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Abstract: Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI)
can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain
networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment
(ESRDaMCI) will be sought from these properties. The current multimodal classification methods often
neglect to collect high-order relationships of brain regions and remove noise from the feature matrix. A
multimodal classification framework is proposed to address this issue using hypergraph latent relation
(HLR). A brain functional network with hypergraph structural information is constructed by fMRI
data. The feature matrix is obtained through graph theory (GT). The cerebral blood flow (CBF) from
ASL is selected as the second modal feature matrix. Then, the adaptive similarity matrix is constructed
by learning the latent relation between feature matrices. Latent relation adaptive similarity learning
(LRAS) is introduced to multi-task feature learning to construct a multimodal feature selection method
based on latent relation (LRMFS). The experimental results show that the best classification accuracy
(ACC) reaches 88.67%, at least 2.84% better than the state-of-the-art methods. The proposed framework
preserves more valuable information between brain regions and reduces noise among feature matrixes.
It provides an essential reference value for ESRDaMCI recognition.

Keywords: end-stage renal disease; mild cognitive impairment; hypergraph; latent relation adaptive
similarity learning; multimodal classification framework

1. Introduction

End-stage renal disease (ESRD) is an end-stage of chronic kidney disease, often ac-
companied by serious symptoms such as renal failure and multi-organ dysfunction [1].
In recent years, the global incidence of ESRD has been increasing yearly, which brings a
heavy economic burden to society and families and great psychological stress to patients [2].
Studies have shown that 30% to 60% of ESRD patients, especially those receiving hemodial-
ysis treatment, develop mild cognitive impairment (MCI) [3]. If left untreated, MCI may
develop into Alzheimer’s disease (AD), affecting ESRD patients’ later treatment [4]. How-
ever, the pathophysiological mechanisms of ESRD associated with MCI (ESRDaMCI) are
not fully understood, so neuroimaging studies of these patients are important for their
treatment.

Currently, neuroimaging techniques have matured, allowing researchers to acquire
various types of medical imaging data easily. Numerous studies have demonstrated that a
more comprehensive understanding of disease mechanisms can be achieved by examining
multimodal data from participants [5,6] in contrast to the information in unimodal data.
For example, Jiao et al. [7] combined positron emission tomography (PET) and structural
magnetic resonance imaging (sMRI) data for feature selection. Li et al. [8] integrated cerebral
blood flow (CBF) from arterial spin labeling (ASL) and blood oxygen level-dependent
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(BOLD) of functional magnetic resonance imaging (fMRI) to replace unimodal data for the
classification of mild cognitive impairment (MCI). Jann et al. [9] proposed a connectivity
framework between CBF-ASL and BOLD-fMRI, which revealed more comprehensive
spatiotemporal and quantitative properties of brain networks through the combination of
fMRI and ASL. The better utilization of multimodal data is a hot topic in current studies.

The most crucial aspect in classifying related diseases, such as MCI or ESRDaMCI, is
selecting disease-relevant features from multimodal data to improve classification perfor-
mance. In machine learning, this objective can be achieved by manipulating the properties
of the multimodal feature matrix, changing the feature assignment weights, and optimiz-
ing feature selection algorithms. On the one hand, Liu et al. [10] constructed the feature
matrix with sparse regularization, thereby reducing the impact of redundant features.
Rehman et al. [11] improved model productivity by means of feature assignment weights.
On the other hand, among numerous feature selection methods, embedded methods are
currently the most widely applied [12]. The multi-task learning is applied for small datasets
related to medical diseases because it better reveals shared features among different tasks
and facilitates data sharing between them, exhibiting good generalization capability [13].
In addition, the feature assignment right is more likely to ignore the correlation between
features than multi-task feature selection, which is not suitable for the classification of
multimodal data, and it does not reduce the feature dimensionality, which can easily affect
the classification results. The multi-task feature selection method is often enhanced by
introducing different regularization terms [14]. For instance, Jie et al. [15] proposed a
learning method that combines manifold regularization and multi-task feature selection.
They embedded a manifold regularization term into the feature selection process by prede-
fined a similarity matrix to realize data sharing. Shao et al. [16] constructed hypergraph
regularization terms for each modality within the feature matrix and incorporated them
into multi-task learning to reflect high-order relations among subjects. In recent research,
Shi et al. [17] introduced adaptive similarity learning, resulting in more accurate similarity
matrices. Song et al. [18] introduced topological manifold terms to construct similarity
matrices with topological relations.

Nevertheless, the aforementioned methods only construct similarity matrices based
on the original feature matrix without considering the presence of noise and outliers in
real-world data. They also overlook the incorporation of high-order prior information from
brain regions when constructing the multimodal feature matrix. Just changing the attributes
of the feature matrix, or optimizing the feature selection algorithm, does not improve the
classification performance better. Improving the classification performance, and finding the
discriminative brain regions of ESRDaMCI, can provide a scientific basis for medical clinical
diagnosis and identification of ESRDaMCI and reduce the time and economic cost. In view
of this, we propose a multimodal classification framework based on hypergraph latent
relation (HLR) for classifying ESRDaMCI and normal subjects. Firstly, a brain functional
network is constructed based on the method of hypergraph manifold, and the feature matrix
of fMRI is extracted by graph theory (GT) [19]. Secondly, CBF from ASL is selected as the
feature matrix for the second modality. Then, latent relation adaptive similarity learning
(LRAS) is embedded into the multi-task feature selection, constructing a multimodal feature
selection method based on latent relation (LRMFS). Finally, the selected features from the
proposed framework are linearly fused into a multicore support vector machine (MKSVM)
for classification. In this study, the hypergraph feature matrix retains high-order features
from the brain function network with hypergraph structural information. It focuses on
the relational information of multiple brain regions rather than pairwise brain region
relationships. LRMFS is applied to uncover the latent relationships within the feature
matrix, resulting in the construction of a robust similarity matrix and the selection of
well-represented features. These two components constitute the HLR-based multimodal
classification framework. Moreover, the framework can also identify discriminative brain
regions affected by ESRDaMCI, providing valuable insights for identifying and diagnosing
MCI-related diseases.



Bioengineering 2023, 10, 958 3 of 17

2. Data and Methods
2.1. HLR-Based Multimodal Classification Framework

Figure 1 shows the HLR-based multimodal classification framework for ESRDaMCI. The
specific steps are as follows. (a) Preprocessing the fMRI data to obtain the time series of all
brain regions of the Automated Anatomical Labeling (AAL) template; (b) Constructing the
hypergraph feature matrix of fMRI by the hypergraph graph theory (HGT); (b-1) Transforming
the Laplacian matrix obtained from hypergraph construction into a hypergraph manifold
regularization term and a sparse regularization term to derive a new brain functional network;
(b-2) Obtaining the feature matrix of all subjects by graph theory; (c) Extracting CBF values
from various brain regions in ASL data with the AAL template to construct a feature matrix;
(d) Inputting the feature matrix of two modalities into the multimodal feature selection model
proposed by the framework; (e) Outputting well-selected feature vectors from both modalities;
(f) Fusing the feature vectors to generate a new feature matrix; (g) Dividing the new feature
matrix into training and testing sets, and performing classification on normal subjects and
ESRDaMCI patients via MKSVM.
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Figure 1. Flowchart of HLR-based multimodal classification framework. Blue arrows represent ASL
modality and green arrows represent fMRI modality.

2.2. Data Preprocessing

We employ the same original dataset as Song et al. [18]. Forty-four patients with
ESRDaMCI from the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical
University were selected as the ESRD group. They include 24 males and 20 females,
aged 49.25 ± 11.15 years. Meanwhile, 44 healthy volunteers who underwent a physical
examination at the same hospital and matched the age and education level of the subjects
in the ESRD group were selected as the Normal Controls (NC) group. They include
13 males and 31 females, aged 46.25 ± 11.39 years.

This study has been approved by the Ethics Committee of this hospital and conformed
to the 2013 revision of the Declaration of Helsinki (www.wma.net/en/30publications/10
policies/b3/index.html), accessed on 5 May 2023. All subjects signed written informed
consent and volunteered to participate in this study. The Montreal Cognitive Assessment
(MoCA) assessed their cognitive functions. This assessment tool is primarily used for
screening and evaluating cognitive impairments, including attention and concentration,
executive functions, memory, language, visuospatial skills, abstract thinking, calculation,
and orientation. It is a convenient and effective tool with a total score of 30 points. Scores
with 26 or more as normal, 18–26 as mild cognitive impairment, 10–17 as moderate cognitive

www.wma.net/en/30publications/10policies/b3/index.html
www.wma.net/en/30publications/10policies/b3/index.html
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impairment, and less than 10 as severe cognitive impairment [20]. The ESRD group has
an average score of 23.87 ± 4.51 points. Specific participant information can be found in
Table 1.

Table 1. Demographic information of subjects.

Gender
(Male/Female)

Age
(
–
x ± s)

Education Years
(
–
x ± s)

MoCA Scores
(
–
x ± s)

ESRD group 24/20 49.25 ± 11.15 9.58 ± 2.72 23.87 ± 4.51
NC group 13/31 46.25 ± 11.39 9.65 ± 2.59 26.63 ± 3.93

All subjects are scanned by a GE Discovery MR 750W 3.0T scanner and are placed on the
magnetic resonance imaging (MRI) equipment. Their heads are immobilized with rubber cork
inside the MRI coil during the scans to avoid artifactual images caused by head movements.
T1-weighted brain structure images are obtained by adopting the 3D brain volume imaging
(3D-BRAVO) sequence. The specific machine parameters are repetition time (TR) = 7.5 ms, echo
time (TE) = 2.5 ms, reversal time = 450 ms, flip angle (FA) = 15◦, layer interval = 1 mm, the
field of view (FOV) = 240 mm × 240 mm, layer thickness = 1 mm, the number of scanning
layers = 154, and the scanning time = 3 min 51 s. fMRI is obtained from the gradient-
echo plane echo imaging (GRE-EPI) sequence. The machine parameters are TR = 2000 ms,
TE = 40 ms, layer thickness = 4 mm, FA = 90◦, FOV = 240 mm× 240 mm, matrix size = 64× 64,
and the scanning time = 8 min. ASL is obtained from the 3D pseudo-continuous arterial spin
labeling (3D-pcASL) sequence. The machine parameters are TR = 5335 ms, TE = 10.7 ms, layer
thickness = 4 mm, post-labeling delay (PLD) = 2525 ms, FOV = 240 mm × 240 mm, layer
thickness = 4 mm, the number of scanning layers = 36, and the scanning time = 3 min 44 s.

The raw fMRI data are preprocessed in the Statistical Parametric Mapping (SPM12)
and the Data Processing Assistant for Resting-State fMRI (DPARSF) on the Matlab 2021a
platform [21]. The preprocessing involves the following steps. (a) Data format conver-
sion: The original sample data in DICOM format are converted to 4D NIFTI format files.
(b) Slice timing correction: The first ten time points are discarded because it takes time for
the examination instrument and the subject to enter a steady state. (c) Image registration:
Head motion correction is performed, and the fMRI images are registered to the Montreal
Neurological Institute (MNI) standard brain space by an EPI template (Bounding box:
[−90, −126, −72; 90, 90, 108], Voxel Size: [3 3 3]). (d) Spatial smoothing: The normalized
fMRI images are spatially smoothed with a Gaussian kernel (FWHM: [5 5 5]). (e) Bandpass
filtering and linear detrending. (f) Time series extraction: It adopts the AAL template to
extract the time series of 90 brain regions [22].

The raw ASL data are preprocessed in the SPM12 and the Resting-State Functional
MRI Data Analysis Toolkit (REST 1.8) toolbox on the Matlab 2021a platform [23]. The
preprocessing involves the following steps. (a) Data format conversion: The original sample
data in DICOM format are converted to 4D NIFTI format files. (b) Image registration: It
performs the registration taking the CBF image as the reference image and the T1 image as
the source image. (c) Image segmentation: The registered T1 structural image is segmented.
(d) Normalization: It normalizes the CBF image in the MNI standard brain space (Bounding
box: [−90, −126, −72; 90, 90, 108], Voxel Size: [3 3 3]). (e) Spatial smoothing: The
normalized wCBF image is spatially smoothed with a Gaussian kernel (FWHM: [5 5 5]).
(f) CBF value extraction: The REST toolbox extracts feature from the smoothed CBF image.
It sets the CBF of 90 brain regions as the features of ASL.

2.3. Hypergraph Feature Matrix

A basic brain functional network is constructed according to Pearson correlation coeffi-
cients. Then, the Laplacian matrix is obtained by constructing the hypergraph, which is
transformed into the hypergraph manifold regularization term. It is introduced into the
basic brain functional network with the sparse regularization term [24] to obtain a brain
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functional network with sparse and hypergraph manifold regularization (SHMR). The
objective function of SHMR is:

min
PW
‖ PW −QB

TQB ‖2
F +λtr

(
PW

TLhPW

)
+ γ ‖ PW ‖ 1 (1)

where QB denotes the time series matrix and PW denotes the coefficient matrix of the brain
function network. Lh is the normalized Laplacian matrix of the hypergraph, λ and γ denote
the hypergraph manifold regularization term parameter and sparse regularization term
parameter, respectively. λ is set as 2−3, and γ is set as 2−4 according to [24].

The brain topological structure is disrupted after the onset of cognitive impairment,
leading to decreased transmission efficiency of individual nodes [25]. Thus, we select nodal
efficiency as the first modal feature. For each participant’s SHMR-based brain functional
network, binary processing is performed by the matrix sparsity as the threshold. The
sparsity is set from 0.01 to 0.35 with a step size of 0.01 [26]. The area under the curve
(AUC) of nodal efficiency is computed for all participants within the range of sparsity
thresholds, resulting in the hypergraph feature matrix. Additionally, we adopt the Z-score
normalization method to standardize and normalize the hypergraph feature matrix. The
Z-score normalization method can eliminate differences between the CBF features and
hypergraph features, facilitating feature weight learning.

2.4. Adaptive Similarity Learning

In the case of single-modal data, we assume a feature matrix X = [x1, x2, · · · , xn] ∈
Rd×n and a label matrix y = [y1, y2, · · · , yn] ∈ R1×n corresponding to the data, where d
represents the feature dimension and n represents the number of features. The similarity
vector s is constructed by calculating the Euclidean distance between different pairs of feature
dimensions. Additionally, it is assumed that the smaller the distance ‖ xi − xj ‖2

2 between
feature vectors xi and xj, the larger the similarity sij. If feature vectors xi and xj belong to
different classes, then sij = 0. The objective function is defined as follows:

min
∀i,si

n

∑
i=1

n

∑
j=1

(
‖ xi − xj ‖2

2 sij + αs2
ij

)
s.t. sT

i = 1, 0 ≤ sij ≤ 1.

sij = 0, if yi 6= yj.

(2)

where si ∈ Rn represents the similarity vector between xi and others and sij represents the
j-th element of si. The objective function of adaptive similarity learning can calculate the
similarity matrix for each subject, taking into account both cases: when a feature vector has
one or more nearest neighbors with the same similarity and when it does not. Generally,
we treat the latter case as a regularization term to avoid trivial solutions from the former
case.

Once the objective function for the unimodal similarity vector is determined, it can
extend the adaptive similarity learning to multimodal learning. We define the number
of modalities as m, and Xm =

[
xm

1 , xm
2 , · · · , xm

n
]

represents the feature matrix of the m-th
modality. For the multimodal data, we solve the following problem to obtain the similarity
matrix S: 

min
S

n

∑
i=1

n

∑
j=1

(
‖ xi

m − xj
m ‖2

2 sij + αs2
ij

)
s.t. sT

i = 1, 0 ≤ sij ≤ 1.

sij = 0, if yi 6= yj.

(3)
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2.5. Multimodal Feature Selection Based on Adaptive Similarity Learning

Multi-task learning involves simultaneously learning multiple related tasks and im-
proving learning efficiency by leveraging the shared data among the tasks [12]. The
adaptive similarity-based multimodal feature selection (ASMFS) method is proposed by
combining adaptive learning and multi-task feature learning, with the objective function
defined as follows:

min
W,S

M

∑
m

N

∑
i
‖ yi −wT

mxm
i ‖2

2 +µ ‖W ‖2,1

+β
N

∑
i

∑
k∈{k|yi=yk}

(
M

∑
m

(
‖ wT

mxi
m −wT

mxk
m ‖2

2 sik + αs2
ik
))

s.t.
n

∑
k

sik = 1 , 0 ≤ sik ≤ 1.

(4)

where W =
[
w1

1, w2
2, · · ·wn

m] ∈ Rd×m is the feature weight matrix, and wm represents
the weight vector of the m-th modality. ‖ W ‖2,1 represents the l2,1 norm of the matrix

W, denoted as ‖ W ‖2,1=
d

∑
i=1
‖ wi ‖2, which allows joint feature selection by combining

the weights of the same features across different modalities. µ, α, β are regularization
parameters that balance the relative weights of the terms in the equation.

2.6. Multimodal Feature Selection Based on Latent Relation

During adaptive similarity learning, real data often contain noise and outliers, which
can affect the accuracy of the similarity matrix. Therefore, it is necessary to learn the latent
relation within the original data, allowing the adaptive similarity learning process to resist
noise and filter out anomalies. Currently, semi-negative matrix factorization (SNMF) can
extract the latent relation in the original data due to its intuitive interpretation based on
parts [27].

We define U =
[
U1, U2, · · ·Um] as the base matrix for modality, which Um represents

the base matrix for the m-th modality. V is the complementary coefficient matrix for
all modalities. η =

[
η1, η2, · · · , ηm] is the coefficient matrix of latent feature vectors for

different modalities, which is calculated adopting the inverse distance weighted strategy.
The objective function for learning the latent relation is expressed as follows:

min
{Um},V

m

∑
m=1

ηm ‖ Xm −UmVT ‖2,1

s.t. ηm = 1
2
√
‖Xm−UmVT‖2,1

, V ≥ 0, VTV = I.
(5)

The coefficient matrix V in Equation (5) can effectively capture the intrinsic features of
the original data. Its orthogonality constraint VTV = I helps reduce the influence of outliers
and noise [28]. V can be considered a robust representation of the original data X, and it
can substitute for X in the adaptive similarity learning process. The objective function of
the LRMFS is:
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min
W,S ,Um ,V

M

∑
m

N

∑
i
‖ yi −wT

mxm
i ‖2

2 +µ ‖W ‖2,1

+β

 N

∑
i

∑
k∈{k|yi=yk}

(
M

∑
m

(
‖ wT

mvi
m −wT

mvk
m ‖2

2 sik + αs2
ik
))

+
m

∑
m=1

ηm ‖ Xm −UmVT ‖2,1


s.t.

n

∑
k

sik = 1 , 0 ≤ sik ≤ 1. V ≥ 0, VTV = I, rank(Ls) = n− c.

(6)

where c is the number of categories and rank(Ls) is the Laplace rank constraint.
This objective function involves constraints such as orthogonality, non-negativity, and

l2,1 norm. The iterative update algorithm efficiently addresses the objective function [29].
Its constraints are separated by introducing auxiliary variables E(m) = Xm −UmVT and
Z = V, and the equivalence is maintained during the update process. Moreover, balancing
parameters ζ and Λm ∈ Rdm×n are introduced, with Λm ∈ Rdm×n serving as the Lagrange
multiplier matrix for the difference between the target variable and auxiliary variable. Each
variable is optimized through iterative updates.

(a) Update U(m):

Update under the constraint of VTV = I, the optimization equation is shown below:

U(m) =

(
X(m) − E(m) +

1
ζ

Λ(m)

)
V (7)

(b) Update V:

With the other variables kept fixed, V is updated, and the optimization equation is
changed to:

min
VTV=I

‖ V−Q ‖2
F (8)

where Q is obtained by Equation (9):

Q =

M

∑
m=1

(
X(m) − E(m) + 1

ζ Λ(m)
)T

U(m) + Z− 1
ζ Λ

m + 1
− 2β

ζ
LsZ (9)

The solution of V is given by
V = OHT (10)

where O and H are the left and right singular values of SVD [30] of Q

(c) Update E(m):

Ensuring that the other variables are fixed, the optimization formula for E(m) is

min
E(m)

ηm

ζ
‖ E(m) ‖2,1 +

1
2
‖ E(m) − P(m) ‖2

F (11)

where P(m) = Xm −UmVT + 1
ζ Λ(m).

(d) Update W:

Inspired by [31], the elements of Equation (6) related to W are weighted and iterated.
When the element wi,: in row W is not zero, define dii = 1

2 ‖ wi,: ‖−1
2 , and obtain the

derivative with respect to ‖W ‖2,1:

∂ ‖W ‖2,1

∂wij
= 2diiwij (12)
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Defining D as the diagonal matrix of the diagonal elements dii after obtaining
Equation (12), we get the indefinite integral of Equation (12). Finally, the derivative formula
for the part of Equation (6) containing W is obtained as follows

min
W

L(W) =
M

∑
m=1

n

∑
i

‖ yi −wT
mxm

i ‖2
2 +µTr

(
WTDW

)
+ β

n

∑
i

∑
k∈{k|yi=yk}

 M

∑
m
‖ wT

mvi
m −wT

mvk
m ‖2

2 sik

 (13)

(e) Update S:

In the same way as updating W, Equation (6) containing S is extracted and then

dik =
M

∑
m
‖ wT

mvi
m −wT

mvk
m ‖2

2 is defined. The new objective function is finally obtained as

follows:  min
si

si +
1

2α d2
i2

s.t. ∑n
k=1sik = 1, 0 ≤ sik ≤ 1.

(14)

Since the above objective function is a convex function, it can be solved by the Karush-
Kuhn-Tucker (KKT) conditions with the Lagrange multiplier method [32]. The final optimal
solution obtained as follows:

s∗ik =
(
− dik

2αi
+ σ

)
+
= max

(
− dik

2αi
+ σ, 0

)
(15)

where σ > 0 is the Lagrange multiplier. The iterative update process of LRMFS is shown in
Algorithm 1.

Algorithm 1 Objective function optimization algorithm

Input: Xm//The feature matrix of the m-th modality;
ym//The label corresponding to the m-th modality subjects;
K//The adaptive similarity neighbors;
µ//The group sparsity regularization parameter;
β//The regularization parameter for adaptive similarity learning.

Output: W//The weight matrix of features.

Initialize S//Constructed by Equation (4);
While not converges
Fix other variables
Update U by Equation (7) with the constraint VTV = I
Then Fix other variables

Compute SVD of Q
Update V by Equation (10)
Then Fix other variables

Compute P
Update E by Equation (11)

Then Fix other variables
Define D
Calculated derivative
Update W by Equation (13)

Then Fix other variables
KKT conditions
Update S by Equation (15)
End while

3. Experiment and Analysis

We select MKSVM as the classifier for data classification [33]. MKSVM performs a
linear fusion of kernel functions based on a support vector machine (SVM). It has excellent
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generalization ability and is particularly suitable for small-sample situations like medical
data classification.

The ten-fold cross-validation [34], which allows us to fully use the experimental data,
is adopted to evaluate the classification performance of each method. Accuracy (ACC),
AUC, specificity (SPE), and sensitivity (SEN) are selected as evaluation metrics for classifi-
cation performance [8]. ACC represents the proportion of correctly classified samples, AUC
describes the size of the area under the curve, and SPE and SEN represent the accuracy of
classifying negative and positive samples, respectively. It conducted experiments to inves-
tigate the impact of different parameters on its classification performance and identified
the optimal parameters after determining the evaluation metrics.

3.1. Parameters Selection

There are a total of one parameter K for the number of neighbors, and two regular-
ization parameters µ and β. Experimentally, the nearest neighbor number K is set to take
the values of 1, 3, 5, 7, and 9. The two regularization parameters µ and β take the values of
{0,5,10,15,20} and {0.1,5,20,60,100}, respectively [17]. We selected an appropriate value for K
and obtained the results shown in Figure 2 by fixing the values of µ and β. Different colors
are chosen for the bar chart to make the results more intuitive and beautiful. In further, all
experiments are performed by a ten-fold cross-validation method.
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In Figure 2, the trend of the bar chart indicates that the overall classification accuracy
increases initially and then decreases with the increase of K. The best accuracy is obtained
when K equals 7. The reason for this increasing and then decreasing trend may be that as
the number of nearest neighbors increases, the local manifold structure of the data becomes
clearer, which helps in selecting discriminative features and improving the accuracy. The
manifold structure starts to become unstable after reaching the peak, leading to a decline in
accuracy.

The value of K is fixed after determining the optimal number of nearest neighbors
as 7. The optimal values of these regularization parameters can be searched by varying
the values of the group sparsity regularization parameter µ and the adaptive similarity
learning regularization parameter β. Finally, this regularization parameter combination can
help the method get the best classification performance. Figure 3 shows the classification
accuracy results for different regularization parameters. As well, we chose different colors
in the figure to make the results more intuitive and beautiful.
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As seen in Figure 3, among different regularization parameter combinations, µ has a
greater impact on the classification accuracy compared to β. When µ is held constant, β(µ)
remains relatively stable. When β is held constant, µ(β) shows a trend of increasing and
then decreasing classification accuracy as its value increases. The reason for this trend may
be that µ affects the sparsity of the matrix W, which determines the number of features. If µ
is too small, some features may be ignored, while if it is too large, redundant features may
be present, both of which can reduce the classification accuracy. The number of nearest
neighbors K is set to 7, µ is set to 20 and β is set to 5.

3.2. Contrast Experiment

In the experiment, nine methods are selected for comparison to validate the ef-
fectiveness of the proposed framework. The baseline methods include MKSVM [33],
MKSVM with Lasso feature selection performed independently on single modality (Lasso-
MKSVM) [35], manifold regularized-based multimodal feature selection (M2TFS) [15],
hypergraph-based multimodal feature selection (HMTFS) [16], ASMFS [17], self-expression
topological manifolds-based multimodal feature selection (SETMFS) [18], multimodal clas-
sification framework based on ordinary features’ latent relation (OLR), unimodal fMRI
and unimodal ASL. The first six methods and unimodal fMRI, along with the proposed
framework, depend on SHMR-based brain functional networks to obtain hypergraph
feature matrices. In contrast, OLR depends on a lower-order brain functional network
constructed solely based on the Pearson correlation to obtain ordinary feature matrices. All
the above-mentioned, including the proposed framework, are evaluated via ten-fold cross-
validation. Furthermore, all methods exploit grid search to obtain the optimal classification
performance results. Table 2 shows the specific classification performance, where the best
classification results are highlighted in bold.

Table 2. Classification performance of different methods.

Method ACC (%) AUC (%) SPE (%) SEN (%)

fMRI 61.04 ± 0.14 59.76 ± 0.18 56.75 ± 0.23 57.35 ± 0.21
ASL 63.18 ± 0.15 67.84 ± 0.18 51.35 ± 0.23 75.00 ± 0.22

MKSVM [33] 73.93 ± 0.13 63.75 ± 0.24 62.07 ± 0.36 82.65 ± 0.14
Lasso-MKSVM [35] 76.17 ± 0.12 76.60 ± 0.17 67.95 ± 0.23 84.55 ± 0.16

M2TFS [15] 67.90 ± 0.11 56.15 ± 0.28 59.78 ± 0.35 85.40 ± 0.18
HMTFS [16] 81.14 ± 0.16 81.63 ± 0.18 77.00 ± 0.22 79.00 ± 0.18
ASMFS [17] 85.08 ± 0.16 82.28 ± 0.21 78.00 ± 0.28 88.50 ± 0.12
SETMFS [18] 85.83 ± 0.10 83.47 ± 0.24 86.31 ± 0.19 84.97 ± 0.23

OLR 84.42 ± 0.09 80.55 ± 0.13 83.50 ± 0.17 90.00 ± 0.17
HLR 88.67 ± 0.08 86.20 ± 0.16 93.50 ± 0.10 86.00 ± 0.17



Bioengineering 2023, 10, 958 11 of 17

The ACC, AUC, SPE, and SEN obtained by the proposed method are 88.67 ± 0.08%,
86.20 ± 0.16%, 93.50 ± 0.10%, and 86.00± 0.17%, respectively. It can be observed in Table 2
that HLR outperforms the other nine methods in all metrics except for SEN in the ESRDaMCI
classification. The classification performance of unimodal fMRI and ASL is completely lower
than that of multimodal classification methods when also using MKSVM. It proves that
multimodal classification methods combined with different brain imaging modalities can
reveal the functions and features of brain networks from different perspectives, and it also
proves that joint fMRI and ASL can better improve classification performance. HMTFS
demonstrates better classification performance compared to the first five methods, indicating
that the hypergraph regularization term can discover high-order relations between features.
ASMFS performs better than HMTFS, suggesting that dynamically capturing the intrinsic
similarity shared by different modalities can select more informative features for classification.
The classification accuracy of SETMFS reached 85.83 ± 0.10%, indicating that adopting a
topology manifold to compute the similarity between data points within the feature matrix
outperforms the traditional use of Euclidean distance as a similarity measure. This approach
fully considers the topological relationships among data points from different modalities,
which is conducive to improving classification performance.

Nonetheless, HLR outperformed SETMFS in terms of classification performance, sug-
gesting that solely considering the topological relationships between different modalities is
not as effective as mining the latent relation among feature matrices to select more useful
feature information. The latent relation matrix, which replaces the original features, is not
affected by outliers and noise, providing strong robustness. The constructed similarity
matrix contains more manifold information compared to ASMFS and SETMFS. Moreover,
HLR performs better classification than OLR. It indicates that the hypergraph features
extracted on SHMR-based brain functional networks can enhance classification accuracy
compared to ordinary features. The reason for the higher SEN values for OLR than HLR
may be that OLR has a higher recognition rate for positive samples. In contrast, HLR has
high-order information and is more sensitive to disease information, resulting in a slight
decrease in the recognition rate of positive samples.

3.3. Discriminative Brain Regions

We conduct experiments to seek the most discriminative brain regions in ESRDaMCI
classification after determining the optimal parameter combination through ten-fold cross-
validation. The weight matrix W is analyzed and sorted, and the top fifteen brain regions
with the highest weights are selected as the discriminative brain regions. The BrainNet
Viewer toolbox is utilized to visually showcase these regions, and the results are shown in
Figure 4. This visualization allows for a more straightforward presentation of the spatial
locations and relations among the selected discriminative brain regions.
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It is found that the selected discriminative brain regions are predominantly located in
the frontal lobe through the analysis of the results. These regions include the left orbital
part of the superior frontal gyrus (ORBsup.L), the right triangular part of the inferior
frontal gyrus (IFGtriang.R), and the left orbital part of the inferior frontal gyrus (ORBinf.L),
among others. The frontal lobe plays a significant role in brain memory, judgment, and
abstract thinking [36]. As a result, these selected brain regions indicate that individuals
with ESRDaMCI have experienced changes in functions such as memory and judgment
compared to healthy individuals. In addition, the chosen discriminative brain regions
include the right hippocampus (HIP.R), right caudate nucleus (CAU.R), left lingual gyrus
(LING.L), and right lingual gyrus (LING.R), which play essential roles in human memory
and spatial localization abilities [37]. The left thalamus (THA.L) plays a crucial role in
sensory reception functions [38], while the right precuneus (PCUN.R) and right cuneus
(CUN.R) are associated with various high-order cognitive functions [39]. These findings are
consistent with previous pathological studies and reports on neuroimaging biomarkers of
ESRDaMCI [40,41]. They validate our results from the perspective of overall brain function,
revealing the discriminative brain regions underlying ESRDaMCI and providing clinical
significance for diagnostic purposes.

3.4. Data Visualization and Analysis

This section visualizes the ASL and fMRI data images, as shown in Figure 5.
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In this study, fMRI is processed as the first modal data and ASL as the second modal
data. The combination of these two modal data can better collect feature information
inspired by [8,9]. First, different modes provide different types of information. fMRI shows
the temporal and spatial distribution of brain activity, ASL provides information on blood
flow in brain regions, and both modes provide more comprehensive information. Next,
fMRI can be affected by noise, while ASL provides blood flow information that reduces
potential errors. Finally, the combination of fMRI and ASL can better observe the changes in
brain regions, which is convenient for finding the discernible brain regions of ESRDaMCI.

4. Discussion

In recent years, there has been increasing attention from researchers on MCI-related
diseases [42–45], including ESRDaMCI, which has gained significant importance. However,
the underlying pathological mechanisms of the disease remain unclear, making the classi-
fication and identification of related diseases a challenge. Multimodal learning has been
introduced in the field of medical imaging, allowing researchers to gain a more compre-
hensive understanding of complementary information from different modalities, thereby
aiding in the diagnosis and identification of ESRDaMCI. High-dimensional features have
a significant impact on the final performance of the models in multimodal classification.
Existing multimodal disease classification methods mostly focus on improving feature
selection algorithms, but these methods have varying degrees of limitations and issues.
HMTFS proposed by Shao et al. [16] considers the high-order relations between different
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modalities and gets good classification performance. It neglects whether the feature matrix
accurately reflects the high-order relations between brain regions, thereby limiting its ability
to discover discriminative brain regions for imaging diseases. M2TFS, proposed by Jie
et al. [15], constructs a fixed similarity matrix, failing to reveal the underlying data structure.
ASMFS, proposed by Shi et al. [17], updates the similarity matrix in real-time, but it does
not consider outliers and noise in the features. SETMFS proposed by Song et al. [18] only
focuses on the topological relationships between different modalities without considering
the latent relation among features within each modality and the handling of noise. They
also neglect the quantity and quality of useful information contained in the original feature
matrix.

These methods fail to gather more high-order prior information on brain regions and
exploit the latent relation between feature matrices. To address these issues, HLR constructs
SHMR-based brain functional networks with hypergraph structure information and obtains
the hypergraph feature matrix with GT when constructing the modality feature matrix.
This ensures that the high-order information between brain regions is not overlooked and
allows for better capturing of important features in the data [46]. Furthermore, the LRMFS
is obtained using LRAS on the basis of multi-task feature selection. This method generates
more accurate similarity matrices, ensuring clear features while removing noise from the
feature matrix. In particular, previous similarity matrices are constructed from the original
feature matrix, ignoring the latent feature relation and noise. Whereas in the real world, the
noise, outliers, and special values contained in the data affect the quality of the similarity
matrix. If the original feature matrix is robustly decomposed, it constructs a similarity
matrix unaffected by noise and has high information content. The feature matrix in the
HLR is robustly structured to mine the feature information between the features, control
the noise effects and improve the classification performance.

It is worth noting that this study involves the same original dataset as Song et al.,
yet the classification performance of HLR surpasses that of SETMFS. It indicates that
merely changing the method of computing similarity to capture the topological relationship
between feature matrices does not suffice for better extracting latent relation between them.
HLR uses latent relation matrices instead of feature matrices to construct the similarity
matrix, thereby reducing the impact of noise and outliers on classification performance.
Then the feature matrix of SETMFS focuses only on the relational information of pairs of
brain regions, and HLR retains the high-order relational information of multiple brain
regions, identifying more accurate discriminative brain regions. Overall, HLR changes
the feature matrix attributes so that the feature matrix has high-order information. It also
proposes a new LRMFS method that changes the construction of the similarity matrix to
mine the potential relationships between the data and improve the robustness of the model.

In addition, HLR is a multimodal classification framework based on the combination
of ASL and fMRI. Studies have shown that these two modalities provide a more compre-
hensive understanding of brain information [8,9]. On the one hand, ASL measures CBF
to reflect brain metabolism, while fMRI detects changes in blood oxygen levels to reflect
functional brain activity. Combining them allows for a more comprehensive representation
of neural activity. Additionally, ASL provides temporal data of neural activity through
CBF values, while fMRI provides high spatial resolution brain activity images, enabling the
correspondence between time and space. On the other hand, the blood flow data in ASL
are closely related to brain metabolism and neural activity, while the blood oxygen level
changes in fMRI reflect the demand for neural activity. Therefore, combining these two
modalities can provide more accurate and comprehensive physiological interpretability.

The experimental results demonstrate that HLR outperforms the comparison methods
regarding classification performance and obtains significant results in identifying subtle
changes in ESRDaMCI brain regions. It has some significance for the clinical diagnosis of
ESRDaMCI. Nevertheless, HLR still has certain limitations and requires further improve-
ment. Traditional Euclidean distance calculation in constructing the similarity matrix may
not be suitable for capturing complex network topology structures [47]. In the upcoming
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work, we will integrate topological manifold terms [18] to compute the topological relation-
ship matrix between features, thereby obtaining a more accurate similarity matrix. HLR
involves many parameters and requires multiple parameters tuning to get the optimal
model, and the process is complex, requiring further model refinement. Moreover, deep
learning is also developing rapidly in the medical field [48–51], and HLR can adopt graph
convolutional networks to construct more appropriate dynamic hypergraphs that retain
more a priori information about the brain. Finally, HLR shows good performance on the
binary classification problem of ESRDaMCI, but it can be further extended to the multi-
classification problem, which is able to recognize and classify ESRDaMCI with different
degrees of refinement.

In summary, the HLR-based multimodal classification framework has the following
advantages and contributions. (a) The feature matric retains the priori information between
multiple brain regions rather than between pairs of brain regions. It better reflects the
changes in ESRDaMCI brain regions and contributes to obtaining more accurate discrim-
inative brain regions. (b) A new feature selection method of LRMFS is proposed, which
utilizes the original features to construct coefficient matrices with good noise immunity. It
adapts adaptive learning and latent relation learning to combine in a multi-task feature
selection model to explore the latent relation between features and improve the robustness
of the model. (c) The current status of the development of two types of medical images,
ASL and fMRI, is examined, and the advantages of combining the two modalities, ASL and
fMRI, are explored. (d) The discriminative brain regions of ESRDaMCI are identified by
the selected features. It can provide a research basis for the prevention and treatment of
ESRDaMCI by determining the subtle changes in these brain regions in medical clinical
diagnosis.

5. Conclusions

We propose a HLR-based multimodal classification framework and apply it to the
identification of ESRDaMCI disease. The HLR, unlike previous studies, achieves joint
learning of high-order information in hypergraphs and latent relation feature selection. This
framework constructs a hypergraph feature matrix by the SHMR-based brain functional
network, providing more high-order prior information about brain regions and identifying
discriminative brain regions for ESRDaMCI. It better reflects the pathogenesis of ESRDaMCI
through these discriminative brain regions. Moreover, HLR adopts the latent relation in
the feature matrix to construct a new feature coefficient matrix, which reduces the impact
of noise and enhances robustness. Subsequently, it constructs a similarity matrix that
yields greater information and more discriminative features through adaptive learning,
thereby improving the classification performance for ESRDaMCI. In clinical diagnosis, it
can assist patients in receiving timely treatment, reduce the likelihood of MCI converting to
AD, and provide important imaging markers for ESRDaMCI. Nevertheless, our study has
many limitations. For example, we construct the similarity matrix according to traditional
Euclidean. It tends to neglect the topological relationship between the feature matrices
of different modalities. In fact, the framework involves many parameters, and the model
optimization process is complicated. Deep learning, especially deep neural networks, will
also be applied in recognizing ESRDaMCI to further improve classification performance.
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