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Abstract: Accurate noninvasive diagnosis of retinal disorders is required for appropriate treatment
or precision medicine. This work proposes a multi-stage classification network built on a multi-scale
(pyramidal) feature ensemble architecture for retinal image classification using optical coherence
tomography (OCT) images. First, a scale-adaptive neural network is developed to produce multi-
scale inputs for feature extraction and ensemble learning. The larger input sizes yield more global
information, while the smaller input sizes focus on local details. Then, a feature-rich pyramidal
architecture is designed to extract multi-scale features as inputs using DenseNet as the backbone. The
advantage of the hierarchical structure is that it allows the system to extract multi-scale, information-
rich features for the accurate classification of retinal disorders. Evaluation on two public OCT
datasets containing normal and abnormal retinas (e.g., diabetic macular edema (DME), choroidal
neovascularization (CNV), age-related macular degeneration (AMD), and Drusen) and comparison
against recent networks demonstrates the advantages of the proposed architecture’s ability to produce
feature-rich classification with average accuracy of 97.78%, 96.83%, and 94.26% for the first (binary)
stage, second (three-class) stage, and all-at-once (four-class) classification, respectively, using cross-
validation experiments using the first dataset. In the second dataset, our system showed an overall
accuracy, sensitivity, and specificity of 99.69%, 99.71%, and 99.87%, respectively. Overall, the tangible
advantages of the proposed network for enhanced feature learning might be used in various medical
image classification tasks where scale-invariant features are crucial for precise diagnosis.

Keywords: ensemble learning; OCT; pyramidal network; feature fusion; scale-adaptive

1. Introduction

Specialized non-invasive imaging techniques are extensively utilized in clinical re-
search to detect/diagnose retinal diseases that may lead to vision loss. In practice, different
image types are exploited for that purpose, including optical coherence tomography (OCT),
fundus photography, OCT angiography (OCTA), etc. The OCT-based imaging technique in
particular is widely exploited in clinical practice due to its ability to produce high-resolution
cross-sectional images of the retina, which greatly help in the assessment of several reti-
nal diseases [1,2]. However, due to the complexity and variability of the image features,
accurate classification of OCT images is challenging. Developing an accurate diagnostic
system for diseases is clinically essential for personalized medicine [3]. Furthermore, retinal
disease diagnosis is a critical target since it is almost entirely subjective and the appropriate
treatment path to effectively manage retina diseases relies on the accuracy of the diagnosis.

Retinal image diagnosis has shown an increased interest recently from various re-
search groups. A large volume of research work has shown promising results in improving
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the accuracy and efficiency of OCT-based image analysis [4]. The accuracy of OCT image
classification has shown considerable promise when using machine learning (ML) tech-
niques. Particularly, the use of deep learning (DL) can optimize solutions to several complex
classification problems [5]. DL-based techniques have the potential to perform efficient
classification as well as segmentation of various structures (e.g., drusen) and grading of
OCT images [6–9].

In recent years, several ML/DL research papers have been published on retinal image
classification for various diseases, e.g., age-related macular degeneration (AMD), diabetic
retinopathy (DR), diabetic macular edema (DME), and choroidal neovascularization (CNV).
A few papers have proposed ensemble methods to improve the overall accuracy of retinal
image classification tasks for macular diseases (e.g., AMD, CNV, DR, DME, etc.) by combin-
ing multiple DL models. For example, multi-step techniques for DR diagnosis using OCT
were proposed by Elgafi et al. [10]. The system sequentially segments the retinal layers, ex-
tracts 3D retinal features, and uses a multilayer perceptron (MLP) for classification using the
extracted features. In a leave-one-subject-out evaluation, their system achieved an accuracy
of 96.81%. A similar approach with the addition of a feature selection step using the Firefly
algorithm was proposed in Reference [11] by Özdaş et al. Multiple binary classifications
were conducted using two public datasets and achieved a mean accuracy of 0.957 and 0.954,
respectively. A multi-scale convolutional mixture of expert (MCME) ensemble models was
proposed in Reference [12] by Rasti et al. to separate the normal retina from DME and dry
AMD. The authors also introduced a new cost function for discriminative and fast learning.
The system has been evaluated on a total of 193 subjects and demonstrated a precision rate
and area under the curve (AUC) of 98.86% and 0.9985, respectively. Ai et al. [13] proposed
a fusion network (FN)-based disease detection algorithm for retinal OCT images. They
utilized InceptionV3, Inception-ResNet, and Xception DL algorithms as base classifiers,
each accompanied by an attention mechanism. Multiple prediction–fusion strategies were
employed to output the final prediction results. Comparison to other algorithms showed
improved accuracy in the classification of the diseases. A shallow network of only five
layers was introduced by Ara et al. in Reference [14] for OCT-B scan classification. The au-
thors investigated the effects of image augmentation as well as deeper networks on final
classification. The approach reduced computational time by 16.5% based on the model size,
and data augmentation yielded improved accuracy.

A study by Tvenning et al. [15] utilized a DL-based method for AMD identification on
OCT scans. The neural architecture, so-called OptiNet, integrates classical DL networks
and different parallel layer-wise modules created from filter features. The systems have
been evaluated on 600 AMD cases and documented the ability of the deep network to
detect alterations in retinal scan regions that correspond to the retinal nerve fiber and
choroid layers, which can be linked to AMD. Another CNN-based approach for macu-
lar disease classification was proposed by Mishra et al. [16]. the authors introduced a
deformation-aware attention-based module to encode crucial morphological variations
of retinal layers. The proposed module was integrated into a transfer-learning(TL)-based
deep network. The main advantage of the proposed approach is that it is void of pre-
processing steps, and the results showed superior performance over competing methods.
Another attention-based architecture was proposed by Huang et al. in Reference [17].
Due to the ability of their global attention block (GAB) to focus on lesion locations in the
OCTs, the authors proposed a lightweight classification network model. Evaluation on
the public UCSD dataset has demonstrated superior classification compared to commonly
used attention mechanisms. S.-Paima et al. [18] developed a two-stage multi-scale method
for classifying AMD-related pathologies using different backbone models. Hierarchical
features were extracted from the input images. This end-to-end model employed a single
convolutional neural network (CNN) model to extract different-sized features which were
then fused for classification. Two sets of datasets were used: 12,649 images from NCH and
108,312 images from UCSD [19]. Using pre-trained ImageNet weights, the model accuracy
was 92.0% ± 1.6%, which was boosted 93.4% ± 1.4% in stage two by fine-tuning the model.
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A multi-scale deep feature fusion (MDFF) approach was introduced by Das et al. [20].
The model leveraged the fusion of features from multiple scales—thereby capturing the
inter-scale variations in images in order to introduce discriminative and complementary
features—and employed transfer learning to reduce training parameters. TL, however,
reduces dependence and has poor adaptation to the differences among different datasets.
Similarly, Li et al. [21] used a deep TL-based method to fine-tune the pre-trained VGG-16
in order to classify 109,312 images and thereby obtained a prediction accuracy of 98.6%.
The validation dataset was also used as the testing dataset, so the reported performance
could be biased, and training the model on inadequate amounts of data makes it susceptible
to overfitting.

Wang et al. tested and evaluated five neural network structures for OCT diagnosis [22]
(DenseNet121, ResNet50, DPN92, ResNext101, CliqueNet), and VGG16, VGG19, inception-
V3 neural networks, and support vector machine (SVM) methods were added in order to
improve experimental comparisons. The network was fine-tuned using features extracted
from the OCT dataset, and evaluation was carried out using two public datasets of 3231
and 5084 images, respectively. The dataset used for this experiment consists of eyeball
images, not just retina images from OCT; thus, the pre-processing required for the screening
of images and the size of the block is time-consuming, and training takes much longer.

Smitha et al. [23] introduced a GAN-based system for retinal disorder diagnosis in
which the discriminator classifies the image into normal or abnormal categories. Their
method employed denoising enhancement of the retinal layers as a pre-processing step.
Two datasets were used for evaluation. Overall accuracy was 83.12% on a small dataset
(3980 images: DME, dry AMD, and NORMAL) with low training parameters and 92.42%
on a larger dataset (83,605 images: CNV, DME, NORMAL, and Drusen) with larger train-
ing parameters. The shortcomings of this method are that segmentation output greatly
depends on the quality of the ground-truth images and that image denoising has a high
probability of overfitting and thus does not enhance the generalization ability of the classi-
fier. Tsuji et al. [24] constructed a network that utilized the capsule network to improve
classification accuracy. Their architrave was built on six convolutional layers (CL) and one
primary capsule network. Additionally, four CLs were added to the capsule network archi-
tecture of two CLs and one fully connected (FC) layer. Their method achieved an accuracy
of 99.6%. The network requires a fixed-input image of 512× 512. Resizing utilized linear
interpolation, which causes some undesirable softening of details and can still produce
somewhat jagged images.

In order to detect and grade the severity of DR, Reddy et al. [25] introduced a hybrid
deep architecture that utilized a modified grey wolf optimizer with variable weights and
attention modules to extract disease-specific features. The hybrid system aided in the joint
DR–DME classification on the publicly available IDRiD dataset and achieved detection
accuracy rates of 96.0%, 93.2%, and 92.23% for DR, DME, and joint DR-DME, respectively.
Upadhyay et al. designed a cohesive CNN approach. The shallow-network (five-layered)
layers were cohesively linked to allow for a smooth flow of image features, and batch
normalization was instilled along with every activity layer. The approach obtained an
accuracy of 97.19% for retinal disease detection for four-class classification [26]. A hybrid
fully dense fusion CNN (FD-CNN) architecture was developed by Kayadibi et al. [27]
to detect retinal diseases. They first employed a dual hybrid speckle reduction filter to
diminish OCTs speckle noise followed by the FD-CNN to extract features. The classification
was performed by deep SVM (D-SVM) and deep K-nearest neighbor (D-KNN) classifiers.
The hybrid FD-CNN showed significant performance improvement compared to the single
performance of CNN.

In summary, the existing literature proposes various techniques, and it is important to
note that the results of these papers vary depending on the specific task, dataset, and the
DL technique used. Most of the existing literature used larger datasets while using pre-
trained models, and some methods employed direct fusion for multi-scale predictions.
Furthermore, features related to the higher-order reflectivity of the OCT images were
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not utilized in conjunction with deeper features, and cascaded classification was not
investigated. This paper proposes a multi-stage classification of OCT image features
that integrates discriminatory features through a multi-resolution feature pyramid with
a scale adaptation module. The proposed cascaded multi-stage classification system is
divided into two main steps (Figure 1). First, a scale adaptation network module is used to
obtain various image scales for ensemble learning. Second, a transfer learning approach is
utilized to extract features from OCT images using a pyramidal structure that allows for the
extraction of differently scaled features from the same image dataset. Finally, the extracted
features from three different scales of input images are fused to produce a single feature
for classification. This fused feature has a rich concentration of local and global features at
different levels. Using the one-vs.-rest (OVR) classifier, a binary classification of normal vs.
abnormal (CNV, DME, or Drusen) is trained at the first stage, and the abnormal outputs are
further passed through the same classification pipeline using different classifier algorithms
to differentiate the classes in the second stage.

Figure 1. Schematic of the proposed multi-stage (A) and multi-resolution deep architecture model
(B) for retinal disorders diagnosis using OCT scans.

The main contributions of this work are as follows: (i) we designed a multi-scale,
pyramidal, feature-rich input, as compared to single-scale, through the ensemble/fusion
of multi-resolution features for classification; (ii) in order to extract prominent features
from the input image, we adopted a scale-adaptive network architecture for generating
the multi-scale input images instead of using image resizing; (iii) we utilized a transfer
learning technique to extract the features in order to facilitate intermediate feature learning;
(iv) we used a two-stage classification approach for a global (binary: normal vs. abnormal)
and multi-disease classification overall pipeline fusing both lower- and higher-scale fea-
tures; (v) we improved classification accuracy for both binary and multi-class scenarios
using cross-validation despite the great overlap among the extracted features from the
OCT images.

This manuscript is partitioned into four sections. An introduction to OCT and its role
in retinal disease diagnosis in modern CAD systems is given in Section 1. This is followed
by a relevant review of the recent literature work on this topic as well as the paper’s
contributions. The materials and methods used along with specifics on the structure of
the developed pyramidal architecture are fully detailed in Section 2. The dataset used,
the employed performance criteria, the experimental design, the network parameters, the
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results, and a discussion are given in Section 3. At last, Section 4 provides work conclusions
and limitations and future work suggestions.

2. Materials and Methods

In order to obtain better predictive performance, we developed a two-stage framework
that includes pyramidal feature extraction, multiresolution feature ensemble, and classifica-
tion. The input to the designed system is retinal OCT images obtained from two publicly
available datasets. The proposed architecture provides both global (normal vs. abnormal)
and stratified abnormal classifications. The proposed network architecture is schematized
in Figure 1 with details described below.

OCT images that are collected from different imaging systems have different sizes,
and using TL for the pre-trained network requires downscaling of the input images to
fit the employed pre-trained model’s input. Unfortunately, downscaling exhibits the loss
of important information from images. In order to account for this, we developed an
autoencoder (AE)-based resizing module that accepts OCT images of any size and resizes
them for use with pre-trained backbones when applying transfer learning. AE networks
are considered unsupervised methods (no labels) that learn a latent-space (compressed)
representation of the training data. The main advantage of AE neural architecture is its
ability to filter out the noise and irrelevant information while reconstructing its output with
minimal information losses. In our design, the AE module aims to resize the input images
for use as an input in a pre-trained feature extraction ensemble architecture.

The AE module is used to generate three different image scales for the proposed
pyramidal feature extraction and ensemble learning (i.e., 224× 224× 3, 112× 112× 3 and
56× 56× 3). The module architecture is shown in Figure 2. The encoding path consists of
consecutive convolution and pooling layers, which produce the feature map FAE of size
224× 224× 3. FAE is then processed through CL, transposed convolutional, and reshaped
to 224× 224× 12. Original and processed FAEs are integrated using the concatenation layer
to produce both high and low-resolution images. The former is generated from FAE and
is fed to the pyramidal feature extraction network. The latter is required for the module
training phase in order to ensure that the reconstruction error between the module’s output
and the original input image is minimal, i.e., the network learns important features from
the inputs and discards redundancy and noise.

Figure 2. Illustration of the autoencoder-based size adaptation network.

For AE module training, a custom loss that combines two pseudo-Huber loss functions
and a log-cosh loss function for high resolution and low resolution, respectively, is used.
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Pseudo-Huber loss is more robust against outliers. Its behaviors for small and large errors
resemble squared and absolute losses, respectively, and are defined mathematically as [28]:

PHuber(x) = δ2

(√
1 +

( x
δ

)2
− 1

)
(1)

Here, x is the difference between the actual and predicted values and δ is a tunable
hyper-parameter. On the other hand, the log-cosh loss function logcosh(x) = log(cosh(x))
is similar to Huber loss, but it is double differentiable everywhere [29]. Again, x is the
difference between the actual and predicted values.

Following the AE-based resizing, the feature extraction step is performed for both
global or binary (normal vs. abnormal) as well as for multiclass (CNV vs. DME vs. Drusen)
classification of OCT images. At this stage, extraction of discriminating features from the
retinal images is performed using pyramidal DL-based architecture. In order to achieve
feature-rich classification as compared to single-level networks, a pyramidal DL system
is proposed to extract various information to help with multi-class classification tasks;
see Figure 1A. Namely, retinal images are resized using the AE module at three different
scales (224× 224, 112× 112 and 56× 56). Then, each of the pyramidal CNNs constructs a
hierarchical representation of the input images that is then used to build a feature vector
which in turn is eventually fused as a feature for the classification task. Although encoders
in a wide variety of famous DL networks create a pyramidal feature that can be fused [18],
the performance depends on fusion techniques. Thus, we chose to fuse the features of
several networks in order to improve the semantic representation of the proposed model.

The proposed architecture, Figure 1, can be seen as a multiresolution feature ensemble
in which each CNN path utilizes transfer learning. Transfer learning is a great way to
obtain significant results in a classification problem with low data volume. We adopted
the pre-trained DenseNet201 model [30] in this work as the backbone of our pyramidal
network. DenseNet has performed brilliantly on a variety of datasets and applications
where direct connections from all previous layers to all following layers are established;
Figure 3. This not only provides ease of training by facilitating feature reuse by different
layers and improving connectivity but also increases the variance in later-layer inputs and
thus enhances performance [31].

Figure 3. layered dense block representing direct connections between layers.

Dense blocks are formed in the network design for downsampling purposes and are
separated by layers known as transition layers. The latter help the network to learn interme-
diate features and consists of batch normalization (BN), 1× 1 convolution layers, and finally,
a 2× 2 average pooling layer. The BN stabilizes and speeds up the training process. A given
feature map at layer l can be described mathematically as Y′ = R1

([
Y0, Y1, . . . . . . , Y1−1])

where: R1: is a non-linear transformation comprised of BN, a nonlinearity, and a convolu-
tion of 3× 3.

[
Y0, Y1, . . . . . . , Yl−1

]
refers to the feature map concatenation corresponding

to layers 0 through (l − 1) that are incorporated in a single layer.
Another hyperparameter, k, specifies the growth rate, or the rate at which the layer’s

size in individual blocks of the network grows. It can be visualized as a regulator controlling
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the flow of information in successive layers to reach state-of-the-art results. For instance,
when k = 11, a filter size of 11 is used at each layer in an individual block. Generally,
DenseNet performs well when smaller k are used, as the architecture considers feature maps
as the network’s global state. As a result, each subsequent layer has access to all previous
layers’ feature maps. Each layer adds k feature maps to the global state, with the total
number of input feature maps at the l-th layer (FM)I is defined as (FM)′ = k0 + k(l − 1),
where the channels in the input layer are determined by k0.

In order to enhance computational efficiency, a 1× 1 convolution layer is added before
each 3× 3 convolution layer (see Figure 4) to reduce the number of input feature maps,
which is often greater than the number of k output feature maps [32]. The global pooling
layer pools the input features’ overall spatial locations at the end of each DenseNet path.
The resulting vectors are then used to obtain the feature representations of the training and
testing images and are fused for classification.

Figure 4. Layered Architecture of DenseNet201.

Finally, once all feature vectors for all three CNNs are constructed, they are fused
(concatenated) to form predictor variables in a classification network. Features are extracted
from pyramidal CNNs at the last layer just before the fully-connected layer. Since we used
a pre-trained model, the number of features is typically fixed and is not affected by the
input image size or other factors during inference. The size of the feature vectors for the
three scales was 1920 individually (5760 after fusion). For classification, we used different
classifiers in the first stage (binary) to classify the dataset into normal and abnormal as
well as in the second stage (multiclass) to further differentiate the abnormal into three
different classes. Namely, we used multilayer perceptron (MLP), logistic regression (LR),
SVM, decision tree (DT), random forest (RF), and Naïve Bayes (NB) [33,34]. LR is a
predictive analysis classifier that uses the Sigmoid function to predict input features and
corresponding weight into a probabilistic output. SVM finds a hyperplane in N-dimensional
space (N is a number of features) that distinctly classifies the data points of classes using
the maximum margin. Although commonly used in data mining to reach a goal, DT is a
supervised learning tree-structured classifier that predicts the value of a target variable
by learning simple decision rules inferred from the data features. Similarly to DT, RF
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builds decision trees from various samples and takes the average to improve the predictive
accuracy of that dataset. Finally, NB is a probabilistic ML classifier built on the Bayes
theorem that predicts the probability of belonging to the “A” class given that “B” has
occurred. The features are independent of each other, bringing about the name Naïve.

3. Experimental Results and Discussion

Evaluation to assess the proposed system is performed using various experiments on
a UCSD dataset, and both binary and multi-class classification stages have been conducted.
The first classification stage (binary) classifies the image as either a normal or abnormal
retina, and the second (or the multi-class) stage stratifies the input image as either DME,
CNV, or Drusen. The pyramidal CNNs were trained on publicly available datasets [19].
The dataset contains OCT images (Spectralis OCT, Heidelberg Engineering, Germany) from
retrospective cohorts of adult patients provided by the Shiley Eye Institute of the Univer-
sity of California San Diego, the California Retinal Research Foundation, Medical Center
Ophthalmology Associates, the Shanghai First People’s Hospital, and Beijing Tongren Eye
Center [19]. About 108K OCTs in total for four classes (CNV: 37,206, DME: 11,349, Drusen:
8617, normal: 51,140) and the testing set containing 1000 retinal OCT images (250 from
each class) are available from Reference [35]. We used Jupyter Notebook to implement the
software on a Dell Precision 3650 Tower ×64-based workstation with an Intel Core(TM)
eight-core CPU running at 2.50 GHz, 64 GB RAM, and with NVIDIA RTX A5000 GPU.

The multilayer perceptron (MLP) pyramidal networks were trained over 50 epochs
with a batch size of 128. Additionally, a 5-fold cross-validation strategy was utilized as an
unbiased estimator to assess the performance of our ensemble model against other methods.
The use of cross-validation partially reduces problems of overfitting or selection bias and
also provides insights on how deep architecture will generalize to an independent dataset.
Both training and testing data were mixed and cross-validation was employed on the
total dataset. All of the dense layers for both the first and second stages used the rectified
linear unit (ReLU) as their activation function. Binary cross-entropy for the first stage and
sparse categorical cross-entropy for the second stage were utilized as the loss function. An
Adam optimizer was employed with a learning rate starting at 0.001, and this was reduced
automatically during the training phase in order to improve results whenever the loss
metric had stopped improving on both stages. Total network parameters of 1,665,197 out of
1,665,397 parameters were used for training in the first stage and 3,041,711 out of 3,041,911
for the second stage.

We first investigated the first stage for the global (i.e., binary) classification of the
retinal images as normal or abnormal. This step mimics human perception of separate
groups. Evaluation of the proposed pipeline performance is conducted using known
classification metrics, such as accuracy, sensitivity, specificity, and AUC of the receiver
operating curve (ROC). Those metrics are defined in terms of experiments’ outcomes of
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) as follows:

Acc =
TN + TP

TN+TP+FN+FP
, Sen =

TP
TP+FN

, and Spc =
TN

TN+FP
(2)

Different ML classifiers were further employed for both stages, and our overall
MLP model accuracy performance for both stages is demonstrated in Table 1 for the
5 folds. For the ML classifiers, default parameters were used for the classification. SVM
(kernel = ’rbf’ and decision function = ’OVR’), DT (criterion = ’gini’, splitter = ’best’, none
for others), RF (criterion = ’gini’, estimator = ’100’), NB (priors = ’none’, smoothing = ’1e-9’)
but for LR (solver = ’liblinear’).

As can readily be seen, MLP performed best (97.79% accuracy in the first stage and
96.83% in the second stage) among the other classifiers. This is mainly due to its capability
to learn complex nonlinear patterns by amplifying relevant aspects of input data and
suppressing irrelevant information [36]. Additionally, confusion matrices were used as
an alternative quantitative evaluation. Figure 5 shows our network’s confusion matrix
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for different classifiers in the first stage using 5-fold cross-validation. Network evaluation
and monitoring benefit from confusion matrices. From the obtained confusion matrix,
other indices such as precision, f1 score, and recall can be derived. For the assessment
evaluation of classification models, both the confusion matrix and related metrics are
typically employed together.

Table 1. Performance of different classifiers for the proposed cascaded classifications all well as for
all-at-once (four classes) classification using 5-fold cross validation on the UCSD dataset. LR: logistic
regression; SVM: support vector machine; DT: decision tree, RF: random forest; NB: Naïve Bayes,
and MLP: multilayer perceptron.

First Stage (Binary) Second Stage (3-Classes) 4-Classes

Classifiers Acc% Sen% Spc% AUC% Acc% Sen% Spc% Acc% Sen% Spc%

MLP 97.79 95.55 99.72 99.86 96.83 97.75 98.87 94.26 96.29 98.74

LR 89.23 87.00 95.77 97.47 89.34 88.69 93.99 85.95 86.08 94.91

SVM 90.33 85.80 96.29 97.98 89.47 89.68 94.56 86.53 85.72 94.79

DT 80.14 69.72 89.32 78.80 69.92 67.15 81.67 65.22 65.55 85.15

RF 85.40 92.53 90.20 97.04 84.62 84.57 91.61 81.10 80.11 92.82

NB 73.71 54.04 94.70 87.90 67.46 67.46 81.00 63.82 63.75 84.35

Figure 5. Confusion matrices for the first stage using 5-fold cross validation on the UCSD dataset.

Binary classification is an initial step in any treatment procedure by retina specialists.
However, personalized medicine would require the determination of the disease and,
more appropriately, its grade. Thus, the second set of experiments investigated multi-
class classification (DME vs. CNV vs. Drusen). The results for different classifiers are
summarized in the middle part of Table 1, and the second stage confusion matrices are
depicted in Figure 6. Moreover, in order to demonstrate the efficacy of the pipeline to
separate the four classes, we performed an additional experiment using cross-validation
on the UCSD dataset. The model accuracy using the evaluation metrics is given in the
right part of Table 1, and the confusion matrices are given in Figure 7. Besides accuracy
metrics, the system’s accuracy and robustness are confirmed using the receiver operating
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characteristics (ROC) curves in Figure 8. The figure depicts the ROCs for the proposed
cascaded classification network for the first stage (Figure 8a), the second stage (Figure 8b),
and all-at-once classification (Figure 8c).

Figure 6. Confusion matrices for different classifiers for the second stage (i.e., three classes using
5-fold cross-validation on UCSD data set.

Figure 7. Confusion matrices for the four classes using 5-fold cross-validation on the UCSD dataset.
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(a) (b)

(c) (d)

Figure 8. The receiver operating characteristic (ROC) curves for the proposed cascaded framework
using cross-validation on the UCSD dataset: (a) binary classification using different classifiers;
(b) second-stage classification OVR using the MLP. Furthermore, the figure shows the ROCs for
all-at-once four-class classification using the MLP for (c) cross-validation and (d) test dataset only.

According to Table 1 and the confusion matrices in Figures 5–7, binary classification
demonstrated the highest accuracy compared with the second stage and all-at-once clas-
sification. This is an important aspect of the presented cascaded classification structure
that aligns with clinical diagnostics and emulates the process of a physician’s diagnosis.
Specifically, the system is designed to initially classify patients into broad groups with a
high level of confidence, such as distinguishing between normal and abnormal cases or
identifying AMD versus DME. Once patients have been stratified and critical cases have
been identified, physicians can then conduct a more comprehensive evaluation using other
available clinical signs and biomarkers. This allows for a refined differential diagnosis,
moving beyond OCT-based signs alone and towards an accurate and specific diagnosis.
Although there is the recent advantage of multi-scale DL-based fusion workflows in many
applications, including retinal applications, separating a large number of classes (sub types
or grades) at once is a challenging task. This explains the slight reduction in accuracy
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when the system separates all four classes at once. This, however, can be enhanced in
practice by integrating other available clinical signs/biomarkers/images for challenging
and complicated retinal diseases, including other diseases.

Our ultimate goal was to design and evaluate a versatile system that can be extended
to detect various retinal diseases. In order to explore the benefits of TL, we conducted an
additional experiment in which we evaluated several well-known ImageNet-based pre-
trained feature extractor architectures as replacements for DenseNet201. The architectures
we tested included VGG16, VGG19, Xception, and InceptionV3. The features extracted
from these architectures were then fused and used for classification. The results of this
experiment are presented in Table 2. The accuracy of the different backbones showed
slight variations, with the VGG architectures performing particularly well. These findings
demonstrate the potential of our cascaded architecture to leverage various pre-trained
models, which can be further improved through fine-tuning. Consequently, our system can
be extended to detect other retinal diseases not covered by the datasets used in this study.

Table 2. Performance of different feature extractors for the proposed cascaded classifications all well
as for all-at-once (four classes) classification using 5-fold cross-validation on the UCSD dataset and
multilayer perceptron.

First Stage (Binary) Second Stage (3-Classes) 4-Classes

Classifiers Acc% Sen% Spc% Acc% Sen% Spc% Acc% Sen% Spc%

Xception 95.91 98.96 95.64 91.96 96.86 98.43 93.15 97.97 99.32

InceptionV3 95.34 89.16 99.50 92.21 95.64 97.80 91.76 94.24 98.01

VGG19 95.94 97.57 99.31 93.88 95.40 97.67 93.39 97.01 99.67

VGG16 97.26 98.55 99.99 93.92 96.15 99.58 94.65 99.16 96.72

DenseNet201 97.79 95.55 99.72 96.83 97.75 98.87 94.26 96.29 98.74

All of the above experiments employed cross-validation for the cascaded as well as
all-at-once classifications for the four categories in the UCSD dataset. In addition to that,
we have further conducted an additional experiment for four-class classification using
the train/test data split of the UCSD dataset. The overall accuracies, confusion matrices,
and ROCs for the examined classifiers for the four-class classification on the test dataset are
given in Table 3, Figures 8d and 9. The results are consistent with the results in Table 1 with
a slight accuracy increase of 2%.

Table 3. Four-class classification performance using the UCSD test dataset only. LR: logistic regres-
sion; SVM: support vector machine; DT: decision tree, RF: random forest; NB: Naïve Bayes; MLP:
multilayer perceptron.

Metric

Classifier Acc% Sen% Spc%

MLP 96.17 96.17 98.69

RF 95.45 94.83 98.22

LR 93.28 93.29 97.66

SVM 91.73 95.97 98.63

DT 75.92 78.51 91.64

NB 79.54 79.55 92.23
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Figure 9. Confusion matrices for different classifiers for the four classes using UCSD test data only.

Moreover, the advantage of our system for retinal diseases’/disorders’ diagnosis
has been compared with standard and recent literature methods. All of the compared
networks were tested on the available images in order to compare their abilities for both the
multi-class and binary stages. For the first-stage classification, our network performance
was compared with traditional methods pre-well-trained on the Imagenet dataset [37]
mainly to show the effect of the ensemble learning and scale adaptation network on the
overall performance. The comparison included the DenseNet121 by Huang et al. [30],
the ResNet101 by Szegedy et al. [38], and the method by Haggag et al. [39], which was
designed for retinal image analysis. Since the UCSD dataset does not have ground truth
for the retinal layers to compute other local and global feature images, we only used the
grayscale images in Reference [39]. For the pre-trained network, the top layer was removed
and replaced by a fully connected layer with a dropout of 40% and a final node of the
sigmoid activation function for classification. A summary of the performance metrics is
given in Table 4. Statistical significance tests were performed using a paired Student’s
t-test to assess the accuracy of the proposed method in comparison to the other methods.
The results indicated that our method is statistically significantly better than the compared
methods (p-value < 10−4). Further, an ablation experiment was conducted to verify the
effect of the scale adaptation module on the classification performance. For the first- and
second-stage classification, our network showed and average accuracy of 95.76% and
94.93%. The overall enhancement (∼2%) was promising, and future work should be
conducted to explore other module improvements.

For the four-class comparison, our architecture was compared with well-known CNN
models and multiple well-known classification frameworks that reported accuracy on the
UCSD dataset. The comparative accuracy is demonstrated in Table 5, and the confusion
matrices for the different classifiers are shown in Figure 7. As can readily be seen in Tables 1
and 5, the proposed pipeline showed improved performance compared to its counter and
off-the-shelf networks. This is also confirmed using Student’s t-test, (p-values < 10−4)
similar to the binary classification.

To verify our system performance on other datasets in addition to the UCSD dataset,
we tested our approach on the Duke dataset [40], which contains a total of 3231 OCT
images for three classes: normal (1407), AMD (723), and DME (1101) patients. The dataset
does not have any training and testing splits, so we followed the same approach as was
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used by Kayadibi et al. in [27], where the train–test split was 90% and 10%, respectively.
The proposed pyramidal cascaded architecture results compared with other methods tested
on the same dataset are given in Table 6. The results document the better performance
of our architecture. These results are encouraging, and we ultimately plan to expand our
system in future work to be able to be even more specific, such that we identify not purely
signs (e.g., macular edema or CNV), but could actually distinguish between different causes
of cystoid macular edema (CME) based on OCT features, such as retinal vein occlusion,
diabetic macular, or uveitic macular edema.

Table 4. Comparisons with other related work for binary classification on the UCSD data set.

Method Acc% Sen% Spc%

Haggag et al. [39] 90.1 87.7 92.61

Huang et al. [30] 92.30 89.01 94.61

Szegedy et al. [38] 89.12 82.3 85.18

Proposed 97.79 95.55 99.72

Table 5. Comparisons with other related work for four-class classification using 5-fold cross-
validation.

Applied Method Acc% Sen% Spc%

Fang et al. (JVCIR) [41] 87.3 84.7 95.8

Fang et al. [42] 90.1 86.8 96.6

S.-Paima et al. [18] 93.9 93.4 98.0

Proposed 94.3 96.3 98.7

Table 6. Overall accuracy in comparison with other works tested on the Duke data set.

Applied Method Acc% Sen% Spc%

Thomas et al. [43] 96.66 — —

Amaladevi and Jacob [44] 96.20 96.20 99.89

Kayadibi and Güraksın [27] 97.50 97.64 98.91

Proposed 99.69 99.71 99.87

4. Conclusions

We have developed a multi-level, multi-resolution feature ensemble architecture for
the classification of retinal disorders. The proposed pipeline mimics the human perception
of global diagnosis followed by stratification of the suspected cases. The scale-adaptation
networks help to produce multi-scale inputs while retaining valuable information when
downscaling. Additionally, the pyramidal layout helps extract various information to
help with the binary and multi-class classification stages of the three retinal disorders.
In summation, the proposed architecture not only provides global diagnosis but also
automatically distinguishes between different retinal diseases, thus allowing for earlier
treatment of the patient’s condition. Despite promising results, some limitations of this
work should be addressed in future work. First, the proposed system should be evaluated
on more challenging retinal datasets with different diseases for rigorous evaluation. Second,
we used only pre-trained CNNs for feature extraction, and thus, more evaluation using
visual transformers should be investigated.

Future research venues will explore integrating the architecture into more-complex
retinal disorders’ pipelines to include, for example, sub-grades of disease (such as dry
and wet AMD) for accurate and precision medicine. Further, integration of explainable AI
modules (e.g., Grad-CAM, LIME, etc.) to gain further insights into the reasoning behind
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the systems’ output will be explored. Finally, a weighted fusion of the multi-scale features
will be thoroughly investigated as well as the study of additional higher-order features
using spatial models.
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