. The two attributes of the input image used by a convolution filter
are local connectivity and spatial locality. Local connectivity means that, when applied,
each filter is only connected to a small input image area. This means that the filter can
only consider a small region of the image at a time rather than the entire image. Spatial
locality refers to the fact that the pixels affected by the filter tend to be spatially correlated,
meaning they are likely to have similar values. This property allows the filter to extract
meaningful patterns or features from the image. These characteristics help CNN to detect
shapes or edges. Suppose this advantage of 2D CNN is tried to be replicated in 1D CNN.
In that case, the problem arises that, unlike nearby pixels in the image, there may not be a
local correlation among adjacent features. Moreover, another essential point to remember
is that, for the 1D CNN model to be consistent, the change in the order of columns should
not have any impact.

As shown in Figure 6, the input layer involves one-dimensional tabular format data;
instead of putting those data into a convolutional layer, those data are initially fed to a
dense layer with many nodes. The number of nodes in the dense layer is fixed, so they
can be reshaped into multiple channels of one-dimensional data with lengths equal to
s, i.e., the number of features. This modification allows the input data to be increased
in number (dense layer) and rearranged (reshaped layer). Instead of the standard input
data, the convolutional layer received complex patterns in the data in a multichannel
format. This helps the convolutional filters to learn the non-linear mapping of complex
feature combinations.
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3. Data Analysis

In this section, the complete data analysis for the proposed study is elaborated. The
section starts with how the data imbalance issue was dealt with and the preprocessing of
the dataset to be used for feature optimization. The following subsection notes the ranked
or selected features after using feature selection algorithms. Next, the 1D CNN architecture,
which was used to train the model, is discussed regarding layer information, including
hyperparameter tuning.

3.1. Data Imbalance and Exploratory Analysis

After organizing and accumulating the NHANES dataset for the coronary heart disease
(CHD) class variable, the next step was preparing the dataset for feature optimization or
selection. While checking the dataset, one thing that stands out is the imbalance of the
dataset. Regarding class variables, the number of no-CHD is much higher than that of
CHD patients. In a recent literature survey, researchers found, in 49 prominent published
articles, that the dataset used for heart disease diagnosis was imbalanced [106]. In this
study, the algorithmic level was used, where the weight for the class variables can be
changed based on the number of training instances in each class. The proper way is to try
a series of different weight ratios to both the class variable and measure the performance
matrices [107–109]. The best weight ratio is the optimum solution based on the result.
Since, in the case of oversampling, many new samples have to be created that, although
mathematically logical, are not from original data but rather created based on some rule
which is based on original data; in this study, the impact of undersampling and weight
assignment have been analyzed.

The undersampling technique removes the sample from training data (the majority
class) where the distribution in class variables is skewed, such as 1:10, 1:20, or even 1:2.
The most straightforward undersampling technique in the calculation is removing samples
randomly. This process is simple to execute; however, since the samples are removed
without concern for the proximity of the decision boundary between the class variables, it
is questionable. The two methods implemented in this study were the near-miss rule [110]
and the condensed nearest-neighbor rule [111]. The latter technique has three versions,
i.e., NearMiss versions 1, 2, and 3. Version 1 is where the sample is selected when it has
the minimum average distance from the nearest three neighbors. Version 2 is where the
algorithm selects the sample from the majority class with a minimum average distance
from the three furthest samples from the minority class. In version 3, the samples from
the majority class are selected individually to be closest to the minority class samples. The
NearMiss algorithms were implemented in this study, as shown in Figure 7. Using the
condensed nearest-neighbor method (CoNN), a variation of the undersampling technique
to choose a subset of samples results in no loss in the model’s performance. Compared to
the NearMiss techniques, the CoNN technique is prolonged. Considering the limitations of
other resampling techniques and the results from undersampling techniques (in Figure 7),
in this study, the number of majority classes was reduced to 1:3 from approximately 1:25.
An approach that can be implemented to solve or mitigate the dataset imbalance issue is
using weight-to-class variables. Different weights to no-CHD and CHD class variables
were used during model training, and, based on performance metrics, the best weight was
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used. In this study, compared to the weight put on no-CHD, double weight was given
to the CHD class variable. The ‘class_weight’ parameter was used to assign value for
class variables.
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As discussed, the dataset was prepared using survey data from NHANES; the modules
used here are demographic, examination, laboratory, and questionnaire data. An example
of mathematical description of the dataset using some of the features as an example has
been given in Table 2, and data distribution considering CHD/no-CHD was depicted in
Figure 8. After removing the missing and outlier values, the total number of instances
was 40,713. Since the sequence number, family income, height, insurance, etc., information
did not have diagnostic significance, those columns were dropped from the primary
dataset. In addition, not all the features or column variables were numeric data, such
as Gender, Diabetes, Vigorous-work, Moderate-work, etc., so those data were modified
from categorical to numeric by dividing each of the columns into multiple columns. After
dropping the mentioned columns and distributing the categorical columns, the final dataset
contained 40,713 rows and 47 columns, including the class variable (CHD). An example
of a correlation matrix has been depicted as a heatmap using a subset (15) of randomly
chosen features chosen along with the target variable in Figure 9.
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Table 2. A mathematical description of the dataset with some features as an example.

Parameter Age
(Years)

Systolic
(mmHg)

Diastolic
(mmHg)

Weight
(kg)

Height
(cm)

Cholesterol
(mg/dL)

Creatinine
(mg/dL)

Glucose
(mg/dL)

Protein
(mg/dL)

mean 48.98 124.18 71.00 81.26 167.34 5.06 78.36 5.60 72.00

STD 17.83 19.15 11.72 20.84 10.11 1.08 35.34 2.04 4.89

Min 20.00 66.00 40.00 32.30 129.70 0.16 17.70 1.05 47.00

25th
percentiles 34.00 111.00 64.00 66.60 160.00 4.29 61.88 4.72 69.00

50th
percentiles 48.00 122.00 71.00 78.40 167.00 4.97 73.37 5.11 72.00

75th
percentiles 63.00 134.00 78.00 92.40 174.60 5.71 88.40 5.66 75.00

Max 85.00 270.00 132.00 223.00 204.50 14.61 946.76 34.75 113.00
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3.2. Feature Selection Process

The chosen feature selection method for this study was the ensemble method. After
using mRMR from filtering, RFE from the wrapper, and elastic-net from the embedded
strategy, the outcomes of the feature ranking or subset were aggregated using the ensemble
method. The technique used here was ‘mRMR,’ a filter-based method. The specific reason
to pick the mRMR is that it can choose relevant features while eliminating irrelevant ones.
In terms of correlation, it can be explained that the selected features are highly correlated
with the class variable but show a low correlation among them [112]. The features are
selected individually using a function that ensures relevance and redundancy. Two standard
objective functions used for mRMR are the mutual information difference criterion (MID)
and the mutual information quotient criterion (MIQ). The MIQ criterion measures the ratio
of the mutual information between two variables to the average mutual information of all
possible pairs of variables. It can identify pairs of variables with relatively high mutual
information compared to other pairs. In this study, the second objective function type
(MIQ) has been applied. Suppose there are a total of n features. In that case, B is denoted as
a class variable, and m is the number of selected features. For a given feature Ai, where ‘i’
varies between 1 and n, the feature importance can be expressed as follows [113]:

f mRMR(Ai) = I(B, Ai)−
1
m∑Am€m I(Am, Ai) (1)

I(B, A) denotes the mutual information between B and A. The two variants of standard
mRMR use objective functions as follows [113]:

f MID(Ai) = I(B, Ai)−
1
m∑Am€m I(Am, Ai) (2)
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f mRMR(Ai) = I(B, Ai)/
1
m∑Am€m I(Am, Ai) (3)

Since mRMR results in ranking features, the MIQ objective functions were implemented
using Python to find the ranking of the top 30 features (except the categorical features).

RFE is a wrapper-based feature selection technique. It uses a chosen classifier to check
the performance of a different subset of features, and, based on chosen metrics, the final
subset of features is finalized. Thus, in RFE, there are two primary options to be selected:
one is the number of selected features, and the other is the algorithm that will be used
to choose the features. As shown in Figure 10, five different algorithms were used in the
core RFE using the dataset finalized in Section 3.1, excluding the categorical features. The
five algorithms were logistic regression, decision tree classifier, perceptron, random forest
classifier, and gradient boosting classifier. As well, using a random forest classifier, the
effect on accuracy after adding each feature was monitored, as shown in Figure 11. The
aim function for the sum of squared error is as follows [114]:

minimize {SSE = ∑n
i=1 [y i − yi(mean)]2 = ||y− Xβest||2} (4)

Here, n is the observation number, y is the predicting variable, the predictor variable
is X, the error is assumed to be normally distributed, and its variance is σ2, since β is
unknown and can be measured from the sample data. The difference between the actual
and estimated β is the bias. The ridge-type regularization technique adds a penalty in the
aim function to adjust the value of the coefficients as follows [114]:

minimize {SSE + lambda∑p
j=1 β2

j } (5)

By changing the value of the ‘lambda’, the penalty parameter, ridge regularization
tends to push some of the feature values close to zero (but not actually zero). As such,
this way, the number of features does not reduce, but the impact of some of the features
diminishes. On the other hand, lasso regularization is a modified version of the ridge
method that penalizes the sum of the absolute value of the coefficients. However, lasso
removes features by pushing the coefficient value to zero.

Choosing the appropriate value of lambda is essential to keep the number of features
optimum (not too high or not too low). Thus, in this study, the implemented one was
elasticnet. Elasticnet’s aim function contains another parameter as α; the value of this
decides how much the elasticnet moves closer to either ridge or lasso. The following is the
aim function of elasticnet [114]:

minimize {SSE + lambda2 × α×∑p
j=1

∣∣β j
∣∣+ lambda1 ×

1− α

2
×∑p

j=1 β2
j } (6)

The loss function for quadratic regression is firmly convex, meaning it has a unique
minimum. Linear regression often results in a model with low bias but high variance, which
means that it may not generalize well to new data. We can add some bias to the model
by introducing regularization to reduce the variance. One way to do this is by combining
ridge and lasso regression. Both add penalties to the loss function to constrain the model
complexity. This can help improve the overall performance of the model. The elasticnet
module from Python was used to produce the selected feature set. The aggregation method
combined the features from the three feature selection algorithms, and the final number of
numeric features was 24. The categorical features were added after that. Table 3 contains
the list of final features after implementing feature selection algorithms.
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Table 3. Finalized list of features after feature selection algorithms.

No Feature Feature Type Description

1 Age Numerical Age of participant (years)

2 Systolic Numerical Systolic blood pressure (mmHg)

3 Diastolic Numerical Diastolic blood pressure (mmHg)

4 Weight Numerical Weight of participant (kg)

5 White-Blood-Cells Numerical White blood cell count (1000 cells/µL)

6 Lymphocyte Numerical Lymphocyte percent (%)

7 Monocyte Numerical Monocyte percent (%)

8 Red-Blood-Cells Numerical Red blood cell count (million cells/µL)

9 Platelet-count Numerical Platelet count (1000 cells/µL)

10 Red-Cell-Distribution-Width Numerical Red cell distribution width (%)

11 Albumin Numerical Albumin, urine (mg/L)

12 ALP Numerical Alkaline Phosphatase (IU/L)

13 ALT Numerical Alanine Aminotransferase (IU/L)

14 Cholesterol Numerical Cholesterol (mg/dL)

15 Creatinine Numerical Creatinine (mg/dL)

16 Glucose Numerical Glucose, serum (mg/dL)

17 GGT Numerical Gamma-glutamyl transferase (U/L)

18 Iron Numerical Iron, refrigerated serum (µg/dL)

19 LDH Numerical Lactate dehydrogenase (IU/L)

20 Triglycerides Numerical Triglycerides, refrigerated (mg/dL)

21 Uric.Acid Numerical Uric acid (mg/dL)

22 Total-Cholesterol Numerical Total Cholesterol (mg/dL)

23 HDL Numerical Direct HDL-Cholesterol (mg/dL)

24 Glycohemoglobin Numerical Glycohemoglobin (%)

25 Gender Categorical Gender of the participant

26 Diabetes Categorical Diagnosed with Diabetes

27 Blood rel Diabetes Categorical Does blood relative have Diabetes

28 Blood rel stroke Categorical Does a blood relative have a stroke

29 Vigorous work Categorical Vigorous work activity

30 Moderate work Categorical Moderate work activity

3.3. The 1D CNN Model

The one-dimensional convolutional neural network (1D CNN) started with the input
from the finalized selected feature list, consisting of numerical and encoded categorical
features. Each categorical feature was divided into several features by one hot encoding,
making the total feature number 40. The input went through a dense layer to mix the
features well, so that the issue of the chronology of features did not make any difference.
The number of nodes in the first dense layer was 600, with an activation layer as ‘relu’ and
dropout as 0.3. As discussed in the previous section about removing the dependency on the
chronology of features, the dense layer output was reshaped into 20 channels, 1 × 30 shape.

As depicted in Figure 12, the input data flowed through different layers: reshaped,
dense, convolutional, flattened, and dense, to reach the output. Adam optimizer with a
learning rate = 0.001 was used, and the selected loss function was “categorical_crossentropy”.
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The chosen metric for the model was ‘accuracy.’ The whole model was trained and tested
using jupyter notebook in Google Collab on a laptop with the following configuration: Intel
core i7 1065G7 CPU @ 1.30 GHz, 24 GB RAM (8 + 16) DDR4, no GPU (the benefit of using
1D CNN compared to 2D CNN).

Bioengineering 2023, 10, x FOR PEER REVIEW 18 of 31 
 

3.3. The 1D CNN Model 
The one-dimensional convolutional neural network (1D CNN) started with the input 

from the finalized selected feature list, consisting of numerical and encoded categorical 
features. Each categorical feature was divided into several features by one hot encoding, 
making the total feature number 40. The input went through a dense layer to mix the fea-
tures well, so that the issue of the chronology of features did not make any difference. The 
number of nodes in the first dense layer was 600, with an activation layer as ‘relu’ and 
dropout as 0.3. As discussed in the previous section about removing the dependency on 
the chronology of features, the dense layer output was reshaped into 20 channels, 1 × 30 
shape. 

As depicted in Figure 12, the input data flowed through different layers: reshaped, 
dense, convolutional, flattened, and dense, to reach the output. Adam optimizer with a 
learning rate = 0.001 was used, and the selected loss function was “categorical_crossen-
tropy”. The chosen metric for the model was ‘accuracy.’ The whole model was trained and 
tested using jupyter notebook in Google Collab on a laptop with the following configura-
tion: Intel core i7 1065G7 CPU @ 1.30 GHz, 24 GB RAM (8 + 16) DDR4, no GPU (the benefit 
of using 1D CNN compared to 2D CNN). 

 
Figure 12. One-dimensional convolutional neural network diagram. 

Apart from the weight assignment to class variables, another important optimization 
was the learning rate. To find the optimum learning rate, a semilog-based plot was cre-
ated, using the data from the learning rate range and loss parameters, as shown in Figure 
13.  

Figure 12. One-dimensional convolutional neural network diagram.

Apart from the weight assignment to class variables, another important optimization
was the learning rate. To find the optimum learning rate, a semilog-based plot was created,
using the data from the learning rate range and loss parameters, as shown in Figure 13.
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To evaluate the performance of the 1D CNN, some other machine learning algorithms
were used for the same dataset to compare them with the proposed method. The ML
algorithms used a\were ANN with two dense layers, logistic regression, support vector
machine, AdaBoost classifier, and random forest classifier.

4. Results

This section discusses the results from the data analysis section. The discussion starts
with the 1D CNN architecture model results, followed by a comparison with other models.
A confusion matrix was depicted to elaborate on the performance of class variables. Also,
the weight assignment process and performance metrics, such as accuracy and loss in terms
of epochs, were discussed. Finally, four more types of heart disease were used for similar
studies, and the results were also summarized.
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The confusion matrix is depicted in Figure 14a, and the performance metrics are
plotted in Figure 14b. It is evident that, despite a significant imbalance in the dataset, the
implementation of 1D CNN brought forth improved accuracy. Figure 15a shows the loss
vs. epochs graph. Although the loss was initially high (approximately 25 epochs), the loss
steadied around 0.4. Also, in Figure 15b, the accuracy of the model vs. epochs graph is
depicted. The accuracy of the validation set started slow. However, at 15 epochs, it was
close to the training accuracy and kept increasing slowly to 30 epochs.
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To understand the significance of introducing a convolutional layer (CNN) into the
model, another model was prepared with only one convolutional layer. The results showed
that the false negative results increased from 23.1% to 49.2%. Moreover, the same dataset
was used with a few other models to compare performance, as shown in Figure 16.
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The imbalanced dataset’s main challenge was that many models’ accuracy may be
high. However, in nearly all cases, the accuracy came as a sacrifice, also causing a very
high false negative number. As seen in Figure 16, the false negative number is the lowest in
the case of 1D CNN, while accuracy simultaneously remained the highest. Alternatively,
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the false positive number might be improved in the random forest classifier compared to
1D CNN, but with lower accuracy and a higher false negative number.

Similar to the CHD dataset, four more datasets were prepared from NHANES survey
data using similar strategies for heart attack, angina pectoris, congestive heart disease, and
stroke. Elasticnet was applied for all of them to obtain a feature list for model training.
The general 1D CNN, which was used for this four heart condition dataset, consisted
of the following steps. First, the reshape layer was applied to transform the flattened
feature set into multiple one-dimensional data segments. After that, one dense layer, one
convolutional layer, and another dense layer were applied to mix the effect of features and
remove the effect of the chronology of features in the dataset. The class weight was 1:5, and
the learning rate used was 0.001.

Figures 17 and 18 depict the model performance of four datasets (congestive heart
failure, stroke, angina pectoris and heart attack), comparing the proposed 1D CNN with
several other ML models such as ANN, RFC, ADBC, SVC, etc. Using Keras, an artificial
neural network (ANN) with three hidden layers (64, 128, and 256 units) was built through-
out this training procedure. The Adam optimizer with a learning rate of 0.001 was used
to optimize the model. The optimization aim was to reduce the categorical cross-entropy
loss function while increasing the accuracy metric. Dropout regularization occurred at
a rate of 0.2 after each hidden layer to prevent overfitting. After each dense layer, batch
normalization was used to increase training stability and generalization performance. The
use of class weights was one significant component of this training technique. By giving
class 1 a larger weight (2.2 times) than class 0, the model prioritized properly forecasting
instances of the minority class, addressing class imbalance difficulties. The random forest
classifier was used to optimize its hyperparameters. GridSearchCV was used to perform a
grid search using several estimators (10, 30, 50, 100, 130, 160, 200) and maximum depths
(2, 3). The classifier was trained using balanced class weights on the original training
data. Following the grid search, the improved random forest classifier was built using
the best parameters discovered during the search. After that, the improved classifier was
trained on the original training data. A Support Vector Classifier (SVC) was trained in
this approach, with the hyperparameters C = 0.05, gamma = 1/41, kernel = ‘rbf’, and
class_weight = ‘balanced’. First, the accuracy using 1D CNN model for the four conditions
is shown in Figure 18. The accuracy of 1D CNN was consistent. Notably, the accuracy in
the random forest classifier was higher in two heart conditions than in 1D CNN. However,
when it was investigated, it was found that, in both cases, the false negative number was
significantly higher, deeming the overall performance of 1D CNN better for heart disease,
as shown in Figures 17 and 19. Additionally, in Figure 19, the loss and accuracy of the
model (1D CNN) concerning epochs are depicted.
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5. Discussion

In nearly all the studies performed for identifying symptoms of heart disease using
artificial intelligence, the datasets used were smaller. Features were not created to use them
for machine learning, as several of the features within those limited numbers needed to be
more relevant. That was why bringing forward a dataset with many relevant features and
a significantly higher number of samples was essential. This study used undersampling
and weight class assignments to mitigate the data imbalance issue. The critical change
at the beginning of the 1D CNN model was the reshaping from the initial dense layer.
The purpose of this reshaping was to allow the model to perform well, irrespective of the
chronological order of the features. Thus, the input layer was reshaped and fed into a dense
layer, which mixed the effect of a different subset of features using a convolutional layer.

Based on the evaluation measures, the suggested 1D CNN model for coronary heart
disease performed well. The model had a sensitivity of 0.7692, suggesting its ability to
detect affirmative cases properly. The model’s specificity of 0.8007 demonstrates its ability to
reliably detect negative situations. The model has a high likelihood of properly recognizing
real negative instances, with a negative predictive value of 0.9965. The model’s accuracy of
0.8003 indicates that it attained an overall good prediction rate. The false positive rate of
0.1993 and false negative rate of 0.2308 reveal the trade-off between improperly identifying
positive and negative cases, respectively, and suggest more areas for improvement in
the model. A comparison of several categorization algorithms helepd to understand the
impact of introducing 1D CNN layer while predicting coronary heart disease (CHD) using
NHANES data. In nearly all cases, the accuracy came as a sacrifice to a very high false
negative number. Each model’s performance was evaluated using a variety of criteria,
including accuracy, sensitivity, specificity, negative predictive value, false positive rate, and
false negative rate. In terms of overall accuracy, the 1D CNN model scored the maximum
accuracy of 80.03%. It outperformed ANN (75.74%), Random Forest Classifier (78.59%),
Adaboost Classifier (72.68%), and Support Vector Machine (72.43%). In terms of sensitivity,
which assesses the model’s capacity to correctly identify positive cases, the 1D CNN model
had a sensitivity of 0.7692, suggesting its ability to effectively identify real positive cases.
The Random Forest Classifier had a sensitivity of 0.7859, whereas the ANN model had a
slightly lower sensitivity of 0.7574. The sensitivities of the Adaboost Classifier and Support
Vector Machine were 0.7268 and 0.7243, respectively. Specificity values, which represent a
model’s ability to properly detect negative situations, were comparable among the models.
The 1D CNN model had a specificity of 0.8007, whereas the Random Forest Classifier had a
specificity of 0.7993. Looking at the false positive and false negative values, the 1D CNN
model had 105 false positives and 7386 false negatives. Although it had the best accuracy,
it also had the largest false negative count when compared to the other models. The ANN
model, on the other hand, had a somewhat lower accuracy of 75.74%, with 91 false positives
and 9011 false negatives. The Random Forest Classifier was 78.59% accurate, with 115 false
positives and 7916 false negatives. The accuracy of the Adaboost Classifier was 72.68%, with
84 false positives and 10,164 false negatives. Finally, the Support Vector Machine model
was 72.43% accurate, with 80 false positives and 10,263 false negatives. The examination
of the suggested models for four illnesses, namely, congestive heart failure, stroke, angina
pectoris, and heart attack, gives intriguing insights into the performance of the 1D CNN
model. The 1D CNN outperformed the other models in terms of congestive heart failure
prediction, with an accuracy of 0.8488. Similarly, the 1D CNN obtained an accuracy of
0.8266 in stroke prediction, suggesting its ability to effectively detect stroke instances.
Furthermore, the 1D CNN outperformed competitors in angina pectoris and heart attack
prediction, with accuracies of 0.8696 and 0.8393, respectively. Major findings emphasize
the superiority of the 1D CNN model over the other models in effectively predicting major
cardiovascular illnesses. These findings imply that the proposed model offers great promise
for improving different disease prediction accuracy in the field of cardiovascular health.
Further study and improvement of the model might lead to enhanced diagnostic skills and
patient outcomes.
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There were several limitations and constraints in the study. Although the number of
features available in this study was not only higher in number compared to contemporary
studies but also the features were more relevant, the model would be better trained if more
information were available. This is because the detection or diagnosis does not depend
on a single parameter, such as arrhythmia, whereas diagnosis depends on the number of
heartbeats per minute. The heart diseases mentioned in this study are more complex, with
symptoms and effects spread over many parts of the body and features, for example, stroke
originates in the narrowing of blood vessels due to higher blood pressure or the bursting of
blood vessels in the brain. Acquiring stroke symptoms is not as simple as counting one
or a few vital parameters. Instead, many laboratory parameters, the heart’s electrical and
mechanical activities, the situation in blood vessels, the overall physiological situation, etc.,
are involved. That is why, even though the NHANES survey did a better job compared to
other critical data surveys about the health condition, it is worth noting that more specific
information about heart health would help build a better prediction model. As such, a
significant limitation of this study is that the feature list had to be accumulated from the
NHANES survey data. There must be an initiative with global standards to collect patient
data relevant to building predictive models to resolve this issue. Another limitation of
this study is the need for more interpretability. The black-box nature of the deep learning
model makes it difficult to explain how the complex network architecture and non-linear
operations arrive at a prediction. To bring all stakeholders (technical and non-technical)
related to the solution into confidence, the decision-making process needs to be more
transparent. The interpretability of the deep learning model is an active area of research
right now.

6. Conclusions

Heart disease is one of the fatal chronic diseases which becomes very difficult to cure
if detected at later stages. On the other hand, proper treatment can be given if diagnosed
early. In fact, in some cases, a lifestyle change may improve the health condition. Early
detection also positively impacts the patient’s family regarding financial aspects compared
to later diagnosis. This paper proposes using a larger dataset, ensemble feature selection
algorithm, and modified 1D CNN to classify clinical parameters into different heart disease
classifications. Through experiments and evaluations using the dataset acquired from
NHANES, our modified 1D CNN model achieved higher accuracy for overall heart disease
detection than other ML techniques. Furthermore, the results indicated that our approach
withstood the challenge of an unbalanced dataset compared to other techniques, producing
the lowest number of false negatives. The confusion matrix confirmed that all four elements
were above 75%, even with the imbalanced dataset, with the most prominent effect for the
false negative value. The loss and accuracy curve against number of epochs showed that,
around 30 epochs, the loss and accuracy become steady during training and validation.
The 1D CNN showed better accuracy, false positives, and negative numbers than other
ML methods. The values where a few of the ML methods performed similarly proved
one-sided. In those cases, the higher performance came as a higher contribution from the
majority class (non-CHD). The significant limitations were imbalanced data, the lack of
explain ability (a general consequence of a deep learning model), and the requirement for
more extensive research in the other four heart conditions. In the future, steps will be taken
to solve or mitigate those limitations and make the model robust and accurate for all heart
health conditions.
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