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Abstract: Purpose: To develop a novel convolutional recurrent neural network (CRNN-DWI) and
apply it to reconstruct a highly undersampled (up to six-fold) multi-b-value, multi-direction diffusion-
weighted imaging (DWI) dataset. Methods: A deep neural network that combines a convolutional
neural network (CNN) and recurrent neural network (RNN) was first developed by using a set of
diffusion images as input. The network was then used to reconstruct a DWI dataset consisting of
14 b-values, each with three diffusion directions. For comparison, the dataset was also reconstructed
with zero-padding and 3D-CNN. The experiments were performed with undersampling rates (R) of
4 and 6. Standard image quality metrics (SSIM and PSNR) were employed to provide quantitative
assessments of the reconstructed image quality. Additionally, an advanced non-Gaussian diffusion
model was employed to fit the reconstructed images from the different approaches, thereby generating
a set of diffusion parameter maps. These diffusion parameter maps from the different approaches
were then compared using SSIM as a metric. Results: Both the reconstructed diffusion images and
diffusion parameter maps from CRNN-DWI were better than those from zero-padding or 3D-CNN.
Specifically, the average SSIM and PSNR of CRNN-DWI were 0.750 ± 0.016 and 28.32 ± 0.69 (R = 4),
and 0.675 ± 0.023 and 24.16 ± 0.77 (R = 6), respectively, both of which were substantially higher than
those of zero-padding or 3D-CNN reconstructions. The diffusion parameter maps from CRNN-DWI
also yielded higher SSIM values for R = 4 (>0.8) and for R = 6 (>0.7) than the other two approaches (for
R = 4, <0.7, and for R = 6, <0.65). Conclusions: CRNN-DWI is a viable approach for reconstructing
highly undersampled DWI data, providing opportunities to reduce the data acquisition burden.

Keywords: convolutional recurrent neural network; CRNN; diffusion MRI; DWI; non-Gaussian
diffusion model; continuous-time random walk; CTRW; deep neural-network

1. Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI or DWI) can probe tissue
microstructural alterations and has been increasingly used to study many disease processes,
such as cerebral ischemia [1], brain tumors [2], focal liver lesions [3], breast cancer [4], and
Parkinson’s disease [5]. The diffusion process of the water molecules in human tissue has
been well demonstrated to be non-Gaussian, especially when probed under high b-values
(e.g., >1500 s/mm2). To account for the non-Gaussian property of the diffusion process, a
multi-b-value DWI approach together with a number of advanced diffusion models has
been proposed [6–10]. Among the many non-Gaussian models, continuous-time random
walk (CTRW) is of particular interest, as it provides two additional parameters, α and β,
that are closely linked to tissue intra-voxel spatial and temporal heterogeneities. The CTRW
model has been successfully applied to characterize Parkinson’s disease patients [10] and
grade human brain tumors [11–13].
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The data acquisition of multi-b-value DWI is typically performed with a fast MRI se-
quence, single-shot echo planar imaging (ssEPI), due to its rapid scan speed and resilience
to motion [14]. Despite these merits, this technique is subject to geometric distortion
arising from eddy currents and magnetic susceptibility variations among different tis-
sues. Many approaches, such as multi-shot EPI [15] and the reduced field-of-view (rFOV)
technique [16–18], have been proposed to address the issue by substantially shortening the
echo train length of ssEPI. These approaches, however, often prolong acquisition times
and/or accentuate the SAR issue [19]. An alternative strategy is to substantially under-
sample the k-space data, as in parallel imaging, compressive sensing (CS), and emerging
deep learning techniques [20,21]. Compared with traditional parallel imaging techniques
and CS-MRI, the deep learning approach can achieve a higher acceleration factor without
compromising image quality.

Among the many deep learning neural networks, a convolutional recurrent neural
network (CRNN) [22] is of particular interest because it combines the convolutional neural
network (CNN) and the recurrent neural network (RNN), thereby providing better image
quality by exploiting spatio-temporal redundancy in a series of images, such as the time
series in dynamic imaging. Recognizing that the image series can be generalized to a set of
diffusion images with different b-values and/or different diffusion directions, the CRNN
approach can also be applied to reconstruct highly undersampled multi-b-value DWI data.

Therefore, the goal of the present study was to employ a novel neural network—
CRNN-DWI—and demonstrate its ability to achieve up to six-fold undersampling in
DWI without degrading image quality. The reconstructed images were evaluated by com-
paring CTRW diffusion parameter maps obtained from the CRNN-DWI method versus the
conventional approaches.

2. Materials and Methods
2.1. CRNN-DWI

Multi-b-value DWI series exhibited similar image features (i.e., edges, anatomy) among
differing b-values and diffusion directions (Figure 1). CRNN-based network architectures
merged the strengths of CNNs and RNNs, which made them particularly useful for spatial-
temporal problems. Specifically, CNNs extracted common features from each weighted
image, while RNNs aided in identifying patterns across varying b-values to reconstruct
highly undersampled k-space data. The formulation of the proposed CRNN-DWI was
expressed as:

Xrec = fN( fN−1(. . . f 1(Xu))) (1)

where Xrec is the image to be reconstructed, Xu is the input image series from a direct
Fourier transform of the undersampled k-space data, fi is the network function including
model parameters, such as the weights and biases of each iteration, and N is the number
of iterations.
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During each iteration, the network function fi performed:

X(i)
rnn = X(i−1)

rec + CRNN
(

X(i−1)
rec

)
, (2a)

X(i)
rec = DC

(
X(i)

rnn; Xu

)
, (2b)

where CRNN is a learnable box consisting of five layers (Figure 2A), DC is a data con-
sistency operation, and y is the acquired k-space data. The data-consistency operation
refers to the requirement that the reconstructed image, when transformed back into the
measurement (k-space), should agree with the acquired measurements. Specifically, we
performed the hard data-consistency operation by replacing the acquired k-space data in
the region where measurements were acquired [23].
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Figure 2. The structure of CRNN-DWI used in this study. (A) The detailed structure of the proposed
network for each layer; (B) the unfolded structure of the proposed network for each iteration; and
(C) the detailed structure of the CRNN-b-i layer. The green arrow (Wc), brown arrow (Wr), and
pink arrow (Wb) represent the filters of input-to-hidden convolutions, hidden-to-hidden recurrent
convolutions evolving over iterations, and the b-value series, respectively.

Figure 2B shows the unfolded CRNN box, which consisted of one CRNN-b-i layer
(evolving over both b-values and the iteration, green), three CRNN-i layers (evolving over
the iteration only, blue), and one conventional CNN layer (yellow).
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2.1.1. CRNN-i Layer

For the CRNN-i layer (blue boxes), H(i)
l is the feature representation at layer l and

iteration step i. In this layer, Wc and Wr represent the filters of input-to-hidden convolutions
and hidden-to-hidden recurrent convolutions evolving over iterations, respectively, and Bl
denotes a bias term. We then had:

H(i)
l = ReLU

(
Wc ∗ H(i)

l−1 + Wr ∗ H(i−1)
l + Bl

)
, (3)

where ReLU is a rectifier linear unit, given by ReLU(x) = max(0, x). Here, H(i)
l had the

shape of (batch size, T, 2, IMGx, IMGy), which was a representation of the entire T sequence.

The convolution (*) was computed on the last two dimensions (IMGx, IMGy) of H(i)
l .

2.1.2. CRNN-b-i Layer

In this layer, both the iteration and the b-value information were propagated. Specif-
ically, for each b in the b-value series, the feature representation H(i)

l,b was formulated as
(Figure 2C):

H(i)
l,b =

−−→
H(i)

l,b +
←−−
H(i)

l,b , (4a)

−−→
H(i)

l,b = ReLU

Wc ∗ H(i)
l−1,b + Wb ∗

−−→
H(i)

l,b−1 + Wr ∗ H(i−1)
l,b +

−→
Bl

, (4b)

←−−
H(i)

l,b = ReLU

Wc ∗ H(i)
l−1,b + Wb ∗

←−−
H(i)

l,b+1 + Wr ∗ H(i−1)
l,b +

←−
Bl

, (4c)

where
−−→
H(i)

l,b and
←−−
H(i)

l,b are the feature representations calculated along the forward and
backward directions, respectively. Other parameters are defined in Figure 2C.

2.2. Data Acquisition and Image Reconstruction

With IRB approval, multi-b-value DWI data were acquired from ten healthy sub-
jects on a 3T GE MR750 scanner (GE HealthCare, Waukesha, WI, USA) using a single-
shot EPI pulse sequence. The key acquisition parameters were: slice thickness = 5 mm,
FOV = 22 cm × 22 cm, matrix = 256 × 256, slice number = 25, 14 b-values from 0 to
4000 s/mm2, and an acquisition time of ~6′30′′. The acquired images were then trans-
formed back to pseudo k-space and undersampled before being fed into the neural network.
The undersampling mask pattern was a variable density pattern with the pseudo k-space
center (24 lines) fully sampled. Seven datasets were used for training, two for validation,
and one for testing. The datasets were also reconstructed with zero-padding and 3D-CNN
for comparison. The experiment was performed with undersampling rates (R) of 4 and 6,
respectively. The network was trained on a NVIDIA Titan Xp 64 GB graphics card.

2.3. CTRW Model Fitting

Trace-weighted diffusion images were obtained by taking a geometric average from the
original DWI images (used as ground truth) and reconstructed images from CRNN-DWI,
3D-CNN, and zero-padding, respectively. This was followed by fitting to a non-Gaussian
CTRW model that could be described by the Mittag-Leffler equation:

S/S0 = Eα

(
−(bDm)

β
)

where S is the signal intensity of the trace-weighted diffusion images, S0 is the signal
intensity of b = 0, α and β represent temporal and spatial diffusion heterogeneities, and
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Dm is an anomalous diffusion coefficient. The equation was fit to the multi-b-value dataset
and was run iteratively using a Levenberg–Marquardt method across the pixels of all
25 slices to generate parameter maps for each of the variables (α, β, and Dm). The fitting
process consisted of two major steps: (i) Dm was estimated using a mono-exponential
model with all b-values; and (ii) with the estimated Dm from the previous step, α and
β were simultaneously determined through a non-linear fitting. The fitting process was
terminated after convergence was achieved, with a maximum of 80 iterations.

2.4. Image and Statistical Analysis

To assess the quality of the reconstructed images, standard indices, including structural
similarity (SSIM) and peak signal-to-noise ratio (PSNR), were calculated and compared
for the reconstructed images from the three different approaches (zero-padding, 3D-CNN,
and CRNN-DWI). The qualities of the diffusion parameter maps (α, β, and Dm) were also
evaluated by calculating the SSIM values against the diffusion parameter maps from the
ground truth for all slices. The SSIM values of each diffusion parameter were then grouped
together and compared using a paired t-test among the three different reconstruction
approaches. A p-value < 0.05 (after Bonferroni correction) was considered significant. All
the comparisons were performed using Matlab (MathWorks, Inc., Natick, MA, USA).

3. Results
3.1. Reconstructed Images

Figures 3 and 4 show a set of individual diffusion images (b = 1000 s/mm2 and
b = 4000 s/mm2) using CRNN-DWI, with R = 4 and 6, respectively. The images recon-
structed using CRNN-DWI had better image quality than the zero-padding and 3D-CNN
approaches. This was evidenced by the higher SSIM and PSNR values. Specifically, the
average SSIM and PSNR of CRNN-DWI were 0.750 ± 0.016 and 28.32 ± 0.69 (R = 4), and
0.675 ± 0.023 and 24.16 ± 0.77 (R = 6), respectively, both of which were much higher than
those using zero-padding (SSIM/PSNR = 0.516/12.18 for R = 4; SSIM/PSNR = 0.479/12.04
for R = 6) or 3D-CNN reconstruction (SSIM/PSNR = 0.535/13.37 for R = 4; SSIM/PSNR =
0.505/13.84 for R = 6). The undersampling mask pattern for the acceleration factors of 4
and 6 are shown in Figures 3 and 4, respectively.
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3.2. Diffusion Parameter Maps

The representative CTRW parameter maps are shown in Figure 5. The parameter maps
from CRNN-DWI were visibly less noisy and exhibited less artifacts than the parameter
maps from the other two approaches. Quantitatively, the SSIM values from CRNN-DWI
were also significantly larger than the other two approaches for both R = 4 and R = 6
(p < 0.01), as summarized in Table 1. Similar to the individual diffusion images, the SSIM
values were also substantially improved in the CTRW parameter maps (for R = 4 larger than
0.8 and for R = 6 larger than 0.7) when CRNN-DWI was employed. The trace-weighted
images and the signal decay curves from two randomly selected regions of interest agreed
well between the images from CRNN-DWI (R = 4 and 6) and those from fully sampled data
(Figure S1).

Table 1. The SSIM values of the diffusion parameter maps using different reconstruction approaches.

CRNN-DWI 3D-CNN Zero-Filling

α β Dm α β Dm α β Dm

R = 4 0.84 ± 0.04 0.82 ± 0.04 0.9 ± 0.03 0.62 ± 0.06 0.62 ± 0.05 0.64 ± 0.06 0.66 ± 0.06 0.62 ± 0.05 0.65 ± 0.06
R = 6 0.75 ± 0.06 0.71 ± 0.05 0.77 ± 0.05 0.6 ± 0.06 0.6 ± 0.05 0.61 ± 0.06 0.64 ± 0.06 0.61 ± 0.05 0.62 ± 0.06
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Figure 5. Representative CTRW parameter maps (α, β, and Dm) calculated using the trace-weighted
images from different reconstruction approaches for R = 4 (a) and R = 6 (b), respectively. For both
acceleration factors, the parameter maps generated by the CRNN-DWI method showed significantly
higher SSIM values when compared to those obtained from zero padding and 3D-CNN appraoches.

4. Discussion

A novel neural network—CRNN-DWI—was successfully applied to the reconstruction
of a highly undersampled multi-b-value DWI dataset. With an up to six-fold reduction in
raw data, CRNN-DWI worked well without noticeably compromising image quality or
diffusion signal quantification. The images reconstructed from CRNN-DWI also performed
well when analyzed with an advanced diffusion model (CTRW), yielding high SSIM values
in the diffusion parameter maps when compared to the fully sampled dataset.

The CRNN approach was successfully applied to reconstruct highly under-sampled
dynamic MRI datasets [22,24,25], where redundancy within temporal series was utilized.
Similarly, the redundant image features among different b-values and diffusion directions
allowed CRNN-DWI to exploit correlations within the dataset. The same approach could
be extended to a larger number of b-values and/or diffusion directions (e.g., >60, as in a
typical HARDI dataset). Note that we trained the neural network with only 175 images.
The performance of the neural network could be further improved with more datasets to
finetune the network.

When applied to k-space undersampling, CRNN-DWI can potentially reduce image
distortion associated with ssEPI sequences. Such distortion is proportional to the bandwidth
of the EPI phase-encoding direction. The CRNN-DWI approach can also help reduce
acquisition times when applied to other non-single-shot-based sequences, such as multi-
shot EPI or fast spin-echo (FSE) [26]. In that scenario, the acquisition time is related to the
k-space lines acquired per shot and the total number of k-space lines required for image
reconstruction. Undersampling k-space means acquiring fewer k-space lines, which may
even reduce multiple shots into one shot, thereby substantially reducing acquisition times.

Advanced diffusion models with multi-b-value diffusion-weighted images have been
increasingly used in probing micro-structures of human tissues [8]. The CTRW model
focuses on exploring the tissue heterogeneities by offering three quantitative parameters:
Dm, α, and β. Specifically, Dm describes how fast the diffusion decays analogous to the con-
ventional diffusion coefficient, whereas α and β are closely linked to temporal and spatial
heterogeneities, i.e., the amount of time for water molecules to make a jump (temporal) and
the displacement when making a move (spatial). As a result, these parameters can reflect
different aspects of the diffusion heterogeneities in the tissue. This approach has already
been successfully applied in assessing glioma, pediatric brain tumors, gastrointestinal can-
cer, bladder cancer, gastric cancer, prostate cancer, and Parkinson’s disease [2,10,11,27–31].
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The result from this work implies that CRNN-DWI together with the CTRW model can be
beneficial in exploring these and other applications.

The CRNN-DWI approach can be potentially extended to other advanced diffusion
models. However, caution should be exercised, as advanced DWI measurements can be
influenced by various factors, such as b-value, diffusion times, spatial resolution, magnetic
field strength, etc. These factors can play a significant role in accurately constructing the
diffusion models. Furthermore, the spatial distribution should also be taken into account,
particularly for DWI-based measurements with large b-values and multiple diffusion
directions, such as DTI and HARDI. Neglecting the spatial distribution may result in
significant systematic errors [32]. To address this issue, one potential strategy is to conduct
phantom studies incorporating b-matrix spatial distribution (BSD). After evaluating the
non-uniformity caused by various scanners and imaging parameters, data correction can
be performed to mitigate the concerns [32,33]. This approach is expected to help improve
the accuracy and reliability of the results obtained from the diffusion models used in
the studies.

One limitation of CRNN-DWI is the extensive GPU memory required in comparison
with other neural networks. This is due to the large number of parameters that must be
stored during the training process. Utilizing a deep subspace-based network may help
mitigate this problem by reconstructing a simpler set of basic functions [34]. Another
limitation of this study is that the performance of the proposed approach has not been
evaluated using patient images that may include pathology and other abnormalities. This
important aspect can be addressed in future studies, where the impact of the proposed
method on disease diagnosis can be assessed.

5. Conclusions

To conclude, the CRNN-DWI is a viable approach for reconstructing highly undersam-
pled DWI data, providing opportunities to reduce the data acquisition burden.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering10070864/s1, Figure S1: Representative trace-weighted
images at b = 1000 s/mm2 (left) using different reconstruction methods and the corresponding signal
decay curves (right) from two randomly selected ROIs (white matter and gray matter, as indicated by
the blue areas). The trace-weighted images reconstructed using CRNN-DWI showed excellent image
quality, even with a six-fold undersampling. The signal decay curves from CRNN-DWI agreed well
with the curves from the fully sampled images, whereas the curve from zero-padding and 3D-CNN
exhibited substantial deviations.
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