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Abstract: Medical image segmentation is a vital healthcare endeavor requiring precise and efficient
models for appropriate diagnosis and treatment. Vision transformer (ViT)-based segmentation models
have shown great performance in accomplishing this task. However, to build a powerful backbone,
the self-attention block of ViT requires large-scale pre-training data. The present method of modifying
pre-trained models entails updating all or some of the backbone parameters. This paper proposes a
novel fine-tuning strategy for adapting a pretrained transformer-based segmentation model on data
from a new medical center. This method introduces a small number of learnable parameters, termed
prompts, into the input space (less than 1% of model parameters) while keeping the rest of the model
parameters frozen. Extensive studies employing data from new unseen medical centers show that the
prompt-based fine-tuning of medical segmentation models provides excellent performance regarding
the new-center data with a negligible drop regarding the old centers. Additionally, our strategy
delivers great accuracy with minimum re-training on new-center data, significantly decreasing the
computational and time costs of fine-tuning pre-trained models. Our source code will be made
publicly available.

Keywords: transfer learning; vision transformer; medical image segmentation; limited data; prompt-
based tuning

1. Introduction

Recently, several novel segmentation models have been proposed to assist in medical
image analysis and understanding, leading to faster and more accurate treatment plan-
ning [1–3]. Many of these proposed models are increasingly transformer-based, demon-
strating excellent performance on several medical datasets. Transformers are a class of
neural network topologies distinguished chiefly by their heavy usage of the attention mech-
anism [4]. In particular, Vision transformers (ViTs) [5] have demonstrated their ability in 3D
medical image segmentation [6,7]. However, ViTs exhibit an intrinsic lack of image-specific
inductive bias and scaling behavior; nonetheless, this lack is mitigated by utilizing large
datasets and large model capacity.

On the other hand, medical datasets are limited in size due to time-consuming and
expensive expert annotations, which hinders the use of powerful transformer models
with regard to their full capacity. A common approach to handle the limited data size in
the medical domain is to use transfer learning [8]. Multiple studies exploited pretrained
networks for different downstream tasks such as classification [9], segmentation [10], and
progression [11]. This technique aims to reuse model weights or parameters of already
trained ViTs on different but related tasks. More specifically, models are first pretrained
on a different large dataset; the pretraining weights act as informed initializations of the
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model [12–14]. The pretrained model is then fine-tuned on the target dataset, yielding
faster training and a more generalizable model.

However, the limited size of medical datasets is not the only challenge; medical
datasets are sourced from different medical centers that use different machines and acquisi-
tion protocols, leading to further heterogeneity in the acquired data [15,16]. As a result, a
model trained on data obtained from specific medical centers might fail to perform well on
data obtained from a new medical center, see Figure 1 (Scenario 1) . Conventionally, we can
use the transfer learning technique for adapting the pretrained model to the new medical
center data. One such effective adaptation strategy is partial/full fine-tuning, in which
some/all of the parameters of the pretrained model are fine-tuned on the new center’s data,
see Figure 1 (Scenario 2). However, directly fine-tuning a pretrained transformer model
on a new center’s data can lead to overfitting (as we have mostly small-size datasets from
any new center) and catastrophic forgetting (loss of knowledge learned from the previous
centers) [17,18]. Hence, this strategy requires storing and deploying a separate copy of the
backbone parameters for every newly acquired medical center data. This strategy is costly
and infeasible if the end solution is regularly deployed on new medical centers or the acqui-
sition protocol and/or machines in an existing center change. Particularly, this infeasibility
will be more prominent in transformer-based models as they are significantly larger than
their convolutional neural network (CNN) counterparts. Another possibility is to re-train
the model on samples from old and new centers data and re-deploy it upon inference, see
Figure 1 (Scenario 3). This scenario is computationally expensive and infeasible due to the
same pitfalls of Scenario 2.

In this work, inspired from [19–21] we propose a prompt-based fine-tuning method
of ViTs on new medical centers’ data. It is important to note that previous studies have
mainly focused on large language models [19,20] and natural images [21]. However, our
research is centered around utilizing prompt-based fine-tuning to tackle medical image
segmentation tasks. More specifically, we are looking at multi-class segmentation of cancer
lesions with multi-center data. Instead of altering or fine-tuning the pretrained transformer,
we introduce center-specific learnable token parameters called prompts in the input space
of the segmentation model. Only prompts and the output convolutional layer are learnable
during the fine-tuning of the model on the new center’s data. The rest of the entire pre-
trained transformer model is frozen. Current deployment scenarios as well as our proposed
approach (Scenario 4) are depicted in Figure 1.

We show that this method can achieve high accuracy on new centers’ data with a
negligible loss regarding the accuracy of the old centers, in contrast to full or partial fine-
tuning techniques, where the model accuracy comprises the old-center data. The main
contributions of this work are as follows:

• We propose a new prompt-based fine-tuning technique for the transformer-based medi-
cal image segmentation models that reduces the fine-tuning time and the number of
learnable parameters (less than 1% of the model parameters) to be stored for the new
medical center.

• The proposed method achieves equivalent accuracy for new-center data compared to
the full fine-tuning technique while mostly preserving the accuracy for the old-center
data that compromises full fine-tuning.

• We showcase the efficacy of the proposed method on multi-class segmentation of head and
neck cancer tumors using multi-channel computed tomography (CT) and positron emission
tomography (PET) scans of patients obtained from multi-center (seven centers) sources.
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Figure 1. The four different scenarios of using the deployed deep learning model with the old and
new medical centers’ data. In (Scenario 1), the new-center data is directly inferred through the
deployed model trained on old-center data (no finetuning). In (Scenario 2), the model is fully or
partially finetuned on the new-center data before being deployed for inference. In (Scenario 3), the
model is retrained using both old- and new-center data before deployment. Our proposed method
(Scenario 4) utilizes the data solely from the new center to finetune only the prompt while keeping
the trained model frozen and then deploying it.

2. Methodology

Due to differences in how imaging is done, what equipment is used, and who the
patients are, the quality and distribution of the data collected by different medical centers
might be very different. This heterogeneity represents a barrier to developing precise and
robust models that can generalize to new medical center data optimally. In this section,
we describe a novel tuning technique, called prompt-based tuning, that overcomes the
pitfalls of conventional fine-tuning techniques. In this section, we describe prompt-based
tuning for adapting transformer-based medical image segmentation models. Prompt-based
fine-tuning technique injects a small number of learnable parameters into the transformer’s
input space and keeps the backbone of the trained model frozen during the downstream
training stage. The overall framework is presented in Figure 2. We demonstrate two
variants of prompt-based tuning, shallow and deep, and compare their performance to the
conventional fine-tuning methods such as partial and full fine-tuning. Below, we describe
the two prompt-based tuning methods and highlight the differences between the two.

2.1. Shallow Prompt Tuning

In shallow prompt fine-tuning, a set of p continuous prompts of dimension d are intro-
duced in the input space after the embedding layer. These prompts are concatenated with
the token embeddings of the volumetric patches of an input image x ∈ RH×W×D×C, where
H, W, D, and C are the height, width, depth, and channels of the 3D image, respectively.
K × K × K represents the dimensions of each patch, and n = HWD/K3 is the number
of patches extracted. The embedding layer projects these patches to a dimension d. The
class token is dropped from the ViT [5] as the experiments are for a segmentation task.
The resulting concatenated prompts and embeddings are fed to a transformer encoder
consisting of L layers, following the same pipeline as the original ViT [5], with normaliza-
tion, multi-head self-attention (MSA), and multi-layer perceptron. The decoder only uses
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image patch embeddings as inputs, and prompt embeddings are discarded. The shallow
prompt-based fine-tuning is formulated as:

x0 = Embedding(x) x0 ∈ Rn×d (1)

[U1, x1] = Encoder1([P, x0]) P ∈ Rp×d (2)

[Ui, xi] = Encoderi([Ui−1, xi−1]) i = 2, ..., L (3)

Yseg = Decoder(ConvTrans3D(xi)) i = 3, 6, 9, 12 (4)

where P is the prompt matrix and ConvTrans3D refers to 3D transpose convolution.

2.2. Deep Prompt Tuning

In deep prompt fine-tuning, the prompts can be introduced at the input space of each
transformer layer or subset of layers. In our implementation, we add the deep prompts
after each skip connection layer:

[_, xi] = Encoderi([Pi−1, xi−1]) i = 1, ..., L (5)

Figure 2. Overview of the proposed method. Learnable prompts are appended to the embedded
tokens in the input space and passed through the transformer encoder but not the decoder during the
fine-tuning. In deep prompt-based fine-tuning, the learnable prompts are replaced by new prompts
after each transformer layer.

3. Experiments

We use the state-of-the-art transformer-based segmentation models, UNETR [6] and Swin-
UNETR [22]. In addition, we compare the two variants of the proposed method to partial and
full fine-tuning, two prevalent transfer learning protocols used in medical imaging.

3.1. Dataset

The dataset used in this work is multi-center, multi-class, and multi-modal. This
dataset comprises head and neck cancer patient scans collected from seven centers. The
data consist of CT and PET scans, as well as electronic health records (EHR) of each patient.
The PET volume is registered with the CT volume to a common origin, although they each
have varying sizes and resolutions. The CT sizes range from (128, 128, 67) to (512, 512, 736),
while the PET sizes range from (128, 128, 66) to (256, 256, 543) voxels. The CT resolutions
range from (0.488, 0.488, 1.00) to (2.73, 2.73, 2.80), while the PET resolutions range from
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(2.73, 2.73, 2.00) to (5.47, 5.47, 5.00) mm in the x, y, and z directions. Some scans are of the
head and neck regions, while others contain the full body of the patients.

As shown in Figure 3, the PET/CT scans are in the NIFTI format. They have been
resampled to 1× 1× 1 mm3 isotropic resolution and cropped to a dimension of 176× 176×
176 around the primary tumor and lymph nodes. The CT HU value is clipped to a range of
−200 to 200, while the PET is clipped to a maximum of 5 standard uptake values (SUV).

(a) (b) (c) (d) (e)
Figure 3. A sample of images from the dataset [23]. (a,b) depict the original CT and PET scans,
respectively. (c,d) show the cropped CT and PET scans, and (e) shows the cropped ground truth mask.

The dataset contains segmentation masks for each patient, including the ground truth
of primary gross tumor volumes (GTVp), nodal gross tumor volumes (GTVn), and other
clinical information. The annotations were made by medical professionals at the respective
centers and are provided with the dataset. The dataset is publicly available on the MICCAI
2022 HEad and neCK TumOR (HECKTOR) challenge website [23]. The complete dataset
consists of 524 samples. The detailed distribution of the dataset across different centers is
listed in Table 1 along with the type of scanner used to acquire the scans.

Table 1. Dataset origin and distribution.

Center City, Country PET/CT scanner Number of samples

HGJ Montreal, Canada Discovery ST, GE
Healthcare 55

CHUS Sherbrooke, Canada GeminiGXL 16,
Philips 72

HMR Montreal, Canada Discovery STE, GE
Healthcare 18

CHUM Montreal, Canada Discovery STE, GE
Healthcare 56

CHUV Vaud, Switzerland Discovery D690 TOF,
GE Healthcare 53

CHUP Poitiers, France Biograph mCT 40 ToF,
Siemens 72

MDA Texas, USA
Discovery HR, RX, ST,

and STE (GE
Healthcare)

197

3.2. Experimental Setup

The dataset for each of the seven centers is first split into train and test sets with a ratio
of 70:30, respectively, for a fair comparison. In all experiments, the model is first pre-trained
using the six centers’ training data and then fine-tuned on the seventh center’s training
data. We evaluate the performance of the model on (1) the seventh center’s test set (new
center) and (2) on the six centers’ test set (old centers). We compare both metrics for the
following fine-tuning techniques as shown in Figure 4.
No fine-tuning: In this, the pre-trained model is directly used to infer the test samples
without any fine-tuning.
Partial fine-tuning: This technique involves fine-tuning the pre-trained model’s last decoder
block using the seventh center’s training set.
Full fine-tuning: This technique involves fine-tuning the entire pre-trained model using the
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seventh center’s training set.
Shallow prompt fine-tuning: This is a variant of prompt-based fine-tuning, where the prompts
are introduced only in the input space. Only the prompts and the final convolutional layer
are fine-tuned using the seventh center’s training set, while the rest of the model is frozen.
Deep prompt fine-tuning: This technique is similar to shallow prompt fine-tuning; prompts
at each level of the transformer layer are introduced. Thus, at each level, there are new
trainable prompts to refine. The prompts and the final convolutional layer are fine-tuned
using the seventh center’s training set.

Figure 4. Illustrations of the different fine-tuning methods, including partial and full fine-tuning
(conventional) as well as shallow and deep prompt-based (proposed).

3.3. Implementation Details

We implement all our models using the PyTorch framework and train them on a
single NVIDIA Tesla A6000 GPU. The details of the experimental settings for all fine-tuning
techniques are listed in Appendix A Table A1.

All images are aligned to the same 3D orientation (anterior–posterior, right–left, and
inferior–superior) during training and testing. The CT/PET scans are concatenated to
form a 2-channel input, with their intensity values independently normalized based on
their respective means and standard deviations. The training augmentations applied to
the CT/PET scans include extracting four random crops of size 96× 96× 96, with each
having an equal probability of being centered around the primary tumor or lymph node
voxels and the background voxels. The images are randomly flipped in the x, y, and z
directions, with a probability of 0.2, and are further rotated by 90 degrees in the x and y
directions up to 3 times, with a probability of 0.2. These augmentations aim to create more
diverse and representative training data, which can help to improve the performance and
generalization of deep learning models for medical image analysis tasks. All pre-processing
and augmentation details of the data are listed in Appendix A Table A2.

4. Results

Table 2 presents the results of fine-tuning the pre-trained UNETR and Swin-UNETR
on the old and new medical center datasets. We conduct our evaluations using a five-fold
cross-validation with a total of 290 experiments. The results of all the folds for all the
centers can be found in the Supplementary material. We use Dice score [24] to evaluate the
performance of segmentation in our experiments. We can observe that:
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Table 2. Aggregated five-fold Dice scores of GTVp and GTVn using different fine-tuning techniques with UNETR and Swin-UNETR.

Model Fine-Tuning None Partial Full Shallow Prompts Deep Prompts

Center(s) Old New (µ ± σ) Old New (µ ± σ) Old New (µ ± σ) Old New (µ ± σ) Old New (µ ± σ)

CHUP 0.7869 0.6708 ± 0.0529 0.7027 0.7153 ± 0.0496 0.7048 0.7298 ± 0.0579 0.7507 0.7134 ± 0.0529 0.7644 0.7198 ± 0.0565
CHUS 0.7665 0.7699 ± 0.0465 0.7574 0.7852 ± 0.0493 0.7574 0.7855 ± 0.0551 0.7683 0.7807 ± 0.0513 0.7688 0.7831 ± 0.0530
HGJ 0.7674 0.7877 ± 0.0229 0.7479 0.7949 ± 0.0255 0.7439 0.7981 ± 0.0241 0.7607 0.7938 ± 0.0246 0.7639 0.7913 ± 0.0259

UNETR MDA 0.7659 0.7224 ± 0.0231 0.7635 0.7298 ± 0.0209 0.7609 0.7533 ± 0.0245 0.7667 0.7339 ± 0.0225 0.7657 0.7379 ± 0.0243
CHUV 0.7704 0.7321 ± 0.0793 0.7622 0.7459 ± 0.0784 0.7665 0.7539 ± 0.0738 0.7723 0.7501 ± 0.0759 0.7724 0.7531 ± 0.0788
CHUM 0.7765 0.7714 ± 0.0241 0.7584 0.7721 ± 0.0288 0.7623 0.7759 ± 0.0310 0.7734 0.7775 ± 0.0266 0.7753 0.7799 ± 0.0294
HMR 0.7731 0.6712 ± 0.0489 0.7629 0.6987 ± 0.0580 0.7726 0.7099 ± 0.0496 0.7769 0.6992 ± 0.0467 0.7760 0.7080 ± 0.0542

Swin- CHUS 0.7584 0.7695 ± 0.0519 0.7569 0.7890 ± 0.0520 0.7541 0.7905 ± 0.0458 0.7613 0.7797 ± 0.0498 - -
UNETR CHUM 0.7763 0.7684 ± 0.0328 0.7642 0.7685 ± 0.0370 0.7667 0.7706 ± 0.0359 0.7719 0.7698 ± 0.0363 - -

CHUP 0.7835 0.6609 ± 0.0602 0.6960 0.7373 ± 0.0672 0.7026 0.7419 ± 0.0592 0.7320 0.7136 ± 0.0662 - -
MDA 0.7616 0.7291 ± 0.0257 0.7644 0.7413 ± 0.0264 0.7541 0.7522 ± 0.0265 0.7590 0.7352 ± 0.0263 - -
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1. All the different fine-tuning techniques yield better performance for the new centers
than direct inference on the pre-trained models.

2. Shallow prompt-based fine-tuning achieves a higher or comparable Dice score on
the new-center data, with nearly the same number of learnable parameters as partial
fine-tuning (see Table 3). However, shallow prompts outperform partial and full
fine-tuning techniques on the old-center data for all seven centers.

3. Deep prompt-based fine-tuning achieves the same Dice score as full fine-tuning on
the new-center data but with significantly fewer learnable parameters. In addition,
deep prompt-based fine-tuning outperforms the full fine-tuning on old-center data
for all seven centers. Thus, even if the storage of model weights is not a concern,
prompt-based fine-tuning is still a promising approach for fine-tuning models as it
retains more knowledge related to old centers.

4. The prompt-based fine-tuning of Swin-UNETR exhibits a similar pattern to that of
UNETR. However, the loss in performance on old-center data for the conventional fine-
tuning methods is less prominent for some centers compared to that of UNETR. This
can be explained by the inductive biases in Swin-UNETR, which employs MSA within
local shifted windows and merges patch embeddings at deeper layers. Swin-UNETR
requires further optimization with regard to prompt position to further improve
its performance.

Table 3. Total number of learnable parameters for different fine-tuning techniques.

Model Fine-
Tuning None Partial Full Shallow

Prompts
Deep

Prompts

UNETR - 0.025 M 96 M 0.038 M 0.15 M

Swin-
UNETR - 0.055 M 62 M 0.073 M -

5. Discussion

This work introduces a new method for fine-tuning transformer-based medical seg-
mentation models on new-center data. Our method is more efficient than conventional
approaches, requiring fewer parameters at a lower computational cost while achieving the
same or better performance on new-center data when compared to conventional methods
(Table A3). We show superior performance for prompt-based fine-tuning compared to other
techniques, achieving a statistically significant increase in the Dice score for old centers.
We note the difference in performance between CHUP and CHUS, which have a similar
number of samples but different acquisition machines and origins. CHUP exhibits a larger
drop in performance on the old centers than CHUS (nearly 8% in CHUP vs. 1% in CHUS
for partial and full fine-tuning). This is likely due to the larger dataset distribution shift
in CHUP compared to the rest of the centers. However, if shallow- or deep prompt-based
fine-tuning is used, the drop is only 2–3%. We perform a Wilcoxon signed-rank test [25]
to assess whether the deep prompt-based tuning of medical segmentation models is sig-
nificantly better than other fine-tuning techniques on old- and new-center data (the null
hypothesis H0 states that the segmentation performance of deep prompt-based fine-tuning
is statistically the same as the other techniques. The alternative hypothesis H1 states that
the deep prompt-based technique outperforms the other methods). Table 4 presents the
results of each test; it can be observed that deep prompt-based fine-tuning outperforms full
and partial fine-tuning techniques on the old center’s data. Similarly, it outperforms the
partial prompt- and shallow prompt-based techniques on the new-center data. However,
the test fails on the new center’s data for full fine-tuning. Thus, we proceed to performing
a two-tailed t-test and confirm that the performances of deep prompt-based fine-tuning
and full fine-tuning on new-center data are statistically the same (p-value < 0.05).
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Table 4. Wilcoxon signed-rank test on whether deep prompt-based fine-tuning of UNETR perfor-
mance is better than the other methods.

Partial? Full? Shallow?

Is the performance of
deep prompt-based

fine-tuned models on
old centers statistically

better than

X X 5

Is the performance of
deep prompt-based

fine-tuned models on
new centers statistically

better than

X 5 X

In our experiments, we observed that the extra learnable prompts at deeper layers
in the deep prompt-based fine-tuning improve the performance compared to shallow
prompt-based fine-tuning, which only inserts prompts in the input space after the patch
embedding layer. We present the results of ablating different prompt positions and prompt
numbers in Tables A11–A13. Our findings indicate that their specific position does not
significantly influence the model’s performance when the number of prompts is fixed.
However, for a fixed number of prompts distributed across various layers, incorporating
prompts into the skip connection layers adversely affects the model’s performance, while
their exclusion leads to performance improvements, as shown in Table A12. Furthermore,
the results reveal that increasing the number of prompts initially yields improvements in
performance. However, there is a threshold beyond which the model tends to become
overparameterized, resulting in a degradation of its performance. These results serve as
motivation for our choice to position the deep prompts after the skip connection layers
in our design. This suggests that adding too many prompts in the deeper layers can
over-parameterize the model, which may result in overfitting on new-center data. Further
studies will be conducted to quantify the effect of the number and position of the prompts.

6. Conclusions

We propose a prompt-based fine-tuning framework for the medical image segmen-
tation problem. This method takes advantage of the strength of transformers to handle a
variable number of tokens at the input and the deeper layers. We validate our proposed
method by training transformer-based segmentation models on head and neck PET/CT
scans and compare our results with conventional fine-tuning techniques. Although we
were able to show the efficacy of the proposed method on medical image segmentation
problems, further investigation is needed to study its scalability to other transformer-based
segmentation models in the future. In addition, investigation of prompt-based learning in
different tasks, such as classification and prognosis, is needed to assess its efficacy, along
with its performance comparison with domain generalization methods.
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Appendix A

Appendix A.1. Experimental Settings and Augmentations

Table A1. Experimental settings for the different fine-tuning techniques.

Hyperparameters Full Shallow Prompt Deep Prompt

Optimizer AdamW SGD SGD
lr 1 × 10−5 0.05 0.05

Weight decay 1 × 10−3 0 0
Learning rate scheduler - cosine decay cosine decay

Total epochs 100 100 100
Batch size 3 3 3

Table A2. Preprocessing and augmentation details.

Augmentations Axis Probability Size

Orientation PLS - -
CT/PET Concatenation 1 - -

Normalization - - -
Random crop - 0.5 96× 96× 96
Random flip x, y, z 0.2 -

Rotate by 90 (up to 3×) x, y 0.2 -

Table A3. Comparison of training time and GPU consumption between prompt and non-prompt
fine-tuning methods.

Fine-Tuning Runtime (min) GPU Consumption (GB)
Partial 75 15.060

Full 101 41.763
Shallow prompt 76 19.275

Deep prompt 78 19.361

Appendix A.2. Five-Fold Results per Center

Table A4. Five-fold results for UNETR on CHUP center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.6112 0.6813 0.6307 0.6302 0.6344
2 0.7442 0.7917 0.7596 0.7519 0.7449
3 0.6399 0.6627 0.7285 0.6910 0.6926
4 0.6919 0.7241 0.7551 0.7417 0.7518
5 0.6663 0.7165 0.7753 0.7523 0.7751

µ± σ 0.6708 ± 0.0509 0.7153 ± 0.0496 0.7298 ± 0.0579 0.7134 ± 0.0529 0.7198 ± 0.0564
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Table A5. Five-fold results for UNETR on CHUS center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.7861 0.8061 0.8058 0.8035 0.8150
2 0.7825 0.7975 0.7884 0.7886 0.7842
3 0.6875 0.6981 0.6906 0.6903 0.6912
4 0.7947 0.8196 0.8125 0.8103 0.8176
5 0.7987 0.8047 0.8300 0.8107 0.8075

µ± σ 0.7699 ± 0.0465 0.7852 ± 0.0493 0.7855 ± 0.0551 0.7807 ± 0.0513 0.7831 ± 0.053

Table A6. Five-fold results for UNETR on CHUM center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.8009 0.8017 0.8089 0.8086 0.8133
2 0.7387 0.7343 0.7414 0.7410 0.7392
3 0.7626 0.7559 0.7541 0.7702 0.7733
4 0.7668 0.7690 0.7675 0.7697 0.7629
5 0.7882 0.7995 0.8077 0.7981 0.8048

µ± σ 0.7714 ± 0.0241 0.7721 ± 0.0288 0.7759 ± 0.0309 0.7775 ± 0.0266 0.7799 ± 0.0294

Table A7. Five-fold results for UNETR on CHUV center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.6368 0.6496 0.6633 0.6555 0.6454
2 0.7516 0.7631 0.7667 0.7609 0.7682
3 0.7832 0.8014 0.8013 0.8091 0.8063
4 0.8243 0.8340 0.8422 0.8339 0.8413
5 0.6645 0.6812 0.6959 0.6910 0.7043

µ± σ 0.7321 ± 0.0793 0.7459 ± 0.0784 0.7539 ± 0.0738 0.7501 ± 0.0759 0.7531 ± 0.0788

Table A8. Five-fold results for UNETR on MDA center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.7258 0.7284 0.7750 0.7492 0.7571
2 0.7384 0.7457 0.7736 0.7464 0.7538
3 0.6843 0.6970 0.7159 0.6979 0.7000
4 0.7426 0.7500 0.7584 0.7504 0.7515
5 0.7207 0.7279 0.7434 0.7258 0.7271

µ± σ 0.7224 ± 0.0231 0.7298 ± 0.0209 0.7533 ± 0.0245 0.7339 ± 0.0225 0.7379 ± 0.0243

Table A9. Five-fold results for UNETR on HGJ center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.7887 0.8024 0.8062 0.7994 0.7955
2 0.7511 0.7534 0.7622 0.7543 0.7566
3 0.8100 0.8031 0.8075 0.8125 0.8114
4 0.8035 0.8225 0.8262 0.8148 0.8191
5 0.7852 0.7935 0.7883 0.7878 0.7739

µ± σ 0.7877 ± 0.0229 0.7949 ± 0.0255 0.7981 ± 0.0241 0.7938 ± 0.0246 0.7913 ± 0.0259
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Table A10. Five-fold results for UNETR on HMR center.

Fold No Finetuning Partial
Finetuning

Full
Finetuning

Shallow
Prompt Deep Prompt

1 0.6632 0.6903 0.7132 0.7201 0.7453
2 0.7001 0.7188 0.7265 0.7076 0.7194
3 0.6796 0.6797 0.6933 0.6829 0.6854
4 0.5926 0.6229 0.6400 0.6299 0.6264
5 0.7203 0.7817 0.7762 0.7554 0.7632

µ± σ 0.6712 ± 0.0489 0.6987 ± 0.0580 0.7098 ± 0.0496 0.6992 ± 0.0467 0.708 ± 0.0542

Appendix A.3. Ablation for Prompt Position and Number of Prompts

Table A11. Effect of changing the position of concatenated prompt on the performance of the model
on Fold 1 of CHUP center using UNETR.

Position Avg Dice P-Tumor Lymph
shallow 0.6302 0.7778 0.4827

1 0.6307 0.7793 0.4820
2 0.6305 0.7775 0.4834
3 0.6303 0.7765 0.4840
4 0.6306 0.7774 0.4837
5 0.6293 0.7775 0.4811
6 0.6306 0.7792 0.4820
7 0.6295 0.7785 0.4806
8 0.6303 0.7783 0.4823
9 0.6306 0.7789 0.4823
10 0.6304 0.7785 0.4822
11 0.6304 0.7789 0.4819
12 0.6303 0.7786 0.4819

Table A12. Comparing the model performance on Fold 1 of CHUP center while adding prompts on
skip connections vs. no prompts on skip connections.

Prompts on Skip
Connections Avg Dice P-Tumor Lymph

5 0.6342 0.7753 0.4931
X 0.6289 0.7778 0.4810

Table A13. Effect of changing the number of concatenated prompts on the performance of the model
on Fold 1 of CHUP center using UNETR.

Number of Prompts Avg Dice P-Tumor Lymph
10 0.6292 0.7781 0.4802
30 0.6291 0.7766 0.4816
50 0.6302 0.7778 0.4827
70 0.6307 0.7788 0.4827
90 0.6300 0.7774 0.4827

100 0.6294 0.7774 0.4815
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