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Abstract: Accurate segmentation of infected lesions in chest images remains a challenging task due
to the lack of utilization of lung region information, which could serve as a strong location hint for
infection. In this paper, we propose a novel segmentation network Co-ERA-Net for infections in
chest images that leverages lung region information by enhancing supervised information and fusing
multi-scale lung region and infection information at different levels. To achieve this, we introduce
a Co-supervision scheme incorporating lung region information to guide the network to accurately
locate infections within the lung region. Furthermore, we design an Enhanced Region Attention
Module (ERAM) to highlight regions with a high probability of infection by incorporating infection
information into the lung region information. The effectiveness of the proposed scheme is demon-
strated using COVID-19 CT and X-ray datasets, with the results showing that the proposed schemes
and modules are promising. Based on the baseline, the Co-supervision scheme, when integrated with
lung region information, improves the Dice coefficient by 7.41% and 2.22%, and the IoU by 8.20% and
3.00% in CT and X-ray datasets respectively. Moreover, when this scheme is combined with the En-
hanced Region Attention Module, the Dice coefficient sees further improvement of 14.24% and 2.97%,
with the IoU increasing by 28.64% and 4.49% for the same datasets. In comparison with existing
approaches across various datasets, our proposed method achieves better segmentation performance
in all main metrics and exhibits the best generalization and comprehensive performance.

Keywords: co-supervision; COVID-19 chest infection segmentation; enhanced region attention

1. Introduction

Chest infections, a medical condition resulting from the invasion and proliferation
of microorganisms such as bacteria, viruses, or fungi within the chest area, particularly
the lungs, present various symptoms like coughing, chest pain, shortness of breath, fever,
and fatigue. Besides physical symptoms, radiology imaging tests, including CT and X-ray
scans, can detect chest infections. Radiology techniques including CT imaging and X-ray
imaging allow radiologists to visualize infection extent and location in the chest cavity,
significantly aiding in accurate diagnosis and effective treatment planning. In pandemics
involving chest diseases, such as the previous COVID-19 outbreak, a reliable and efficient
diagnostic method for identifying infection regions in chest radiology scans is crucial for
monitoring disease progression and devising appropriate treatment strategies. However,
radiologist shortages can hinder accurate chest infection diagnosis and impede infection
region identification efficiency. Consequently, an automated tool for delineating infection
regions from chest radiology scans is vital for facilitating chest infection diagnosis.

Advancing deep learning algorithms offer the increasing potential for automating
infection region segmentation in radiology scans, including CT or X-ray, presenting an
opportunity to reduce the manpower and time required for radiologists in infection region
identification. However, existing deep-learning models primarily focus on analyzing entire
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radiology images, rather than specifically targeting lung regions where infection signs are
more likely to appear, possibly leading to segmentation of areas outside the lung region
and compromising diagnostic accuracy, which is shown in Figure 1.

Figure 1. The graphic presents a visual comparison of the effectiveness of different methods in
identifying infected regions (highlighted in red) in COVID-19 CT and X-ray images. The ground-
truth lung regions (highlighted in blue) provided by datasets are annotated by the senior radiologists.
In images (a,b), the segmentation results of a deep learning model lacking prior knowledge of
lung regions are illustrated. It is evident from these images that there are misidentified regions
outside the lung area (shown in blue) and inaccuracies in segmentation (indicated by yellow). Our
proposed solution, Co-ERA-Net, is demonstrated in images (c,d). These images clearly show how
our solution effectively mitigates the issues of misidentification and inaccurate segmentation seen
in (a,b). Finally, images (e,f) serve as the ground truth against which these different methods are
compared. They provide the benchmark to evaluate the performance of the deep learning model and
the Co-ERA-Net solution.
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To enhance the precision of infection segmentation in these radiology scans, we
postulate that infections manifest within the lung region. Building on this assumption,
there are two potential solutions to enhance segmentation performance: the first method
entails using ground-truth lung region masks to isolate the lung region before segmenting
the infection region, while the second method involves employing a separate lung segmen-
tation model to identify the lung region prior to infection segmentation. However, both
approaches have drawbacks. The first method is constrained by the potential absence of
ground-truth lung region masks in new cases, while the second method entails a high time
cost due to sequential model usage and lacks the ability to share features between lung
and infection segmentation models. As a result, a novel network must be developed to
overcome these limitations, enabling more efficient and accurate infection segmentation in
radiology scans by better leveraging lung region information.

In the paper, we present the Co-ERA-Net, a new deep-learning model for accurately
segmenting infection regions in Chest images while overcoming the limitations of existing
algorithms and direct solutions. Our proposed Co-ERA-Net involves parallel flows for
both the lung region and infection region, where co-supervision is achieved by both lung
region information and infection region information. Instead of relying on sequential
segmentation of the lung and infection regions, our Co-ERA-Net uses Enhanced Region
Attention Module (ERAM) to connect the lung region flows and infection region flow by
integrating the information between these flows and highlighting the regions with a high
probability of infection. In this way, the Co-ERA-Net can minimize segmentation areas
outside lung regions and boost segmentation performance.

We conducted a series of experiments to evaluate the efficacy of the proposed Co-ERA-
Net, including comparing our network with various state-of-the-art models, performing
an ablation study to investigate the contribution of the co-supervision and enhanced
region attention modules to segmentation performance, and evaluating our network on
real volumes to assess its practical utility. Our experimental results demonstrate that the
proposed Co-ERA-Net achieves superior segmentation performance compared to existing
state-of-the-art networks, with both the co-supervision and enhanced region attention
modules contributing significantly to overall performance. Furthermore, the Co-ERA-Net
exhibits strong robustness in evaluating real volumes.

The main contributions of the paper are listed below:

• We present that lung infections occur only within the lung region. It offers valu-
able inspiration for developing segmentation methodologies about diverse infec-
tions, incorporating lung region information into deep learning algorithms and
dataset construction.

• We propose the new Co-ERA-Net for infection segmentation in the chest images.
Current deep learning algorithms primarily focus on whole images, but co-supervision
with lung region information from our proposed Co-ERA-Net can help the network
better concentrate on high-probability infection areas within the lung region.

• We also introduce Enhanced Region Attention Module (ERAM) to connect lung region
and infection flows for more effective information utilization. Our enhanced region
attention fuses information from both lung and infection regions to generate region
attention as a hint for the infection area.

• We carefully conduct a series of experiments to evaluate our models from different
perspectives, including comparisons with state-of-the-art models, ablation studies to
validate the effects of co-supervision and enhanced region attention, and real volume
predictions to verify our model’s robustness in actual medical scenarios.



Bioengineering 2023, 10, 928 4 of 26

2. Related Work

In the context of deep learning applied to chest image infection segmentation, it is
crucial to investigate the COVID-19 infection segmentation in both chest CT scans and
chest X-ray scans. In the past, the COVID-19 pandemic presented a significant challenge,
necessitating the development of efficient infection segmentation methods. Although
COVID-19 has subsided considerably, the knowledge and techniques acquired can be
utilized to create a tool for infection segmentation that can be extended to other types
of infections. This section offers an overview of existing works on COVID-19 infection
segmentation and investigates mechanisms that can be generalized to accommodate other
infection types.

2.1. Deep Learning for COVID-19 Infection Segmentation: Progress and Challenges

Deep learning has emerged as a powerful tool for medical diagnosis, particularly
during the COVID-19 pandemic. Using deep learning algorithms to identify infected
regions in chest CT and X-ray scans presents a promising strategy for reducing radiologists’
workload and improving diagnostic efficiency. As a result, numerous studies have focused
on deep learning-based approaches for infection segmentation, with the analysis of the
challenges in accurate segmentation of infection [1].

However, the limited availability of training data hinders the application of deep learn-
ing for chest CT and X-ray infection segmentation. To address this issue, multiple datasets
and benchmarks have been proposed for training and validating deep learning-based
infection segmentation algorithms. In the CT scans, Ma et al. [2]. provided a COVID-19
infection segmentation dataset consisting of 20 public COVID-19 CT scans, while Med-
Seg [3] offers another dataset containing 9 axial, volumetric CTs. These datasets facilitate
the development and validation of deep learning-based COVID-19 chest CT infection seg-
mentation algorithms. In the Chest X-ray scans, Degerli et al. [4] proposes the COVID-19
infection segmentation Chest X-ray dataset consisting of 2951 COVID-19 samples with
their corresponding infection masks, while Tahir et al. [5] provided another COVID-19
classification and segmentation dataset consisting of 11,956 COVID-19 samples with their
ground-truth lung masks, which is based on the dataset proposed by Degerli et al. [4].
Furthermore, Ma et al. [6]. proposed the first evaluation benchmark for COVID-19 infec-
tion segmentation, which includes three tasks for lung and infection segmentation based
on 70 annotated COVID-19 cases, along with baseline models for comparison. With the
increasing number of COVID-19 infection segmentation datasets available, various deep
learning networks have been developed, such as the pioneer deep learning network for
COVID-19 infection segmentation by Fan et al. [7] in CT images, which uses reverse atten-
tion to incorporate edge information and improve segmentation accuracy, and the Chest
X-ray infection map generation network proposed by Degerli et al. [4], which proposes
a novel method for the joint localization, severity grading, and detection of COVID-19 from
Chest X-ray images. More details of the state-of-the-art COVID-19 infection segmentation
model are shown in Table 1. In addition to localizing COVID-19 infection, Li et al. [8]
introduced a deep-learning-based pipeline for directly assessing the four clinical stages
of COVID-19 using CT images. This pioneering approach establishes a benchmark for
computer-aided diagnosis of COVID-19 by incorporating infection segmentation into the
assessment process.
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Table 1. The pros and cons of the State-of-the-art COVID-19 infection segmentation method .

Author Network Features Pros Cons

Fan et al. [7] Inf-Net • Aggregating features from high-level • Boundary identification based on • Accuracy drop for non-infected slices.
layers using a parallel partial decoder (PPD) reverse attention and edge constraint guidance. • Two-step strategy for multi-class labeling
• Recurrent reverse attention (RA) modules • Semi-supervised learning to resulted in sub-optimal learning performance.
• Edge-attention guidance overcome the shortage of labeled data.
• Semi-supervised learning strategy.

Wang et al. [9] COPLE-Net • Noise-robust loss • Noise-robust dice loss Function to handle • The performance under a wider range of
• Adaptive self-ensembling framework noisy annotations during the training process. noise levels have not been explored yet.
with exponential moving average (EMA) • Exponential moving average (EMA) teacher • It lacks an investigation into the network’s

model to guide a standard student model, performance under various noise levels
enhancing the model’s robustness against noisy labels.

Qiu et al. [10] MiniSeg • Attentive hierarchical spatial pyramid • Attentive hierarchical spatial pyramid improves the • Extremely low complexity of the network
• Extremely minimum network representation capabilities in lightweight multi-scale learning. limited the generalizability through different

• Extremely minimum network complexity makes it suitable datasets.
for practical implementation in resource-constrained scenarios.

Hu et al. [11] Deep collaborative • Deep collaborative supervision scheme • Deep collaborative supervision scheme enhances supervised • Limited severity estimation. It is not sufficient
supervision network • Auxiliary semantic supervised module information of different levels and fuses different scale features for estimating the severity of infected COVID-19.

• Attention fusion module maps. • Simultaneously applying the co-supervision scheme
• Edge supervised module • Edge spervised module allows the model to capture rich in both the down-sampling and up-sampling paths

spatial information at various scales. leads to decreased segmentation performance.

Paluru et al. [12] AnamNet • Apply lung extraction before infection segmentation • Apply lung extraction before infection segmentation • The network’s limitation lies in its restriction to
• Fully convolutional anamorphic depth block enhances the efficiency to find out infection. 2D chest CT images.
• Adapted label weighting scheme • Fully convolutional anamorphic depth block enabled • It shows inherent bias towards the peripheral

efficient gradient flow in the network. part of the lung in its segmentation.

Cong et al. [13] BSNet • End-to-end boundary guided semantic learning • Boundary-guided semantic learning leverages boundary • It faces difficulty in segmenting COVID-19 infections
• Dual-branch semantic enhancement guidance and semantic relations to capture infection areas. due to the scattered nature of infected regions over
• Mirror-symmetric boundary guidance • Dual-branch semantic enhancement model semantic the chest slice.

relations, enhancing the feature learning process.
• Mirror-symmetric boundary guidance ensuring
complementary and sufficiency of feature learning.
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Despite rapid progress, current networks primarily focus on entire CT or X-ray slices
rather than lung regions, which have a higher likelihood of containing the infection. This
approach may result in inaccurate segmentation outside lung regions and overlooked
infections within them. Some recent studies attempt to address this issue by incorporating
ground-truth lung masks [12] or lung region segmentation models [14]. However, these
approaches introduce challenges such as the unavailability of ground-truth lung masks for
new cases and the increased time cost of sequential models. To overcome these limitations,
we propose a novel Co-supervision mechanism that simultaneously supervises network
training using both infection and lung region masks and an Enhanced Region Attention
mechanism that augments lung region information to regions with a high probability of
containing the infection. This approach leverages lung region information while eliminating
the need for ground-truth lung masks or external lung segmentation models in new cases.

2.2. Co-Supervision from Multiple Targets

Utilizing multiple targets to provide supplementary information is a common strategy
for enhancing deep learning network performance when single-target supervised learning
reaches its limit. In infection segmentation networks, the second supervision target is
often the edge information of the primary target. For instance, Fan et al. [7] proposed
an infection segmentation network that uses both the infection mask’s edge information
and the mask itself, capturing multiple infection perspectives to improve segmentation
accuracy. Hu et al. [11] presented a deep collaborative supervision scheme that employs the
Edge Supervised Module and Auxiliary Semantic Supervised Module to guide the network
in learning edge features and semantics in infection regions, integrating information at
each scale through the Attention Fusion Module.

Co-supervision, combining the primary target and its edge information, can enhance
infection segmentation performance. However, solely relying on edge information may
not provide reliable indicators of the target’s location. This is primarily due to the inherent
susceptibility of edge information to noise and low contrast, making it challenging for
co-supervision to discern weak edges that are typically noisy and have low contrast,
a common scenario in radiology images [15]. This can lead to inconsistent segmentation
results. However, region-specific information exhibits higher saliency compared to edge
information. In image segmentation, saliency refers to the distinct quality of an object,
pixel, or individual that allows it to stand out from its surroundings. For accurate infection
region segmentation, it is more reliable to use highly salient region-specific information
than weak edge information. Hence, by acknowledging the fact that lung-related infections
are primarily found within the lung region, we adopted lung region information instead
of edge information for co-supervision. This modification offers more potent and salient
indications, improving the network’s efficiency in identifying infection regions.

2.3. Attention Mechanism

Attention mechanisms emulate human cognitive processes that selectively focus on
specific objects while disregarding others, leading to improved target observation. Initially
applied to neural machine translation [16], attention mechanisms were later extended to
natural language processing by the Transformer [17], which employed self-attention to
capture relationships between words and sentences, enhancing network comprehension.

Due to its effectiveness, attention mechanisms have been adapted in various ways for
computer vision. Xu et al. [18]. demonstrated the distinction between soft and hard atten-
tion and applied soft attention to the Image Caption task, resulting in superior performance.
Woo et al. [19]. proposed channel attention and spatial attention, integrating them into con-
volution blocks for performance improvement. Task-specific attention mechanisms have
also been developed, such as Shen et al. [20]’s region attention, which leverages semantic
and edge information for target object region decisions. While region attention can quickly
aid infection segmentation tasks, similar textures and boundaries of infected regions may
reduce attention efficiency. Consequently, enhancing region attention using lung region
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masks and infection information is essential for guiding the network to accurately predict
infection regions.

2.4. Addressing Limitations: An Analysis of Gaps in Current Works

Existing literature on chest infection segmentation using deep learning reveals some
gaps and limitations that need to be addressed. Predominantly, most of the works are
focused on complete radiological image analyses rather than specifically targeting the
lung regions where infections are more likely to be displayed. This approach of complete
radiological image analyses can erroneously lead to the segmentation of areas outside the
lung, thus compromising the accuracy of diagnosis. To improve precision, the current
models either utilize ground-truth lung masks, limiting their applicability due to potential
non-availability in new cases, or employ separate models for lung and infection segmenta-
tion, which increase time costs and do not fully leverage the shared features between these
two segmentation processes.

Furthermore, co-supervision with target edge information, though effective in certain
scenarios, may not always provide a reliable indication of the target location, hinting at
the need for lung region information for co-supervision. Another gap is identified in the
currently used attention mechanisms; region attention, despite its usefulness, may be less
efficient in infection segmentation tasks due to the similar textures and boundaries of
infected regions, leading to a requirement for enhanced region attention using lung region
masks and infection information for better accuracy.

These gaps underline the need for a novel model that offers an efficient, precise
solution by targeting specific lung regions, leveraging lung region information for co-
supervision, and implementing an enhanced region attention for more accurate predictions
in infection segmentation tasks.

3. Method

In this section, we unveil the architecture of our proposed network. We delve into the
details of the Enhanced Region Attention module and the loss function we’ve introduced.

3.1. Proposed Co-ERA-Net: Co-Supervised Infection Segmentation Utilizing Enhanced
Region Attention

This section presents a novel deep-learning network called Co-ERA-Net, specifically
designed for infection segmentation, leveraging Co-Supervision and Enhanced Region
Attention to ensure exceptional precision. We provide an exhaustive elucidation of the
network architecture, the mechanisms of Co-Supervision, the concept of Enhanced Region
Attention, and the distinct loss function employed. The network proposed herein miti-
gates the limitations of dependency on lung region information alone by incorporating
both lung region and infection data for Co-Supervision during the training phase. This
approach significantly enhances the identification of infection regions. The Co-supervision
methodology merge infection and lung region data at all scales, efficiently identifying
the impactful areas of lung images and offering more refined locational information as
compared to the exclusive use of infection region edge data. To render this approach viable,
we implement multi-scale supervision for both lung region and infection flows, thereby
enabling multi-scale Co-supervision.

Additionally, we introduce the Enhanced Region Attention Module (ERAM) that
incorporates infection region data to refine region attention obtained from lung region data,
resulting in enhanced precision and segmentation performance. The detailed workflow of
Co-Supervision and ERAM could be seen in Algorithm 1 and Figure 2.
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Algorithm 1 Co-Supervision Scheme and Enhanced Region Attention Working Steps
Input: Input Slice X, Ground-Truth Infection Mask Min f , Ground-Truth Lung Mask Mlung
Output: Predicted Infection Mask Predin f , Predicted Lung Mask PredLung

1: Extract the general features F from input slice using feature extractor;
2: Concurrently, feed F into both lung region flow and lung infection flow. Denote F as

F0;
3: for each level of layer i do
4: The lung region flow generates Fi

Lung from Fi−1;

5: The lung infection flow generates Fi
in f from Fi−1;

6: The Enhanced Region Attention Module accepts Fi
Lung and Fi

in f , producing the

attentive features Fi
Att;

7: Generate the lung region mask for multi-scale supervision Mi
lung from F(i−1);

8: Generate the lung infection mask for multi-scale supervision Mi
in f from F(i−1);

9: The next level of lung infection flow receives Fin f and FAtt as input, while the next
level of the lung region flow takes in Fi

lung;

10: return The lung region mask from the final level F4
Lung, The lung infection mask

from the final level Fi
In f

We also propose a custom hybrid loss function, combining binary cross-entropy loss,
Structural Similarity (SSIM) loss, and Intersection Over Union (IoU) loss to balance accuracy
and robustness. As illustrated in Figure 3, our network architecture processes input slices
with a feature extractor, generating general features. These features are fed into both the
lung region and lung infection flows concurrently. Within both flows, features are decoded
at different scales and passed through layers connected with enhanced region attention to
refine infection information. The lung region mask and infection mask are generated at
the outputs of the corresponding flows. To ensure training stability, we employ multi-scale
supervision in both flows, which is shown in Figure 4.

3.2. Enhanced Region Attention Module (ERAM): Refining Region Attention

Our proposed Enhanced Region Attention Module (ERAM), depicted in Figure 5,
refines the region attention generated from the lung region flow. The lung region flow
offers coarse region guidance for the entire lung region and is combined with information
from the infection flow to produce attentive infection features. However, this coarse region
attention is insufficient in accurately highlighting the infection region. To address this
limitation, we introduce a refinement region attention mechanism, consisting of a pyramid
structure of convolutional layers with varying dilation rates to extract detailed information
from different receptive fields.

The refined region attention identifies regions with a high probability of infection
and is fused with the information from the infection flow before being used as input
for the subsequent stage of the lung infection flow. Our Enhanced Region Attention
Module (ERAM) improves segmentation accuracy by refining the attention generated from
the lung region flow, effectively leveraging information from both the lung region and
infection flows.
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Figure 2. The proposed algorithm flowchart for lung infection segmentation. Initially, the input
image undergoes feature extraction to obtain general features. These general features are then
simultaneously utilized in both the lung region stream and the lung infection stream, producing
corresponding lung region features and lung infection features in parallel. To identify regions with
a high probability of infection, the lung region features and lung infection features are subjected
to the enhanced region attention mechanism, generating attentive features. The attentive features
and lung infection features are combined and forwarded to the next level of the lung infection
stream, enhancing the algorithm’s ability to capture significant patterns related to infections. To
facilitate stable and effective training, multi-scale supervision is applied to both the lung region
stream and lung infection stream, enabling the algorithm to learn essential features at various scales
and improving overall accuracy in lung infection segmentation.
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Figure 3. The block diagram of our proposed Co-ERA-Net (a) and the detailed Illustration of the
overall network architecture (b). The proposed architecture comprises of Co-Supervision scheme and
Enhanced Region Attention Module based on the encoder-decoder structure. The Co-Supervision
scheme is used to highlight the effective area of infection. The Enhanced Region Attention Module is
employed to strengthen the region information by integrating the infection information into the lung
region information for high-probability region information.

Figure 4. Block diagram of our Multi-Scale Co-Supervision Scheme. Our proposed scheme incorpo-
rates lung region information and infection information as supervision targets at each scale of the
decoder. Additionally, we employ enhanced region attention as the connection between the lung
region feature and lung infection feature to reinforce infection feature representation.
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Figure 5. The block diagram of our proposed Enhanced Region Attention Module (a) and the detailed
illustration of the mechanism (b). F(Region) represents the information from the lung region flow and
the F(In f ection) represents the information from the infection flow. The F(Region) is generated the
coarse region attention Catt(In f ection) in the Coarse Region Attention stage and integrated with the
F(Infection) as the attentive infection information Fatt(In f ection). The Fatt(In f ection) is duplicated
and fed into the Refined Region Attention stage which is constructed by the convolution layer with
different dilated rates to generate the refined attention Ratt(In f ection). The Ratt(In f ection) and
F(In f ection) are fused and generate the Fnext(In f ection) as the input of the next level infection flow.

3.3. Loss Function: Supervising Infection Segmentation in CT Scans

In this work, we propose a loss function composed of two components, Lung Region
Loss and Lung Infection Loss, designed to optimize our network for infection segmentation
in chest images. The Lung Region Loss component is a Binary Cross-Entropy Loss that
supervises the probability distribution of regions used in attention. The Lung Infection Loss
component is a hybrid loss that combines Binary Cross-Entropy Loss, Intersection Over
Union Loss, and Structural Similarity Measurement Loss. The Binary Cross-Entropy Loss
term supervises the probability distributions between the predicted infection and ground
truth, while the Intersection Over Union Loss term supervises the overlap between the
predicted infection mask and ground truth. Lastly, the Structural Similarity Measurement
Loss term supervises the structural similarity between the predicted and ground truth
infection masks. The specific formulas for the loss function are provided below:

BCELoss(i) = −[yi × logxi + (1− yi)×log(1− xi)] (1)

IoULoss(i) = 1− ∑(xi×yi)

∑(xi + yi − xi×yi)
(2)

SSIMLoss(i) = 1−
(2×µxi×µyi )×(2×σxy)

(µ2
xi
+ µ2

yi
)×(σ2

xi
+ σ2

yi
)

(3)

where xi is the predicted result, yi is the ground-truth, µxi and µyi are the pixel sample
mean, σxi

2 and σyi
2 are the variance and σxy is the covariance.

To enable multi-scale supervision in the lung region and lung infection flows, we apply
the same loss function across all scales but assign varying weights to each component.
This approach effectively balances the relative importance of different loss functions across
scales, enhancing overall training stability and accuracy.
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4. Experimental Results and Discussion
4.1. Dataset Description: Utilizing Publicly Available COVID-19 Segmentation Datasets in CT
and Chest X-ray

The study utilizes three publicly accessible datasets for network training and testing.
These datasets are as follows: the COVID-19 CT Lung and Infection Segmentation Dataset
(CT-LISD), the Segmentation nr.2 Dataset (CT-S2D), and the COVID-QU-Ex Dataset (X-ray-
QUED). Detailed information about the datasets is provided in Table 2.

Table 2. Datasets used in the experiments .

Author Dataset Imaging
Modality Image Bits Number of

Total Slices
Number of Slices
with Infection Data Split

Ma et al. [2] Zenodo 20P CT 8 bit 3520 1844 Train: 1844
MedSeg et al. [3] Radiopaedia 9P CT 8 bit 829 373 Test: 373

Train: 1864
Tahir et al. [5] COVID-QU-Ex Dataset X-ray 8 bit 5826 2913 Test: 583

Validation: 466

CT-LISD encompasses 20 COVID-19 CT scans with 3520 slices in total. For the sake
of training stability, 1844 slices containing infections were selected for network training.
CT-S2D contains nine axial volumetric CTs from Radiopaedia, comprising 829 slices. When
assessing segmentation, only 373 infection-containing slices were utilized. However, for
real CT volume evaluation, all 829 slices were used to ensure a comprehensive performance
assessment. X-ray-QUED, sourced from various medical centers, holds 5826 slices. Follow-
ing the dataset’s official split and segmentation evaluation using only infection-containing
slices, we assigned 1864 slices for network training, 583 slices for testing, and 466 slices for
validation. It should be noted that all datasets provide ground truth lung masks, critical for
the Co-Supervision aspect of our network design.

4.2. Implementation Details: Network Training and Configuration

The Co-ERA-Net, our proposed solution, was implemented using PyTorch (Version
1.7.1). The feature extraction was carried out using ConvNext, pretrained on ImageNet for
improved feature extraction capabilities. We selected the AdamW optimizer with an initial
learning rate of 0.0002. The weights of loss functions in each level are correspondingly 0.2,
0.3, 0.4 and 1.

The input data were resized to dimensions of 256 × 256, with the data loader’s batch
size set at four. Data augmentation was exclusively done using the RandomFlip method,
with a probability of 0.5, and no other augmentation strategies were adopted. Training of
the network was performed on an NVIDIA RTX 3080 GPU with 12 GB memory, and it took
place over 200 epochs, with the convergence and fine-tuning time approximately being
20 h. The training loss curves for training our Co-ERA-Net are shown in Figure 6.

To ensure a fair and equal comparison of performance between our model and other
state-of-the-art models in the experiments, we retrained all the networks using their official
implementations. This retraining was done on the same training dataset as used for our
network, with identical training settings, including input size, batch size, optimizer, and
number of epochs. By adhering to consistent training conditions, we aimed to eliminate
any potential bias and ensure a reliable evaluation of the models’ comparative performance.
we also conduct a comprehensive analysis of various network parameters, Floating Point
Operations per Second (FLOPs), training time, and inferencing time. The statistical results
are presented in Table 3.
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Figure 6. The training loss curves of our Co-ERA-Net. (a) is the infection loss, (b) is the lung region
loss and (c) is the total loss which is the combination of lung region loss and infection loss.

4.3. Evaluation Metrics: Assessing Infection Segmentation Performance

To evaluate the performance of our experiments in infection segmentation, we used
four metrics: Intersection over Union(IoU), Dice Coefficient, Mean Absolute Error, and
Saliency F-Score. The Intersection over Union and Dice Coefficient are widely used metrics
in medical image segmentation, measuring the similarity between the generated infection
mask and the ground-truth infection mask. The Mean Absolute Error is a pixel-level
metric that quantifies the accuracy of infection segmentation. The Saliency F-Score is
a metric that combines precision and recall to evaluate the accuracy of binary infection
segmentation. We report both Maximum and Mean types of Saliency F-Score to provide
a comprehensive assessment.
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Table 3. Network Parameters, Flops, training time for convergence and inference time of the State-of-
the-art models and our model in the experiments.

Network Network
Parameters FLOPs Training

Time (Hours)
Inference Time
(Seconds)

UNet Family
Attention UNet [21] 9.16 M 34.86 G 17.81 0.1628
UNet [22] 39.39 M 80.45 G 22.99 0.2118
UNet++ [23] 47.17 M 199.69 G 43.11 0.5949
UNet+++ [24] 26.97 M 199.67 G 44.12 0.7044
General Segmentation Network in Natural
FCN [25] 18.64 M 25.51 G 9.54 0.0880
Deeplab V3 [26] 59.33 M 22.18 G 8.74 0.0798
PSPNet [27] 49.06 M 48.56 G 16.64 0.1528
SegFormer [28] 7.71 M 20.15 G 20.48 0.1863
Medical Segmentation Network
Double UNet [29] 97.58 M 211.78 G 35.94 0.4263
CE-Net [30] 29.00 M 8.89 G 5.51 0.0503
CPFNet [31] 30.65 M 8.03 G 7.85 0.0727
Medical-Transformer [32] 1.37 M 2.40 G 56.50 0.7166
State-of-the-Art Infection Segmentation Network
Inf-Net [7] 31.07 M 7.36 G 9.40 0.0853
COPLE-Net [9] 10.52 M 11.18 G 6.80 0.0626
MiniSeg [10] 0.08 M 0.12 G 3.00 0.0274
Deep Collaborative Supervision Network [11] 29.18 M 48.94 G 2.82 0.0261
AnamNet [12] 4.63 M 25.402 G 2.54 0.0232
BSNet [13] 43.98 M 45.75 G 1.69 0.0156
Co-ERA-Net (Ours) 70.37 M 20.49 G 1.35 0.0125

4.4. Quantitative Evaluation: Comparing with State-of-the-Art Models

We evaluated our proposed Co-ERA-Net against a variety of state-of-the-art models,
including U-Net family, general segmentation networks, medical segmentation networks,
and other infection segmentation networks, specifically for the infection segmentation of
CT datasets. The comparative results are provided in Table 4. Our Co-ERA-Net surpassed
all the other models across every evaluation metric, displaying a consistently robust perfor-
mance. This improvement is primarily due to the integration of the Co-supervision scheme,
lung region information, and our Enhanced Region Attention Module. The lung region
information directs the network to focus on the most effective areas for infection segmenta-
tion. In addition, our Enhanced Region Attention Module further refines the lung region
information, enabling accurate identification of regions with high infection probability.

We also extended our evaluation to the Chest X-ray dataset. We conducted a similar
comparative experiment using the same models as those in the CT datasets. Table 5 presents
the results of infection segmentation from the test set of the Chest X-ray dataset, and Table 6
shows the results from its validation set. The Co-ERA-Net maintained superior performance
compared to other models across all evaluation metrics for the Chest X-ray datasets. This
further emphasizes the effectiveness of the lung region information and the Enhanced Region
Attention Module in improving infection segmentation performance beyond CT images.
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Table 4. Performance comparisons between different networks in lung infection segmentation from
CT images. The red text represents the best results.

Network IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

UNet Family
Attention UNet [21] 0.5598 0.1794 0.7456 0.1628 0.0071 0.0076 0.7653 0.7059 0.1640
UNet [22] 0.5634 0.1712 0.7401 0.1608 0.0074 0.0080 0.7601 0.7023 0.1644
UNet++ [23] 0.5455 0.1744 0.7334 0.1663 0.0074 0.0072 0.7578 0.6837 0.1692
UNet+++ [24] 0.5612 0.1755 0.7407 0.1638 0.0072 0.0073 0.7712 0.6939 0.1592
General Segmentation Network in Natural
FCN [25] 0.5457 0.1740 0.7358 0.1582 0.0075 0.0076 0.7581 0.6832 0.1532
Deeplab V3 [26] 0.5425 0.1726 0.7364 0.1668 0.0073 0.0076 0.7688 0.6903 0.1680
PSPNet [27] 0.5418 0.1711 0.7330 0.1650 0.0076 0.0078 0.7488 0.6858 0.1720
SegFormer [28] 0.5568 0.1739 0.7380 0.1636 0.0074 0.0074 0.7447 0.6860 0.1711
Medical Segmentation Network
Double UNet [29] 0.5464 0.1839 0.7200 0.1842 0.0075 0.0070 0.7137 0.6655 0.1915
CE-Net [30] 0.5581 0.1769 0.7379 0.1665 0.0072 0.0072 0.7422 0.6870 0.1737
CPFNet [31] 0.5656 0.1743 0.7420 0.1655 0.0071 0.0073 0.7658 0.6951 0.1606
Medical-Transformer [32] 0.5807 0.1702 0.7348 0.1529 0.0076 0.0081 0.7613 0.7030 0.1719
State-of-the-Art Infection Segmentation Network
Inf-Net [7] 0.5201 0.1754 0.7244 0.1740 0.0079 0.0078 0.7339 0.6662 0.1790
COPLE-Net [9] 0.5630 0.1636 0.7522 0.1554 0.0067 0.0066 0.7724 0.7077 0.1545
MiniSeg [10] 0.5240 0.1919 0.6967 0.1699 0.0080 0.0079 0.7568 0.6862 0.1570
Deep Collaborative Supervision Network [11] 0.5992 0.1809 0.6759 0.1546 0.0079 0.0080 0.7725 0.6872 0.1545
AnamNet [12] 0.5668 0.1723 0.7506 0.1605 0.0068 0.0069 0.7706 0.7082 0.1738
BSNet [13] 0.5391 0.1726 0.7302 0.1681 0.0076 0.0077 0.7497 0.6766 0.1792
Co-ERA-Net (Ours) 0.6553 0.1517 0.7945 0.1435 0.0050 0.0054 0.8373 0.7984 0.1325

Table 5. Performance comparisons between different networks in lung infection segmentation from
the test set of chest X-ray images. The red text represents the best results.

Network IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

UNet Family
Attention UNet [21] 0.6192 0.2307 0.7453 0.2309 0.0499 0.0341 0.7737 0.7299 0.2193
UNet [22] 0.5758 0.2183 0.7004 0.1989 0.0588 0.0364 0.7424 0.7078 0.2157
UNet++ [23] 0.6276 0.2229 0.7377 0.1997 0.0489 0.0344 0.7684 0.7437 0.2115
UNet+++ [24] 0.6299 0.2235 0.7377 0.1932 0.0496 0.0333 0.7738 0.7419 0.2092
General Segmentation Network in Natural
FCN [25] 0.6515 0.2328 0.7541 0.2082 0.0461 0.0368 0.7851 0.7611 0.2181
Deeplab V3 [26] 0.6144 0.2335 0.7260 0.2057 0.0529 0.0362 0.7719 0.7248 0.2230
PSPNet [27] 0.6338 0.2294 0.7440 0.1988 0.0487 0.0370 0.7902 0.7453 0.2136
SegFormer [28] 0.5962 0.2243 0.7046 0.2033 0.0586 0.0430 0.7621 0.7216 0.2167
Medical Segmentation Network
Double UNet [29] 0.6581 0.2352 0.7673 0.2093 0.0439 0.0350 0.7771 0.7571 0.2246
CE-Net [30] 0.6538 0.2372 0.7566 0.2111 0.0455 0.0352 0.7743 0.7526 0.2245
CPFNet [31] 0.6579 0.2398 0.7547 0.2159 0.0424 0.0331 0.7913 0.7617 0.2215
Medical Transformer [32] 0.5828 0.2506 0.6994 0.2377 0.0565 0.0431 0.7049 0.7021 0.2426
State-of-the-Art Infection Segmentation Network
Inf-Net [7] 0.6451 0.2365 0.7516 0.2399 0.0418 0.0386 0.7942 0.7630 0.2368
COPLE-Net [9] 0.6544 0.2308 0.7628 0.2123 0.0423 0.0354 0.7935 0.7632 0.2148
MiniSeg [10] 0.5841 0.2344 0.7092 0.2231 0.0568 0.0386 0.7592 0.7079 0.2353
Deep Collaborative Supervision Network [11] 0.6329 0.2368 0.6456 0.1984 0.0656 0.0434 0.7809 0.6692 0.1967
AnamNet [12] 0.6282 0.2311 0.7358 0.2109 0.0495 0.0348 0.7637 0.7386 0.2230
BSNet [13] 0.6683 0.2370 0.7652 0.2163 0.0421 0.0363 0.7879 0.7680 0.2219
Co-ERA-Net (Ours) 0.6736 0.2317 0.7711 0.2094 0.0411 0.0336 0.7989 0.7683 0.2144
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Table 6. Performance comparisons between different networks in lung infection segmentation from
the validation set of chest X-ray images. The red text represents the best results.

Network IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

UNet Family
Attention UNet [21] 0.6436 0.2212 0.7687 0.1876 0.0457 0.0334 0.7940 0.7530 0.2040
UNet [22] 0.5948 0.2089 0.7153 0.1863 0.0557 0.0321 0.7583 0.7250 0.2013
UNet++ [23] 0.6499 0.2149 0.7570 0.1852 0.0451 0.0304 0.7863 0.7636 0.1920
UNet+++ [24] 0.6528 0.2099 0.7583 0.1740 0.0472 0.0305 0.7918 0.7617 0.1902
General Segmentation Network in Natural
FCN [25] 0.6665 0.2323 0.7650 0.2108 0.0427 0.0335 0.7910 0.7696 0.2039
Deeplab V3 [26] 0.6234 0.2291 0.7388 0.1937 0.0517 0.0349 0.7817 0.7324 0.2122
PSPNet [27] 0.6549 0.2200 0.7656 0.1859 0.0455 0.0339 0.8027 0.7633 0.1997
SegFormer [28] 0.6160 0.2205 0.7200 0.2020 0.0547 0.0390 0.7706 0.7341 0.2128
Medical Segmentation Network
Double UNet [29] 0.6713 0.2276 0.7808 0.2014 0.0416 0.0354 0.7891 0.7686 0.2143
CE-Net [30] 0.6694 0.2281 0.7701 0.2021 0.0425 0.0334 0.7888 0.7652 0.2125
CPFNet [31] 0.6719 0.2352 0.7635 0.2137 0.0406 0.0317 0.8025 0.7755 0.2095
Medical Transformer [32] 0.5925 0.2466 0.7090 0.2303 0.0563 0.0472 0.7128 0.7100 0.2298
State-of-the-Art Infection Segmentation Network
Inf-Net [7] 0.6574 0.2368 0.7595 0.2462 0.0401 0.0301 0.8060 0.7676 0.2400
COPLE-Net [9] 0.6662 0.2233 0.7711 0.2066 0.0404 0.0294 0.8015 0.7723 0.1902
MiniSeg [10] 0.5960 0.2226 0.7195 0.2032 0.0554 0.0369 0.7712 0.7197 0.2154
Deep Collaborative Supervision Network [11] 0.6472 0.2389 0.7162 0.2238 0.0501 0.0348 0.7903 0.7439 0.2018
AnamNet [12] 0.6420 0.2230 0.7484 0.1995 0.0475 0.0319 0.7760 0.7511 0.2093
BSNet [13] 0.6710 0.2304 0.7779 0.2073 0.0404 0.0277 0.8050 0.7602 0.1868
Co-ERA-Net (Ours) 0.6893 0.2329 0.7823 0.2170 0.0389 0.0308 0.8085 0.7756 0.2186

4.5. Qualitative Evaluation: Visualizing Prediction Results

Our proposed network demonstrates superior infection segmentation in CT and Chest
X-ray images, as depicted in Figures 7 and 8, outperforming other baseline networks.
Notably, our network effectively avoids mis-segmenting infection regions and closely
aligns with ground-truth masks.

Figure 7. Visual qualitative comparison of lung infection segmentation result among Attention UNet,
SegFormer, nnUNet, CoupleNet and our proposed method from CT images. (a): Input CT slice;
(b): Attention UNet; (c): SegFormer; (d): CPFNet; (e): CoupleNet; (f): Our Co-ERA-Net; (g): The
corresponding ground truth (GT). Red boxes highlight the wrong segmentation.
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Figure 8. Visual qualitative comparison of lung infection segmentation result among Attention UNet,
SegFormer, nnUNet, CoupleNet and our proposed method from X-ray images. (a): Input X-ray
slice; (b): Attention UNet; (c): SegFormer; (d): CPFNet; (e): BSNet; (f): Our Co-ERA-Net; (g): The
corresponding ground truth (GT). Red boxes highlight the wrong segmentation.

This superior performance is due to the integration of lung region information and
the Enhanced Region Attention Module. These factors focus the network on relevant areas
and refine segmentation by emphasizing high-probability regions, leading to significant
improvements in infection segmentation.

Despite challenges in Chest X-ray images, such as noise and interference, our net-
work maintains precision. It achieves accurate segmentation by effectively identifying
infected areas and refining segmentation through larger receptive fields. As a result, our
network achieves precise infection segmentation in Chest X-ray images, outperforming
other baseline networks.

4.6. Ablation Study: Examining Key Components

This section presents an ablation study assessing the contributions of three critical
elements in our proposed network: lung region information, enhanced region attention,
and a custom hybrid loss function with multi-scale supervision.

Firstly, we analyzed the impact of integrating lung region information on infection
segmentation accuracy in chest radiology images. A comparison of two baselines, one with
and one without lung region information, showed a considerable accuracy improvement with
the inclusion of lung region information, as shown in Table 7 for CT images and Tables 8 and 9
for Chest X-ray images. Figure 9 (CT images) and Figure 10 (Chest X-ray images) visually
reinforce these benefits, highlighting reduced redundant infection segmentation when lung
region information is incorporated.

Next, we introduced the Enhanced Region Attention Module to address the limitations
of lung region information alone. By comparing two models— one with lung region infor-
mation and the other with both lung region information and enhanced region attention—
we identified a significant performance boost with the addition of the Enhanced Region At-
tention Module (Table 7 for CT images and Tables 8 and 9 for Chest X-ray images). Figure 9
(CT images) and Figure 10 (Chest X-ray images) also demonstrate that solely using lung
region information can lead to mis-segmentation, whereas the Enhanced Region Attention
Module effectively employs lung region information to pinpoint infection regions.
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We also conducted a comprehensive ablation study to compare our proposed En-
hanced Region Attention Module with several other attention mechanisms in the field
of deep learning. These attention mechanisms fall into two categories: those integrated
with the convolution block, such as the Convolution Block Attention Module [19], Squeeze-
Excitation Attention [33], and Triplet Attention [34], and those working independently,
including Pyramid Attention [35], Parallel Reverse Attention [36], and Multi-scale Self-
Guided Attention [37]. To assess their performance, we conducted experiments on both CT
images (Table 7) and Chest X-ray images (Tables 8 and 9). The results demonstrates that
our proposed Enhanced Region Attention outperforms the other attention mechanisms.
Notably, visual inspection of the segmentation results using our attention module (Figure 11
for CT images and Figure 12 for Chest X-ray images) reveals its remarkable ability to avoid
mis-segmentation within lung regions, leading to highly accurate segmentation outcomes.
The superiority of our Enhanced Region Attention can be attributed to its remarkable
capacity to emphasize lung regions and effectively highlight areas with a high probability
of infection. Unlike other attention mechanisms that rely on indirect information, such as
channel/spatial attention utilization in CBAM and Triplet Attention Mechanism, or reverse
attention in Parallel Reverse Attention, our Enhanced Region Attention takes a more direct
path to identify infection regions, resulting in significantly higher efficiency. Furthermore,
compared to attention mechanisms with similar structures, such as multi-scale supervi-
sion and pyramid attention, our Enhanced Region Attention benefits from its ability to
focus on specific lung region information, further enhancing the efficiency of these mecha-
nisms. While it’s worth mentioning that our proposed Enhanced Region Attention requires
ground-truth lung region masks during the training process, unlike some other attention
mechanisms, it demonstrates a stronger capability to utilize information and achieves
higher accuracy in COVID-19 infection segmentation.

Finally, we evaluated the contribution of the custom hybrid loss function in enhancing
infection mask quality, compared to the commonly used Binary Cross-Entropy Loss func-
tion. We observed superior results when combining the custom hybrid loss function with
multi-scale supervision, as demonstrated in Table 7 for CT images and Tables 8 and 9 for
Chest X-ray images. Figure 9 (CT images) and Figure 10 (Chest X-ray images) also confirm
that the custom hybrid loss function and multi-scale supervision can generate more precise
regions of infection and clearer boundaries.

In short, our ablation study accentuates the significant roles of lung region information,
enhanced region attention, and the custom hybrid loss with multi-scale supervision in
augmenting infection segmentation accuracy in our proposed network.

Table 7. Ablation experiments in the lung infection segmentation from CT images. The red text
represents the best results .

Network Lung Region Enhanced Region Attention IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Baseline 0.5094 0.1686 0.6521 0.1815 0.0099 0.0117 0.6866 0.6500 0.1796
Baseline X 0.5512 0.1783 0.7262 0.1751 0.0077 0.0080 0.7485 0.6862 0.7485
Co-ERA-Net X X 0.6553 0.1517 0.7945 0.1435 0.0050 0.0054 0.8373 0.7984 0.1325

Network Multi-Scale BCE Loss Hybird Loss IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Co-ERA-Net X 0.5096 0.1728 0.7211 0.1696 0.0078 0.0077 0.7589 0.6732 0.1797
Co-ERA-Net X 0.5665 0.1729 0.7471 0.1622 0.0071 0.0073 0.7650 0.7020 0.1748
Co-ERA-Net X X 0.6011 0.1794 0.7481 0.1723 0.0073 0.0086 0.7708 0.7196 0.1794
Co-ERA-Net X X 0.6553 0.1517 0.7945 0.1435 0.0050 0.0054 0.8373 0.7984 0.1325

Network Lung Region Attention Type Work Type IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Baseline X Convolution Block Attention Module [19] With Blocks 0.5550 0.1745 0.7401 0.1673 0.0070 0.0070 0.7643 0.6959 0.1699
Baseline X Squeeze-Excitation Attention [33] With Blocks 0.5615 0.1765 0.7400 0.1670 0.0070 0.0070 0.7615 0.6974 0.1708
Baseline X Triplet Attention [34] With Blocks 0.5618 0.1768 0.7417 0.1651 0.0070 0.0069 0.7641 0.7004 0.1697
Baseline X Pyramid Attention [35] Independent 0.4768 0.1588 0.7045 0.1645 0.0085 0.0086 0.7429 0.6556 0.1653
Baseline X Parallel Reverse Attention [36] Independent 0.4901 0.1681 0.7178 0.1682 0.0082 0.0082 0.7547 0.6638 0.1664
Baseline X Multi-scale Self-Guided Attention [37] Independent 0.5583 0.1788 0.7395 0.1668 0.0069 0.0072 0.7749 0.7097 0.1617
Co-ERA-Net X Enhanced Region Attention Independent 0.6553 0.1517 0.7945 0.1435 0.0050 0.0054 0.8373 0.7984 0.1325
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Table 8. Ablation experiments in the lung infection segmentation from the test set of Chest X-ray
images. The red text represents the best results .

Network Lung Region Enhanced Region Attention IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Baseline 0.6446 0.2431 0.7488 0.2267 0.0428 0.0358 0.7833 0.7594 0.2297
Baseline X 0.6640 0.2417 0.7660 0.2095 0.0412 0.0336 0.7890 0.7643 0.2143
Co-ERA-Net X X 0.6736 0.2317 0.7711 0.2094 0.0411 0.0336 0.7989 0.7683 0.2144

Network Multi-Scale BCE Loss Hybird Loss IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Co-ERA-Net X 0.6442 0.2317 0.7519 0.2045 0.0440 0.0362 0.7941 0.7532 0.2149
Co-ERA-Net X 0.6680 0.2360 0.7676 0.2119 0.0413 0.0375 0.7973 0.7590 0.2078
Co-ERA-Net X X 0.6695 0.2330 0.7661 0.2034 0.0415 0.0353 0.7952 0.7514 0.2115
Co-ERA-Net X X 0.6736 0.2317 0.7711 0.2094 0.0411 0.0336 0.7989 0.7683 0.2144

Network Lung Region Attention Type Work Type IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Baseline X Convolution Block Attention Module [19] With Blocks 0.6479 0.2512 0.7431 0.2366 0.0434 0.0383 0.7905 0.7568 0.2135
Baseline X Squeeze-Excitation Attention [33] With Blocks 0.6551 0.2450 0.7548 0.2212 0.0436 0.0382 0.7910 0.7629 0.2155
Baseline X Triplet Attention [34] With Blocks 0.6570 0.2414 0.7564 0.2160 0.0432 0.0360 0.7911 0.7604 0.2083
Baseline X Pyramid Attention [35] Independent 0.6097 0.2276 0.7355 0.2178 0.0488 0.0345 0.7848 0.7344 0.2045
Baseline X Parallel Reverse Attention [36] Independent 0.6349 0.2255 0.7343 0.2137 0.0461 0.0371 0.7914 0.7640 0.1882
Baseline X Multi-scale Self-Guided Attention [37] Independent 0.6193 0.2208 0.7370 0.2114 0.0483 0.0377 0.7918 0.7483 0.1939
Co-ERA-Net X Enhanced Region Attention Independent 0.6736 0.2317 0.7711 0.2094 0.0411 0.0336 0.7989 0.7683 0.2144

Table 9. Ablation experiments in the lung infection segmentation from the validation set of Chest
X-ray images. The red text represents the best results .

Network Lung Region Enhanced Region Attention IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Baseline 0.6721 0.2417 0.7566 0.2265 0.0414 0.0302 0.7955 0.7713 0.2307
Baseline X 0.6742 0.2450 0.7657 0.2283 0.0398 0.0316 0.8048 0.7717 0.2275
Co-ERA-Net X X 0.6893 0.2329 0.7823 0.2170 0.0389 0.0308 0.8085 0.7756 0.2186

Network Multi-Scale BCE Loss Hybird Loss IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Co-ERA-Net X 0.6305 0.2249 0.7509 0.2121 0.0433 0.0324 0.7865 0.7594 0.2092
Co-ERA-Net X 0.6843 0.2422 0.7761 0.2241 0.0398 0.0306 0.7991 0.7680 0.2246
Co-ERA-Net X X 0.6773 0.2307 0.7719 0.2097 0.0392 0.0291 0.7917 0.7654 0.2117
Co-ERA-Net X X 0.6893 0.2329 0.7823 0.2170 0.0389 0.0308 0.8085 0.7756 0.2186

Network Lung Region Attention Type Work Type IoU↑ Dice↑ MAE ↓ F-Score↑
Mean STD Mean STD Mean STD Max Mean STD

Baseline X Convolution Block Attention Module [19] With Blocks 0.6711 0.2459 0.7603 0.2308 0.0405 0.0342 0.7944 0.7606 0.2048
Baseline X Squeeze-Excitation Attention [33] With Blocks 0.6710 0.2394 0.7666 0.2156 0.0405 0.0328 0.7925 0.7650 0.2040
Baseline X Triplet Attention [34] With Blocks 0.6767 0.2354 0.7729 0.2151 0.0408 0.0347 0.7997 0.7674 0.1990
Baseline X Pyramid Attention [35] Independent 0.6272 0.2178 0.7521 0.2042 0.0457 0.0310 0.7903 0.7511 0.1830
Baseline X Parallel Reverse Attention [36] Independent 0.6432 0.2173 0.7435 0.2155 0.0445 0.0318 0.8004 0.7685 0.1795
Baseline X Multi-scale Self-Guided Attention [37] Independent 0.6222 0.2268 0.7377 0.2238 0.0467 0.0356 0.7872 0.7463 0.2013
Co-ERA-Net X Enhanced Region Attention Independent 0.6893 0.2329 0.7823 0.2170 0.0389 0.0308 0.8085 0.7756 0.2186
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Figure 9. Visual comparison of lung infection segmentation result from CT images in Ablation Study.
(a): Input CT slice; (b): Co-ERA-Net without lung region information and enhanced region attention;
(c): Co-ERA-Net without enhanced region attention; (d): Co-ERA-Net trained by single-scale Binary
Cross-Entropy Loss; (e): Co-ERA-Net trained by single-scale proposed hybrid loss; (f): Co-ERA-Net
trained by multi-scale Binary Cross-Entropy Loss; (g): Co-ERA-Net trained by multi-scale proposed
hybrid loss; (h): the corresponding ground truth (GT). Red boxes highlight the wrong segmentation.

Figure 10. Visual comparison of lung infection segmentation result from chest X-ray images in
Ablation Study. (a): Input X-ray slice; (b): Co-ERA-Net without lung region information and
enhanced region attention; (c): Co-ERA-Net without enhanced region attention; (d): Co-ERA-Net
trained by single-scale Binary Cross-Entropy Loss; (e): Co-ERA-Net trained by single-scale proposed
hybrid loss; (f): Co-ERA-Net trained by multi-scale Binary Cross-Entropy Loss; (g): Co-ERA-Net
trained by multi-scale proposed hybrid loss; (h): the corresponding ground truth (GT). Red boxes
highlight the wrong segmentation.
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Figure 11. Visual comparison of lung infection segmentation results with other attention mechanisms
from CT images in Ablation Study. (a): Input CT slice; (b): Convolution Block Attention Module;
(c): Squeeze-Excitation Attention; (d): Triplet Attention; (e): Pyramid Attention; (f): Parallel Reverse
Attention; (g): Multi-scale Self-Guided Attention; (h): Co-ERA-Net with Enhanced Region Attention;
(i): the corresponding ground truth (GT). Red boxes highlight the wrong segmentation.

Figure 12. Visual comparison of lung infection segmentation results with other attention mechanisms
from chest X-ray images in Ablation Study. (a): Input CT slice; (b): Convolution Block Attention
Module; (c): Squeeze-Excitation Attention; (d): Triplet Attention; (e): Pyramid Attention; (f): Parallel
Reverse Attention; (g): Multi-scale Self-Guided Attention; (h): Co-ERA-Net with Enhanced Region
Attention; (i): the corresponding ground truth (GT). Red boxes highlight the wrong segmentation .

4.7. Evaluating Model Performance on Diverse Volumes

The application of deep learning models to real-life volumes, primarily containing
infection-free slices, presents challenges due to potential mis-segmentations and reduced
model robustness. This section assesses the ability of our proposed model to prevent
mis-segmentation in infection-free slices.

Our model was first tested on both infected (373 slices) and non-infected (456 slices) CT
slices, despite having been trained only on infected slices. Slices without infection severity
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information, i.e., with blank infection masks, were considered infection-free. We defined
true positives, true negatives, false positives, and false negatives as follows: a true positive
is when the model correctly segments infection in infected slices; a false negative occurs
when the model misses segmentation in infected slices; a false positive happens when
the model erroneously segments infection in infection-free slices; a true negative is when
the model rightly excludes infection in infection-free slices. Based on these definitions,
we calculated the confusion matrix and performance metrics. Similar tests were applied
to both infected (1049 slices) and non-infected (1049 slices) Chest X-ray slices to further
evaluate our model’s effectiveness.

Figure 13 presents the confusion matrix, and Table 10 reveals the results of discrim-
inating between infected and infection-free CT and Chest X-ray slices. Assisted by lung
region information and enhanced region attention, our model effectively detected infection
in CT and Chest X-ray slices, even when trained only on infected slices, underscoring the
real-world applicability and robustness of our proposed Co-ERA-Net for volumes com-
prising both infected and non-infected slices. Figure 14 displays continuous predictions
for entire CT volumes, demonstrating our network’s proficiency in handling infection-free
slices while maintaining stable predictions across the volumes. Due to the unavailability of
X-ray volumes in the Chest X-ray dataset, we couldn’t provide the continuous prediction
for Chest X-ray volumes.

Figure 13. The Confusion Matrix of slices with and without infection for CT and X-ray images in the
evaluation of our model performance on diverse volumes. (a) is the confusion matrix for CT, (b) is the
confusion matrix for X-ray, (c) is the normalized confusion matrix for CT and (d) is the normalized
confusion matrix for X-ray.
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Figure 14. The montage of CT volume slices showing the segmentation results generated by our
model. The infection region is highlighted in red, and the lung region is highlighted in blue for clarity.
The situations containing both lung region and infection (2), only lung region (3), and no lung region
and infection region (1,4) are enlarged and compared with ground truth (GT).

Table 10. The evaluation metrics of slices with and without infection in our model based on the
confusion matrix in Figure 13. We set the negative prediction when the model outputs a blank mask
while the positive prediction when the model outputs the mask with infection.

(a) CT

Value

Accuracy 0.9420
Sensitivity 0.9383
Specificity 0.9451
precision 0.9333
F1 score 0.9358
Matthews correlation coefficient 0.8864

(b) X-ray

Value

Accuracy 0.9632
Sensitivity 0.9609
Specificity 0.9656
precision 0.9655
F1 score 0.9632
Matthews correlation coefficient 0.9279

5. Conclusions

This paper presents the Co-ERA-Net, a novel segmentation network leveraging lung
region information for enhanced COVID-19 chest infection segmentation in CT and X-
ray images. It highlights the crucial role of lung region information in accurate lesion
segmentation, a challenge encountered in the realm of COVID-19 image analysis. Our
proposed scheme outperforms existing methodologies, affirming its efficacy and utility.
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Our proposed methodology stands out for its novelty in deep learning, leveraging
lung region information in the context of COVID-19 imaging. Firstly, we introduce the
Co-supervision scheme, which assimilates lung region information at multiple scales into
the network’s decoding stage, effectively guiding feature extraction and enhancing overall
performance. Secondly, the use of enhanced region attention allows us to refine lung region
information, resulting in significantly improved segmentation accuracy. Lastly, our network
demonstrates remarkable robustness in avoiding mis-segmentation in infection-free slices,
showcasing its real-world applicability and reliability. In conclusion, the Co-ERA-Net, with
its high efficiency in segmenting infections and its ability to avoid mis-segmentation in
infection-free slices, significantly improves the efficiency of daily radiology practice in
computer-aided diagnosis. This advancement enables radiologists to focus their attention
on slices with infections and prioritize their efforts for patients requiring urgent care,
ultimately streamlining and enhancing the diagnostic process for better patient outcomes.

Although our Co-ERA-Net is highly efficient in segmenting the infection inside the
COVID-19 radiology images, it still could not avoid having two limitations. First of all, the
network’s high efficiency in segmenting infection within COVID-19 radiology images is
commendable, but the inability to provide the severity estimation is a notable limitation.
Addressing this challenge would require collecting more extensive COVID-19 data, and
carefully classifying detailed infection categories. Furthermore, the observation of sub-
optimal learning performance when applying the model to X-ray scans compared to CT
scans raises an important consideration for future work. The discrepancy might arise
from the network being based on CT images while X-ray scans correspond to CT scans
in their reduced dimensional forms [38]. To overcome this issue, the future direction
of designing a network to transform X-ray images into CT-like representations before
applying the previously trained CT infection segmentation network demonstrates a possible
solution toward making the framework more universal and effective across different
imaging modalities.
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