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Abstract: This study aims to investigate the reliability of radiomic features extracted from contrast-
enhanced computer tomography (CT) by AX-Unet, a pancreas segmentation model, to analyse the
recurrence of pancreatic ductal adenocarcinoma (PDAC) after radical surgery. In this study, we
trained an AX-Unet model to extract the radiomic features from preoperative contrast-enhanced CT
images on a training set of 205 PDAC patients. Then we evaluated the segmentation ability of AX-
Unet and the relationship between radiomic features and clinical characteristics on an independent
testing set of 64 patients with clear prognoses. The lasso regression analysis was used to screen for
variables of interest affecting patients’ post-operative recurrence, and the Cox proportional risk model
regression analysis was used to screen for risk factors and create a nomogram prediction model. The
proposed model achieved an accuracy of 85.9% for pancreas segmentation, meeting the requirements
of most clinical applications. Radiomic features were found to be significantly correlated with clinical
characteristics such as lymph node metastasis, resectability status, and abnormally elevated serum
carbohydrate antigen 19-9 (CA 19-9) levels. Specifically, variance and entropy were associated with
the recurrence rate (p < 0.05). The AUC for the nomogram predicting whether the patient recurred
after surgery was 0.92 (95% CI: 0.78–0.99) and the C index was 0.62 (95% CI: 0.48–0.78). The AX-Unet
pancreas segmentation model shows promise in analysing recurrence risk factors after radical surgery
for PDAC. Additionally, our findings suggest that a dynamic nomogram model based on AX-Unet
can provide pancreatic oncologists with more accurate prognostic assessments for their patients.

Keywords: pancreatic ductal adenocarcinoma; pancreas image segmentation; recurrence; pancreatectomy;
radiomics

1. Introduction

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the world,
and the five-year survival rate is the lowest among all malignant tumours, which is 11% [1].
The most common type of pancreatic exocrine tumour is pancreatic ductal adenocarcinoma
(PDAC), and its five-year recurrence rate after radical surgery is 85% [2]. Identified risk
factors associated with recurrence after radical surgery known to increase the risk of
recurrence after radical surgery include tumour size, lymph node metastasis, vascular
invasion, and abnormally elevated serum tumour markers [3,4]. Previous studies have
shown that diabetes mellitus (DM) or hyperglycaemia is relevant to the pathogenesis of
PDAC. However, there is still a debatable topic on whether DM has an impact on the
recurrence after radical surgery [5]. Previous research has ascertained a strong correlation
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between resectability status and the prognosis after radical surgery [6]. Therefore, further
research is required to establish the relationship between resectability status, prognosis,
and the appropriate treatment.

Artificial intelligence (AI) technology has been adopted in many areas of modern
society, especially in image processing [7,8]. Contrast-enhanced CT scans are the most
commonly used imaging modality for PDAC diagnosis and resectability evaluation. There-
fore, AI can be used to process preoperative CT data. For example, Liu et al. [9] used
multi-centre pancreas CT images to train a convolutional neural networks (CNN) model
to screen small tumours from pancreatic tissue, achieving a sensitivity of 92.1%, which
was much higher than human recognition, thus helping surgeons to avoid residual small
tumours at the resection margin.

Radiomics are capable of extracting high flux features and quantitatively analysing
region of interests (ROIs) to accurately reflect tumour heterogeneity and biological char-
acteristics [10,11]. However, manual ROI selection is still prevalent in many pancreatic
tumour radiomics studies, making researchers’ work more demanding and subject to
biases due to the high degree of subjectivity in the process [9,12,13]. Image segmentation
is an effective solution to these challenges, enabling radiomics to eliminate interference
from other areas and enhance the precision of clinical models designed for pancreatic
diseases [14]. As the use of radiomics expands, it is becoming more common to study
image features and their correlations to clinical features in clinical studies. The utilization
of artificial intelligence (AI) alongside radiomics presents an opportunity to uncover new
patterns within medical images, ultimately enhancing the role of radiology in treating
cancer patients [15]. Therefore, AI could potentially be a new trend in the development of
radiomics by assisting in ROI selection.

In the realm of pancreatic segmentation, numerous approaches have been proposed.
Farag et al. [16] utilized a dropout-enabled CNN model to classify pixels at a granular level.
Cai et al. [17] introduced a convolutional LSTM network integrated into the CNN’s output
layer, enabling segmentation of 2D slices of the pancreas. However, these methods often
neglect the spatial information across slices as they solely rely on merging information
from 2D CT image slices. Man et al. [18] put forth a CNN-based coarse-to-fine classifier
designed for analysing image patches and regions. Zhang et al. [19] proposed an efficient
SegNet network composed of a basic encoder, slim decoder, and an efficient context
block. Although these methods partially integrate spatial information, there is still room
for improvement in making accurate boundary segmentation decisions. Shi et al. [20]
introduced CoraNet, a semi-supervised segmentation model that leverages uncertainty
estimation and a separate self-training strategy, without relying on predefined boundary-
aware assumptions. In contrast to prior methods, our framework excels in extracting
comprehensive spatial and channel features, implementing multi-level and multi-scale
feature extraction. Our approach has yielded outstanding results on both our proprietary
dataset and publicly available datasets.

Unet is an FCN variant that displays good performance in medical image process-
ing [21]. In comparison to other neural network algorithms, Unet has several advantages.
Firstly, the acquisition and processing of medical image features are relatively difficult
compared to traditional manual labelling tasks, such as object detection and segmenting
organs, requiring a certain level of expertise. Difficulties such as these make it challenging
to create large-scale image annotation datasets [22]. Therefore, the Unet model structure
is relatively simple and more appropriate for situations involving less data. The model
parameters must be minimized to avoid overfitting. Secondly, medical image semantics
that lack complex backgrounds but contain multiple fixed organ structures are relatively
simple and stable in their composition. Due to the limited semantic information available,
high-level semantic information and low-level features are both important (the skip con-
nection and U-shaped structure of Unet are useful) [23]; (3) Finally, interpretability is an
essential factor in clinical research model construction.
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In the domain of pancreatic segmentation, a multitude of methodologies have been
proposed. Farag et al. [16] employed a convolutional neural network (CNN) model with
dropout to achieve precise pixel-level classification. Cai et al. [17] introduced a convolu-
tional long short-term memory (LSTM) network integrated into the CNN’s output layer,
enabling the segmentation of two-dimensional (2D) slices of the pancreas. However, these
methods often overlook the spatial information across slices as they solely rely on merging
information from 2D CT image slices. Oktay et al. [24] introduced a groundbreaking atten-
tion gate (AG) model specifically designed for medical imaging. This model autonomously
learns to concentrate on structures with varying shapes and sizes. Notably, it achieves re-
markable enhancements in the performance of Unet, rendering it of paramount importance
for PDAC image segmentation. Man et al. [18] proposed a CNN-based coarse-to-fine classi-
fier specifically designed to analyse image patches and regions. Zhang et al. [19] proposed
an efficient SegNet network composed of a basic encoder, slim decoder, and contextually
efficient block. Although these methods partially incorporate spatial information, there
is still scope for enhancing boundary segmentation decisions. Ribalta Lorenzo et al. [25]
presented a two-step multi-modal Unet-based architecture with unsupervised pre-training
and a surface loss component, effectively leveraging all magnetic resonance modalities
for brain tumour segmentation. Shi et al. [20] introduced CoraNet, a semi-supervised seg-
mentation model that utilizes uncertainty estimation and a separate self-training strategy
without relying on predefined boundary-aware assumptions. Isensee et al. [26] pioneered
a self-configuring segmentation approach that encompasses preprocessing, network archi-
tecture, training, and post-processing to adapt to diverse tasks. This method has exhibited
exceptional performance on various publicly accessible biomedical segmentation datasets.

We have developed a new deep learning framework known as AX-Unet for pancreas
CT image segmentation, integrating the strengths of deepLabV series [27], Unet, and
Xception networks [28]. This approach aids physicians in detecting pancreatic tumours and
evaluating the correlation between image features and clinical characteristics. We further
designed a nomogram prediction model with risk factors, enabling us to determine the
likelihood of patient recurrence. The objective of our research is to evaluate the significance
of CT images in post-operative recurrence and their impact on patient outcomes.

2. Materials and Methods
2.1. Ethical Approval

Institutional review board (IRB) approval was obtained before the collection of the
dataset (LDYYLL2021-471). The IRB of the first hospital of Lanzhou University approved
this study and waived the need for informed consent.

2.2. Patient Participation
2.2.1. AX-Unet Model Training Patient Data Source Patient Description

We included patients with pancreatic tumours treated at the Department of Hepatobil-
iary and Pancreatic Surgery, First Hospital of Lanzhou University between November 2017
and November 2020 for data collection and processing. Inclusion criteria were: (1) com-
plete contrast-enhanced CT scan data, (2) diagnosis of PDAC by preoperative endoscopic
ultrasonography-guided fine-needle aspiration (EUS-FNA) or post-operative pathology,
(3) no distant metastasis, and (4) no preoperative invasive treatments. Patients who did
not undergo standardized pancreas protocol multi-slice computed tomography (MDCT)
or were definitively diagnosed with distant metastases were excluded from the study to
ensure cohort homogeneity. In total, 205 patients were selected to train of the AX-Unet
segmentation model, with 80% of the patients randomly assigned to the training group and
20% to the validation group.

2.2.2. Patient Recurrence Analysis

To explore the effectiveness of the AX-Unet pancreas segmentation model in the
recurrence of PDAC after radical surgery, we screened patients who underwent radical
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surgery from December 2021 to December 2022 in the hospital. Inclusion criteria: (1) after
pathological diagnosis with PDAC, the status of resectability was conducted by experienced
radiologists during multidisciplinary team (MDT) discussion, and chief surgeons evaluated
the difficulty of the operation and finally performed radical surgery; (2) complete medical
records, image data, therapeutic process, follow-up information, and definite recurrence
date. Follow-up criteria: The patients are followed-up according to the routine follow-up
procedures of our department after surgery. The follow-up items included tumour-related
serological markers and imagological examinations (contrast-enhanced CT scans of the
upper abdomen and chest). The patient’s age, gender, body mass index (BMI), serum
CA19-9 level, and status of resectability were recorded. Detection of tumour markers:
A radioimmunoassay was used to detect the level of CA19-9 in all patients one week before
surgery. The upper limit of the normal value of CA19-9 was defined as 37 U/mL [29].
The status of resectability was in reference to the 2021 NCCN guidelines, with all patients
graded according to the tumour invasion of main vessels during the MDT discussion.
Exclusion criteria: incomplete medical records, follow-up loss, or unclear recurrence time.
The clinical principles and guidelines for the treatment of pancreatic cancer suggested
that surgery was no longer recommended when distant metastases were present, instead
individualized pharmacological treatment wa carried out. This is similar when lymph
node metastases were present, and surgery was not recommended when lymph nodes in
distant organs were enlarged and accompanied by organ tumour metastases. Local lymph
node metastases can be treated by resection of the primary site and by extended debulking.

2.3. Establishment of the AX-Unet Pancreas Segmentation Model Based on Sequential
Contrast-Enhanced CT Scans for Patients Diagnosed with PDAC

The AX-Unet is a novel deep learning framework that focuses on accurately seg-
menting pancreas CT images to assist physicians in screening for pancreatic tumours.
As shown in Figure 1C, the framework combines deepLabV series, Unet, and Xception
networks and preserves Unet’s encoder–decoder structure while introducing a modified
atrous spatial pyramid pooling (ASPP) [27] module to deal with downsampling issues and
extract multi-level contextual information. To achieve full feature extraction and decouple
channel information, a special group convolution [30,31] operation is used. To overcome
the issue of indistinct boundaries, an explicit boundary-aware loss function is employed. In
medical imaging, the extraction and analysis of features are crucial for lesion detection and
diagnosis. However, factors such as scale and background information can affect feature
recognition. To address this issue, several methods have been employed, including scale
normalization, scale-space analysis, background subtraction, and contextual information
guidance. Scale normalization ensures consistent size and resolution, while scale-space
analysis captures features at different scales. Background subtraction helps eliminate
noise and interference, while contextual information provides valuable insights. These
techniques improve the accuracy of feature recognition and contribute to precise lesion
detection and diagnosis. The proposed model outperformed state-of-the-art methods in
two public datasets [32]. This study provides a significant contribution to the medical
image analysis field and has the potential to aid physicians in the early detection and
diagnosis of pancreatic tumours. Thus, using the AX-Unet framework to diagnose PDAC
patients could be useful.

We trained the model using patient data obtained from the source described in
Section 2.2.1. Reference standard segmentations were manual slice-by-slice tracings of
the pancreas and peri-pancreatic vessels by two radiologists with 10 years of experience
using ImageJ (Version 1.53n 7), they were blind to the patient information in the segmen-
tation process. The entire pancreatic parenchyma was considered as a ROI during the
pancreatic phase of the CT protocol, avoiding common bile duct, visible blood vessels,
and fat space around the pancreas. These delineations have been taken as the reference
standard in all tests.



Bioengineering 2023, 10, 828 5 of 18

For each patient in the training group, we identified and extracted the CT images of
the pancreas in the enhanced scans and portal venous scans, and excluded images that
did not meet the minimum requirements. The image processing included: (1) selecting
the ROI area of the CT images; (2) obtaining pancreatic image features by the AX-Unet
model. The features include (1) textural features: grey level co-occurrence texture matrix
(GLCM), grey level run length matrix (GLRLM), grey level size zone matrix (GLSZM), and
grey level dependence matrix (GLDM); (2) histogram features: HU value, mean, energy,
entropy, variance, etc.; (3) geometric shape: sharpness, superficial area, etc., (Figure 1A).

Figure 1. Procession of data processing and analysis. (A) Raw data and images were obtained from
patients diagnosed as PDAC in our hospital, cleaned, and pre-processed. Pancreatic CT images were
processed through the AX-Unet pancreas segmentation model to obtain imaging features through
mathematical formulas. (B) Clinical features and image features are shown in different colours,
which were integrated as they became available. Data analysis was subsequently performed and
associations between features were found. (C) AX-Unet model framework diagram [32]. The original
image undergoes feature extraction and downsampling using an encoder. Subsequently, a modified
ASPP module is employed to perform multi-scale feature extraction. Next, a decoder is utilized for
upsampling and feature reconstruction. Finally, the output feature map is utilized for segmentation
evaluation or loss calculation during model training.

2.4. Assessment of the Effectiveness of the AX-Unet Segmentation Model

The extraction of image feature heterogeneity in tumour recurrence and prognosis
aids in distinguishing between benign and malignant lesions, visualizing recurrence and
metastasis sites, predicting treatment response, and prognosticating patient outcomes.
Overall, it contributes to more accurate diagnoses, treatment planning, and prognosis
prediction in the field of medical imaging.
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In this study, we conducted an evaluation of our proposed approach for pancreas
segmentation by employing various metrics that are widely used in medical image seg-
mentation research. We used the Dice similarity coefficient (DSC) as the primary metric
to measure the similarity between the predicted and ground truth segmentations. Our
evaluation of the approach included reporting the average, maximum, and minimum
DSC scores across all testing cases in the dataset to provide a comprehensive analysis.
In particular, the DSC score was computed by dividing the intersection of the predicted
segmentation (Z) and ground truth segmentation (Y) by the average of the total number of
voxels in both segmentations.

DSC(Z, Y) =
2× |Z∩ Y|
|Z|+ |Y|

Besides DSC, we employed the Jaccard coefficient, precision, and recall as additional
metrics to further evaluate the performance of our approach. The Jaccard coefficient is a
metric utilized to ascertain the similarity between the real and predicted pancreatic areas at
the pixel level. The Jaccard coefficient is calculated by dividing the intersection of the real
and predicted pancreatic areas by their union. We used U to represent the real pancreatic
area and V for the predicted pancreatic area. Additionally, precision and recall are widely
used to evaluate the performance of binary classifiers, and we used them in the study to
assess the accuracy of our approach in identifying true positive (TP), false positive (FP),
and false negative (FN) instances.

Jaccard (U, V) =
|U∩V|
|U∪V|

Precision =
TP

TP + FP

Recall =
TP

TP + FN

In our previous study, we reported the DSC, Jaccard, recall, and precision values
of the AX-Unet model on the NIH and MSD datasets separately, and demonstrated its
significant superiority in these metrics compared to other models [32]. The NIH pancreas
segmentation dataset from TCIA is an open-source dataset widely used for comparing
methods in pancreas segmentation [33]. It involves 82 CT volumes with a spatial resolu-
tion of 512 × 512 × L and slice thickness ranging from 0.5 to 1.0 mm. The dataset uses a
standardized four-fold cross-validation with three folds for training and one for testing.
Additionally, the Medical Segmentation Decathlon (MSD) challenge evaluates machine
learning algorithms for ten different semantic segmentation tasks, including the pancreas
part in portal venous phase CT from the Memorial Sloan Kettering Cancer Center [34]. The
official training–test splits for the MSD include 281 subjects in the training set and 139 sub-
jects in the test set. Our study’s use of these established evaluation metrics strengthens
its rigour and scientific validity. Since our previous work was to acquire local images of
the pancreas from the enhanced CT images of the pancreas by AX-Unet, this work was
performed based on the database (LDYYLL2021-471), and the segmented images of the
pancreas in this database do not contain the pancreatic vessels, so the model constructed
based on this database will produce the same results for the segmentation of the image
data from our hospital.

We conducted recurrence analysis on the patients mentioned in Section 2.2.2. Specifi-
cally, a total of 64 patients were included in the recurrence analysis, and these patients were
distinct from those used in the previous AX-Unet training model. The main focus of the
analysis was to assess the mean recurrence-free survival (mRFS) as the primary outcome
(Figure 1B).
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2.5. Statistical Methods

The image features and clinical data were analysed using SPSS 22.0 software. The
measurement data were presented as mean ± standard deviation (x ± s). If the data
exhibited normal distribution, the independent sample t-test was used. Conversely, the
Mann–Whitney U test and the Kruskal–Wallis test were used when the distribution was
non-normal, presented with the median (minimum, maximum). Categorical data were
analysed using the chi-squared test. The Pearson linear correlation analysis method and
lasso regression were utilized to evaluate the correlation between the image features.
If the coefficient was ≥0.8, the correlated feature was selected randomly and excluded.
Kaplan–Meier curves was used to perform univariate survival analysis and the log-rank
method was used for hypothesis testing in comparing two groups. Any significant variable
in the univariate analysis was a potential candidate for multivariate analysis. The Cox
proportional risk model was used for multi-factor prognostic analysis. The DynNom
package implemented a web-based version of the nomogram for this analysis. We used
the rms package to build a scoring nomogram model. The c-index and the area under
the receiver operating characteristic curve (AUC) were common measures. Consistency
was visualized in the form of calibration curves. The nomogram can be interpreted as
follows: (1) a vertical line is drawn on the score axis, (2) a score is assigned to each predictor,
(3) the total score is summed, and (4) a vertical line is drawn from the axis of the total
score corresponding to the value at the lower end of the column plot. This value is the
probability of post-operative recurrence. The maximum value of the c-index is 1.0, and the
higher the c-index, the better the model’s predictive ability. We considered all tests with a
p value < 0.05 as statistically significant.

3. Results
3.1. The Effectiveness of the Segmentation Model

The performance of the AX-Unet network architecture for the specific scenario of
pancreas segmentation was improved by our proposed optimization. The high- and
low-level features of organ segmentation are both important in clinical problems [35].
Therefore, we added a parallel feature extraction module and residual structure to realize
the parallel extraction and fusion of high- and low-level features. Specifically, we refer to
the parallel feature extraction ASPP module [36], which extracts features in parallel through
dilated convolution with different ratios when the feature map size is down to 64 in the
coding process of AX-Unet. In the process of downsampling and upsampling, the residual
structure is added to realize the fusion of different levels of features through concatenation
[37]. In addition, this study added an attention mechanism in the process of parallel feature
extraction to distinguish the importance of different levels of information in the model,
applying learnable weights to the feature maps from different levels. Finally, the Dice score
reached 85.9% (Table 1) for our dataset, meaning it can be applied to clinical research and
work (Figure 2).

The results depicted in Table 1 provide compelling evidence that the AX-Unet model
consistently outperforms Unet, Bottom-up, Attention Unet, and nn-Unet across multiple
evaluation metrics, including DSC, Jaccard, recall, and precision. Notably, the AX-Unet
model exhibits a remarkable 20% improvement in DSC compared to the Unet model,
underscoring its significant advantage. Furthermore, even when compared to the widely
acclaimed nn-Unet model, recognized for its exceptional performance in the field of image
segmentation, the AX-Unet model demonstrates a noteworthy 6% enhancement in DSC.
These findings undoubtedly highlight the exceptional effectiveness and proficiency of the
AX-Unet model specifically in the context of PDAC image segmentation.
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Table 1. AX-Unet performance results on our dataset, with the evaluation of our method described
by the mean ± standard deviation.

Method DSC (%) Jaccard (%) Recall (%) Precision (%)

Our Dataset
Unet-64 70.5 ± 3.8 59.3 ± 2.7 72.7 ± 2.5 70.8 ± 3.5
Unet-16 67.2 ± 2.6 54.8 ± 3.1 65.1 ± 1.7 69.3 ± 5.8

Bootom-up 70.8 ± 2.1 58.9 ± 1.8 73.3 ± 2.3 74.8 ± 2.5
Attention Unet 66.0 ± 3.2 52.6 ± 4.2 70.3 ± 2.1 71.5 ± 2.4

nn-Unet 80.7 ± 1.9 68.9 ± 3.5 83.3 ± 3.2 84.8 ± 4.7
AX-Unet (Ours) 85.9 ± 3.5 74.2 ± 4.4 87.6 ± 2.4 89.7 ± 6.5

Figure 2. Qualitative pancreas segmentation results of AX-Unet model. The images in each row
arranged from left to right depicts the original image, the ground-truth segmentation, and the
segmentation generated by our AX-Unet model, respectively. The segmentation results are evidently
of superior quality.

3.2. Model Training Details

Our model was trained on the PaddlePaddle platform with multiple cards, using
four Tesla V100 GPUs. We used the whitelist provided by PaddlePaddle to achieve mixed-
precision training acceleration. Source code: https://github.com/zhangyuhong02/AX-
Unet.git accessed on 31 May 2023.

In addition, we used WGIF [38] to enhance the picture and obtain an image with stronger
texture features to facilitate training after completion. Figures 3 and 4 illustrate the comparison
between the original and enhanced images, showcasing the augmentation of strong classifica-
tion texture features. The original image, as depicted in Figure 3, demonstrates limited texture
details and a relatively lower discriminative potential. However, upon applying advanced im-
age enhancement techniques, as depicted in Figure 4, the texture features undergo substantial
enrichment, resulting in heightened discriminative capabilities.

https://github.com/zhangyuhong02/AX-Unet.git
https://github.com/zhangyuhong02/AX-Unet.git
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Figure 3. Original CT image.

Figure 4. After increasing the contrast.

3.3. General Clinical Features of the Subjects

Among the 64 PDAC patients included in this study, 41 were males and 23 were
females; the age was 56.5± 9.08 years; the average BMI was 22.74± 2.97 Kg/m2, 20 had
BMI > 24 Kg/m2, and 44 had a BMI≤ 24 Kg/m2; 31 cases had a history of DM; 33 cases had
no DM; tumours were localized to the head of the pancreas in 58 cases and to the body or
tail in 6 cases; 20 cases had a baseline CA19-9≤ 37 U/mL, while 44 cases were >37 U/mL. It
was found that 33 patients had with resectable pancreatic cancer (RPC) and 31 patients had
borderline resectable pancreatic cancer (BRPC) in the MDT data collection; post-operative
pathological results showed that there were 7 patients with high differentiation, 21 patients
with moderate differentiation, 36 patients with poor differentiation, 30 patients with lymph
node metastasis and 34 cases without lymph node metastasis. Most of the patients (58 cases,
90.6%) underwent pancreaticoduodenectomy. The follow-up date ended on 31 December
2021. At the last follow-up, 46 of the 64 patients recurred, the median follow-up time of the
entire cohort was 14.5 months, and there were 4 cases (6.3%), 16 cases (25%), and 10 cases
(15.6%) of recurrence 3, 6, and 9 months, respectively. The results are shown in Table 2.
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Table 2. Baseline clinical characteristics of patients and survival analysis.

Characteristics
Univariate Analysis Multivariate Analysis

mRFS p Value HR (95%Cl) p Value

Gender 0.875

Female (n = 23) 9 (1–37)

Male (n = 41) 7 (3–49)

Age 0.442

≤65 (n = 48) 7 (1–49)

>65 (n = 16) 13 (3–27)

BMI 0.949

≤24 (n = 44) 8 (2–49)

>24 (n = 20) 10 (1–49)

History of DM 1 0.007 1.16 (0.64∼2.24) 0.65

Yes (n = 31) 8 (1–36)

No (n = 33) 15 (3–49)

Baseline CA19-9 2 (µ/mL) 0.001 5.13 (2.05∼12.84) 0.01

≤37 (n = 20) 21 (4–49)

>37 (n = 44) 6 (1–35)

Status of Resectability 0.001 1.76 (0.90∼3.46) 0.1

RPC 3 (n = 33) 15 (3–49)

BRPC 4 (n = 31) 7 (1–36)

N stage 0.001 0.63 (0.32∼1.24) 0.18

N0 (n = 34) 15 (3–49)

N1 (n = 30) 7 (1–36)

Histologic Grade 0.124

G1 (n = 7) 24 (6–49)

G2 (n = 21) 14 (2–49)

G3 (n = 36) 8 (1–33)

P53 0.49

≤50% (n = 45) 12 (2–49)

>50% (n = 19) 13 (1–29)

Ki-67 0.945

≤50% (n = 47) 8 (2–49)

>50% (n = 17) 14.77 ± 2.23
1 DM: diabetes mellitus; 2 CA19-9: carbohydrate antigen 199; 3 RPC: resectable pancreatic cancer; 4 BRPC:
borderline resectable pancreatic cancer.

3.4. Analysis of Image Features Extracted from the AX-Unet Model

Table 3 illustrates the inclusion of the Hu value, contrast [39], entropy, and variance
after screening image features through Pearson and lasso regression analysis of the AX-Unet
pancreas segmentation model. Statistically significant differences in contrast were found
across different genders and levels of obesity (p < 0.05). The study found that both the
mean value and variance of DM patients were significantly distinct from non-DM patients
(p < 0.05). Moreover, patients with elevated CA19-9 showed significant increases in their
Hu, entropy, and variance values (p < 0.05). Furthermore, differences in the Hu value
were shown to be significant among patients with varying pathological grades (p < 0.05).
Entropy was also found to be relevant to whether patients had lymph node metastasis
(p < 0.05). Lastly, when using recurrence as the grouping basis, the variance and entropy of
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pancreas images taken before surgery manifested as significant associations with recurrence
(p < 0.05).

Table 3. Association between significant texture features and clinical characteristics.

Characteristics
Significant Texture Features

Hu Contrast Entropy Variance Average

Gender p = 0.32 p = 0.008 p = 0.30 p = 0.52 p = 0.01

Female (n = 23)
42.57

(31.24–57.81)
6.24

(4.81–9.09)
8.46

(8.37–8.96)
15.47

(10.42–22.55)
0.40

(0.33–0.58)

Male (n = 41)
39.35

(29.59–62.95)
7.28

(4.16–12.69)
8.54

(8.35–8.95)
19.38

(9.36–26.69)
0.47

(0.30–0.68)
Age p = 0.11 p = 0.86 p = 0.53 p = 0.10 p = 0.12

≤65 (n = 48)
39.35

(29.59–62.95)
240.57

(205.67–269.61)
8.49

(8.35–8.96)
17.09

(9.37–22.68)
0.41

(0.30–0.67)

65 (n = 16)
48.62

(36.03–53.45)
7.10

(5.47–9.02)
8.57

(8.43–8.95)
19.93

(13.65–26.69)
0.52

(0.37–0.64)
BMI p = 0.86 p = 0.04 p = 0.74 p = 0.01 p = 0.03

≤24 (n = 44)
41.75

(29.59–60.37)
6.59

(4.81–9.02)
8.50

(8.35–8.96)
19.45

(10.42–26.69)
0.45

(0.33–0.68)

24 (n = 20)
39.43

(31.10–62.95)
7.52

(4.16–12.69)
8.56

(8.37–8.95)
14.58

(9.36–22.16)
0.40

(0.31–0.58)
History of DM p = 0.01 p = 0.83 p = 0.11 p = 0.01 p = 0.35

Yes (n = 31)
37.29

(29.59–53.18)
6.77

(4.16–12.69)
8.49

(8.35–8.95)
15.31

(9.36–22.16)
0.40

(0.30–0.63)

No (n = 33)
39.43

(31.10–62.95)
7.52

(4.16–12.69)
8.56

(8.37–8.95)
14.58

(9.36–22.16)
0.40

(0.31–0.58)
Baseline
CA19-9(µ/mL) p = 0.04 p = 0.85 p = 0.01 p = 0.01 p = 0.21

≤37 (n = 20)
42.96

(39.35–62.95)
7.39

(4.16–9.65)
8.82

(8.57–8.95)
20.89

(12.01–26.69)
0.44

(0.40–0.64)

37 (n = 44)
40.21

(29.59–60.37)
6.68

(5.35–12.69)
8.48

(8.35–8.96)
14.81

(9.36–22.68)
0.41

(0.30–0.68)
Status of
Resectability p = 0.74 p = 0.95 p = 0.02 p = 0.60 p = 0.35

RPC (n = 33)
40.21

(29.59–62.95)
6.60

(4.81–10.94)
8.56

(8.35–8.95)
19.45

(9.36–22.55)
0.41

(0.30–0.63)

BRPC (n = 31)
41.07

(31.25–60.37)
6.78

(4.16–12.69)
8.49

(8.37–8.96)
16.45

(10.42–26.69)
0.47

(0.33–0.68)
N stage p = 0.96 p = 0.14 p = 0.02 p = 0.16 p = 0.79

N0 (n = 34)
41.61

(31.10–62.95)
6.61

(4.81–9.65)
8.54

(8.37–8.96)
19.72

(11.04–26.69)
0.41

(0.30–0.64)

N1 (n = 30)
41.08

(29.59–60.37)
6.78

(4.16–12.69)
8.51

(8.36–8.95)
16.45

(9.37–22.68)
0.44

(0.33–0.67)
Histologic
grade p = 0.04 p = 0.33 p = 0.49 p = 0.61 p = 0.69

G1 (n = 7)
54.73

(39.35–57.81)
8.47

(4.81–9.66)
8.57

(8.38–8.96)
14.45

(12.02–22.55)
0.41

(0.38–0.50)

G2 (n = 21)
42.96

(31.10–62.95)
6.68

(4.16–12.69)
8.53

(8.41–8.92)
18.73

(10.42–26.69)
0.43

(0.34–0.64)

G3 (n = 36)
38.69

(29.59–53.45)
6.78

(5.41–10.93)
8.49

(8.35–8.95)
18.22

(9.37–22.68)
0.44

(0.30–0.68)
Recurrence p = 0.18 p = 0.53 p = 0.01 p = 0.01 p = 0.89

Yes (n = 46)
41.08

(29.59–60.37)
6.78

(5.41–12.69)
8.49

(8.36–8.63)
15.31

(9.36–26.69)
0.43

(0.31–0.68)

No (n = 18)
45.35

(31.10–62.95)
6.60

(4.16–9.09)
8.88

(8.38–8.96)
20.74

(12.37–22.55)
0.44

(0.33–0.59)
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3.5. Univariate Analysis

Table 2 presents the result of the study. Univariate analysis of the clinical character-
istics conducted throughout the study revealed a significant association of resectability,
CA19-9 levels, and history of DM with the prognosis. However, age, BMI, intraoperative
bleeding, and operation time, as well as other factors, were not significantly correlated
with recurrence. Additionally, the study found that DM patients had a markedly poorer
mRFS than non-DM patients. (24.84 months vs. 11.61 months, χ2 = 7.32, p = 0.007), a
difference was also found when comparing the two groups with the 3-,6- and 9-month
recurrence rates (3.0% vs. 9.6%, 22.5% vs. 27.3%, 12.1% vs. 19.3%, p < 0.05). When patients
were grouped by resectability status, the level of serum CA19-9 and the rate of lymph node
metastasis in BRPC patients were significantly higher than in RPC patients, and their mRFS
also exhibited significant differences when compared with RPC patients, 27.22 months and
10.71 months, respectively,

(
χ2 = 14.801, p < 0.05

)
. Furthermore, the status of BRPC was

associated with early recurrence (p < 0.05). When compared with normal levels, patients
with elevated preoperative serum CA19-9 had a higher lymph node metastasis rate and an
early recurrence rate (p < 0.05), mRFS was also shorter (37.20 months vs. 10.39 months,
χ2 = 24.467, p = 0.01

)
. At the same time, the recurrence rate of patients with lymph node

metastasis was significantly higher than that of non-lymph node metastasis, and mRFS
was also different between the two groups

(
χ2 = 11.354, p < 0.05

)
(Figure 5).

Figure 5. Kaplan–Meyer curves of RFS. (A) Survival differences between bordline resectable and
resectable patients. (B) Survival differences between diabetics and non-diabetics. (C) Survival
difference between patients with CA199 > 37 and those with ≤37. (D) Survival differences in patients
with different pathological grades.
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3.6. Multivariate Analysis

Risk factors (DM, resectability status, CA19-9 level, pathological type, lymph node metas-
tasis) in the univariate analysis were included in a multivariate analysis. CA19-9 > normal
baseline was an independent risk factor for tumour recurrence after PDAC radical surgery
(HR = 5.13 (2.05–12.84), p = 0.01) (Table 2).

3.7. Logistic Regression Analysis

Analysing the recurrence of 64 PDAC patients after radical surgery, male patients
had a higher risk of recurrence than female patients (OR = 9.45, 95% CI: 1.01–88.71), and
BRPC patients had a significantly higher risk of recurrence than RPC patients (OR = 19.88,
95% CI: 1.52–260.35). Patients with increased entropy had an increased risk of recurrence
(OR = 0.01, 95% Cl: 0.002–0.03). The Hosmer–Lemeshow test found that current data were
fully extracted (p < 0.05) (Table 4).

Table 4. Kaplan–Meyer curves of RFS.

Characteristics OR 95% Cl

Gender
Male 9.45 1.01–88.71

Female 1

Status of Resectability
RPC 1

BRPC 19.88 1.52–260.35

Entropy
≤8.59 1
>8.59 0.01 0.002–0.03

3.8. Development and Evaluation of a Post-Operative Recurrence Scoring System

In this study, Cox proportional hazards regression analysis was performed to identify
and obtain the top three risk factors associated with post-operative recurrence following
radical surgery. Using the rms package in R, a nomogram was created along with a web-
based scoring tool called DynNom for online use. https://nomogrampancreaticcancer.
shinyapps.io/DynNomapp accessed on 31 May 2023, is freely accessible to the public
for scoring purposes. The dynamic nomogram enables the assessment of an individual’s
probability of post-operative recurrence and the reduction of such probability through
active treatment of high-risk patients with adjuvant therapy. The model’s discrimination
was evaluated using AUC: 0.84 and 95% CI: 0.78–0.99. This indicates a strong predictive
capability of the nomogram model for post-operative recurrence. In addition, the bootstrap
internal validation method was employed to validate the scoring system, and the resulting
c-index was 0.62 with a 95% CI of 0.48–0.78.

4. Discussion

At present, most radiomic studies use the largest lesion layer as the ROI to perform
feature extraction [40,41]. Therefore, it cannot represent the overall characteristics of the
entire organ or lesion. The current ROI selections are mainly conducted manually, semi-
automatically, and automatically, but most radiomic studies on the pancreas are based on
manual selection because there are many surrounding interfering factors, and the shape
varies greatly among individuals.

Disparate from prior approaches, AX-Unet surpassed them by extracting more com-
prehensive spatial and channel features. This capability allowed the model to capture a
richer understanding of the image content, encompassing intricate details and contextual
information crucial for accurate segmentation. Moreover, AX-Unet introduced a multi-
level and multi-scale feature extraction scheme, enabling it to effectively handle objects
of varying sizes within images. By considering both local and global contexts, the model

https://nomogrampancreaticcancer.shinyapps.io/DynNomapp
https://nomogrampancreaticcancer.shinyapps.io/DynNomapp
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comprehended spatial relationships and captured hierarchical structures, resulting in more
precise and coherent segmentation outcomes. These advancements in feature extraction
and boundary evaluation have proven to be highly effective, as demonstrated by the excel-
lent results achieved by AX-Unet on multiple public datasets as well as our own dataset.
Overall, AX-Unet stood out as a state-of-the-art solution, outperforming previous methods
and demonstrating its efficacy in the field of PDAC image segmentation.

The pancreas was segmented using the AX-Unet model, and radiomic features were
extracted via OpenCV-Python, utilizing upper abdominal contrast-enhanced CT scans. Our
model incorporates an ASPP module designed to extract features in parallel at multiple
levels while maintaining high-resolution feature maps. By implementing depth-wise
separable convolution, the model is capable of fully decoupling information between
channels, thereby enhancing the network’s performance, as confirmed by our experimental
evaluation. Through this approach, the AX-Unet segmentation model can effectively
address complex tasks, reduce workload, improve delineation accuracy, and minimize the
potential for subjective errors.

By employing the AX-Unet model, physicians can accurately identify and segment
tumour regions, enabling personalized treatment plans for patients. Utilizing the AX-
Unet model for image segmentation allows physicians to precisely determine the location,
shape, and size of tumours. This aids in devising surgical plans with enhanced accuracy,
minimizing damage to surrounding healthy tissues while maximizing tumour removal.
Additionally, AX-Unet assists in defining lesion boundaries for radiation therapy, thereby
improving the precision and effectiveness of treatment. The tumour segmentation images
generated by the AX-Unet model can also be employed to develop personalized treatment
strategies. By analysing tumour characteristics and distribution, physicians can tailor
treatment approaches to individual patients, considering their specific circumstances. This
includes selecting the most suitable chemotherapy drugs, dosage, and treatment regimens
to optimize therapeutic outcomes while reducing side effects. Furthermore, AX-Unet-based
image segmentation contributes to the development of more precise medications. By
scrutinizing tumour segmentation images, researchers can gain deeper insights into the
biological features and pathological processes of tumours, uncovering novel treatment
targets and drug receptors. This establishes the foundation for personalized drug develop-
ment, enabling highly targeted and individualized therapies that significantly enhance the
prognosis of cancer patients.

The study revealed that patients with DM had statistically significant differences in
the mRFS at 3, 6, and 9 months of recurrence (p < 0.05). The increased drug resistance and
migration ability of tumour cells caused by elevated blood glucose may be the attributed
cause for these differences. Analysis of image features showed that there was a significant
correlation (p < 0.05) between the Hu value and variance of the pancreatic CT images and
the patient’s history of DM. These findings are relevant to the degree of fibrosis and lipid
deposition in the whole pancreas [42,43].

The CA19-9 level is an important serological indicator for PDAC diagnosis and prog-
nosis. Its standard level is <37 U/mL [44]. Abnormally increases in serum CA19-9 was
related to lymph node metastasis and had a significant effect on mRFS (p < 0.05) in the
univariate analysis. There is still a statistical significance after excluding the interference of
other risk factors in the multivariate analysis (p < 0.05). Therefore, a higher CA19-9 level
can be used as a prognostic factor for patients after radical surgery. CT image features such
as Hu value, entropy value, and variance can also indicate abnormally increases in CA19-9
(p < 0.05). Therefore, image features may be used to assess the prognosis of PDAC patients.
Considering that the Lewis antigen and CA19-9 levels were not significantly elevated in
some PDAC patients [45], further research is needed to explore more image features to
assess such PDAC patients’ prognosis.

The resectability status of a patient has a significant impact on their prognosis after
radical surgery. In the univariate analysis, the prognosis for BRPC patients was markedly
lower than that of RPC patients (p < 0.05), and this was found to be accompanied by a higher
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incidence of early recurrence (p < 0.05). An explanation for this may be the proximity of
the BRPC tumour to major blood vessels which increases its likelihood of early recurrence.
Hence, accurately staging RPC and BRPC patients is a crucial aspect of future studies to
enable appropriate treatment decisions for BRPC patients. Additionally, it was discovered
that the entropy value of pancreas CT images before surgery was linked with different
resectability statuses and may serve as a supplementary index for precise evaluation in the
future [46].

PDAC can spread through the lymph nodes and surrounding nerves, in addition
to blood metastases. Extended radical lymphadenectomy has been reported to improve
patient survival rates [47]. In this study, the univariate analysis showed that the mRFS of
lymph-node-metastasized patients was significantly lower than that of patients with no
lymph node metastasis (p < 0.05). In the analysis of image features, entropy was found to
have a significant relationship with lymph node metastasis (p < 0.05), presumably because
pancreatic texture changes when lymph node metastasis is present.

Pathological grading currently holds a crucial role in predicting PDAC prognosis.
Prior radiomic studies have revealed that tumour margin sharpness is associated with the
degree of pathological differentiation [48]; however, no research has indicated whether
overall pancreas margin sharpness is related to pathological grade. The current study
identified a correlation between the post-operative pathological grade and the Hu value
of CT images of the entire pancreas (p < 0.05). Thus, findings from this study can be
introduced to formulate preoperative prediction models based on CT images and, in turn,
improve the predictive accuracy of pathological grades before surgery.

Radiomic features have a certain efficacy for the prognostic analysis of various types
of malignant tumours [49–51]. This study found that the image features extracted from
the AX-Unet segmentation model have a certain significance for evaluating the recurrence
of PDAC after radical surgery. As shown in other studies that the entropy of images can
reflect textual irregularity and link to heterogeneity issues, it may also be associated with
the recurrence of colorectal cancer, gynaecological cancer, and endometrial cancer after
surgery [52,53]; therefore, the features and parameters of tumour texture have proven
that the prediction of prognosis before surgery can be achieve by the combination of
image features and clinical data, potentially reducing the difficulty for clinicians in patient
follow-ups and optimize the management of patients with PDAC.

Recently, nomogram models have gained widespread use in tumour prediction mod-
elling due to their powerful simplification and excellent predictive power [54]. In this study,
the nomogram had a c-index of 0.62, indicating an average predictive power, while the
higher AUC value denotes a better predictive accuracy for the model. To attain a more
precise assessment of patient prognosis in clinical practice and to direct individualized
treatment, nomogram prediction models should incorporate additional risk factors.

This study has certain limitations: (1) First, as a retrospective study, the treatment
decisions of the MDT vary with personal cognition and guideline updates; (2) at present,
the median survival time (mOS) of patients with R0 resection is 22–23 months, but this was
not included in this study, so longer follow-ups are needed for future studies.

5. Conclusions

The aim of this study was to identify the value of an AX-Unet pancreas segmentation
model applied in preoperative CT on predictions of tumour recurrence after resection of
PDAC, which may be a new intersection of radiomics and AI in the future. Combining
the advantages of the two disciplines and designing a strong interpretability algorithm
could avoid subjective interference in the research process and reduce the work intensity of
clinical practitioners. By making full use of image features and clinical characteristics to
analyse the prognosis of patients, the upcoming models could assist physicians in regular
post-operative prognosis, and treat high-risk patients as soon as possible, thus improving
the overall prognosis of PDAC patients.
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