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Abstract: SARS-CoV-2 exploits the homotrimer transmembrane Spike glycoproteins (S protein)
during host cell invasion. The Omicron XBB subvariant, delta, and prototype SARS-CoV-2 receptor-
binding domain show similar binding strength to hACE2 (human Angiotensin-Converting En-
zyme 2). Here we utilized multiligand virtual screening to identify small molecule inhibitors
for their efficacy against SARS-CoV-2 virus using QPLD, pseudovirus ACE2 Inhibition -Time Re-
solved Forster/Fluorescence energy transfer (TR-FRET) Assay Screening, and Molecular Dynam-
ics simulations (MDS). Three hundred and fifty thousand compounds were screened against the
macrodomain of the nonstructural protein 3 of SARS-CoV-2. Using TR-FRET Assay, we filtered
out two of 10 compounds that had no reported activity in in vitro screen against Spike S1: ACE2
binding assay. The percentage inhibition at 30 µM was found to be 79% for “Compound F1877-0839”
and 69% for “Compound F0470-0003”. This first of its kind study identified “FILLY” pocket in
macrodomains. Our 200 ns MDS revealed stable binding poses of both leads. They can be used for
further development of preclinical candidates.

Keywords: SARS-CoV-2; pseudovirus ACE2 Inhibition; COVID-19; entry inhibitors; virtual screening;
molecular dynamic simulations; MMGBSA calculations

1. Introduction

The COVID-19 pandemic is a tremendous threat globally with many variants arising,
some of which are variants of concern (VOC), including omicron—B.1.1.529 [1]. Currently,
there are several subvariants designated “Omicron,” including B.1.1.529, BA.1, BA.1.1, BA.2,
BA.3, BA.4, BA.5, BF.7, BQ.1, XBB and more recently, Arcturus variant—XBB.1.16, a subvari-
ant of the recombinant Omicron strain, that has been identified in 34 countries. As of July
2023, 216 countries have reported COVID-19 cases, with more than 768 million confirmed
and approximately 6,952,522 deaths [2] (https://covid19.who.int/, accessed on 25 July
2023). More recently, Monkeypox virus and hemorrhagic fever virus (SHFV), which causes
a lethal disease similar to Ebola virus disease, has also confronted global health emergen-
cies. Although several therapeutic agents have been evaluated for treatment, no efficacious
antiviral agents have yet been shown. The causative agent of COVID-19, SARS-CoV-2,
causes a lower respiratory tract infection that can progress to severe acute respiratory
syndrome and even multiple organ failure [3,4]. SARS-CoV-2 is an enveloped virus from
the family Coronaviridae and genus beta-coronavirus, comprising a large positive-strand
single-strand RNA (+ssRNA) genome (~30 kb), which encodes four structural proteins
(spike, envelope, membrane, and nucleocapsid protein) that are components of the virus
particle, 16 nonstructural proteins (Nsp), mostly with enzymatic activities, and 6 accessory
proteins [5–7]. Receptor binding is a key step of virus invasion [8]. Similar to severe acute
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respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 uses its spike (S) protein
to recognize the host receptor ACE2 [9]. The SARS-CoV-2 utilizes ACE2 as the receptor
for entry into target cells [10]. Therefore, the S protein determines the infectivity of the
virus and its transmissibility in the host [11]. Very recently, Carabelli et al. (2023) [12]
have presented a comprehensive analysis of the immune escape, transmission, and fitness
characteristics of SARS-CoV-2 variants.

Differential Sensitivity of the Natural Variants and Experimental Mutants to a Panel
of Convalescent Serum Samples is shown in Figure S1A. Moreover, the latest COVID-19
research findings reveal that XBB.1 exhibited 30-fold resistance against breakthrough BA.2
infection sera and significant resistance against BA.2 infection sera [13].

SARS-CoV-2 keeps evolving into new variants due to sustained global transmis-
sion [14]. Furthermore, none of the variants and mutants demonstrated significantly
altered sensitivity to all 10 convalescent sera, i.e., the EC50 values were not altered by
more than fourfold, irrespective of an increase or decrease, when compared with the ref-
erence strain (Figure S1B). The point mutation-induced structural flexibility in S-protein,
D614G, shifts the conformation of the S protein towards ACE2- binding fusion competent
state and, hence, enhances SARS-CoV-2 infectivity in human lung cells [15]. SARS-CoV-
2 macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral
adenosine diphosphate–ribosylation signaling. The catalytic mutations render viruses
nonpathogenic, thus, making this enzyme an antiviral target. Taking such high data into
consideration, with less impact of the mutation on RBD, we proceeded with nsp3 studies.
COVID-19 can be controlled by designing small molecule drugs or monoclonal antibodies
based on the process of viral binding to cell receptors. Due to the continuous emergence of
new virus mutants, more drugs need to be screened.

The radial, rooted Phylogenetic Tree (PT) depicting the genomic epidemiology of
2844 SARS-CoV-2 genomes sampled between Dec 2019 and July 2023 is shown in Figure 1A,
and Figure 1B represents the time changes in the number of observations of SARS-CoV-2
throughout the world. Phylodynamics analysis of the viral genome as interpreted in
Nextstrain presents a real-time view into the evolution and spread of a range of vi-
ral pathogens of high public health importance [16]. PT depicting the Genomic epi-
demiology of SARS-CoV-2, represented by clock clade and rooted one, are displayed
in Figure 1C,D respectively.
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Figure 1. Illustration of genomic epidemiology of 2844 SARS-CoV-2 genome: (A) Phylogenetic tree
with Radial Clade depicting the SARS-CoV-2 Variants of Concern (VOC). (B) 3D representation de-
picting time changes in the no of observations of SARS-CoV-2 throughout the world. (C) Phylogenetic
tree depicting the Genomic epidemiology of SARS-CoV-2 represented by clock clade. (D) Rooted
phylogenetic tree depicting the Genomic epidemiology of SARS-CoV-2.
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Nsp3 is the largest multidomain protein (~200 kDa) in coronaviruses and is notable
because of the presence of a key enzyme, papain-like cysteine protease (PLpro), which is
essential for viral replication and a target protein for drug discovery [17–19]). The Nsp3 is
found to be significantly different in two SARS-CoVs in comparison with other Nsps [20,21].
The SARS-CoV-2 nsp3 includes three tandem macrodomains (Mac1, Mac2, and Mac3) [22].
The Genomic distribution of Missense and synonymous mutations of nsp3 is shown in the
variation distribution plot in Figure 2.
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Mac1 is present in all CoVs, unlike Mac2 and Mac3, and early structural and bio-
chemical data demonstrated that it contains a conserved three-layered α/β/α fold and
binds to mono-ADP-ribose (MAR) and other related molecules [23–28]. Macrodomains
specifically recognize these modifications and serve therefore as “reader domains” of this
posttranslational modification [29]. Computational studies have shown that coronaviral
Nsp3 may comprise 10–16 domains [30,31]. SARS-CoV-2 Nsp3 also includes multiple
domains, an N-terminal ubiquitin-like (Ubl) domain followed by a highly variable and con-
served macrodomain that binds to ADP-ribose (ADP) [32]. It has recently been proposed
that de-mono-ADP-ribosylation of STAT1 by ADRP may be linked to the Cytokine Storm
Syndrome that is commonly observed in severe cases of COVID-19 [33]. Computational
studies have been significant in identifying potential inhibitors of SARS-CoV-2 RdRP [34].

SARS-CoV-2 encodes the macrodomain (Mac1) domain within the large nonstruc-
tural protein 3 (Nsp3), which has an ADP-ribosylhydrolase activity conserved in other
coronaviruses. In the context of reciprocal investigations, the binding affinities of CoV
Mac1 proteins with ADP-ribose were observed within the range of 7 to 16 mM. Con-
versely, human Mdo2 exhibited a markedly enhanced binding affinity, surpassing the viral
macrodomains by a minimum of 30-fold, with an affinity of 220 nM (Figure S2A,B) of the
referenced publication [23]. Utilizing a thermal shift assay as an alternative approach to
validate ADP-ribose binding, all four macrodomains subjected to assessment displayed
elevated denaturation temperatures upon the introduction of ADP-ribose, as shown in
Figure S2C.

Therefore, currently SARS-CoV-2 Mac1 enzyme is considered an ideal drug target
and inhibitors developed against them can possess a broad antiviral activity against CoV.
Considering this, the ADP-Ribose-1′’-phosphate-bound closed form of Mac1 domain is
considered for screening with large commercial databases like Spec, Asinex, Life chemicals,
ZINC, etc., which have been widely used for structure-based virtual screening [19,35]. We
applied Extra Precision (XP) docking and Quantum polarized Ligand Docking (QPLD)
providing strong potential lead compounds that perfectly fit inside the binding pocket.



Bioengineering 2023, 10, 961 4 of 20

QPLD algorithm begins with a Glide docking job that generates several geometrically
unique protein–ligand complexes. Glide poses are subjected to charge refinement using
the QM/MM method (Schrodinger release 2021-4). A convolutional deep neural network-
based approach called ‘Docking decoy selection with Voxel-based deep neural nEtwork’—
(DOVE) [36] was used for selecting the protein model for docking (See Supplementary
Information). Trained on two million structures, DOVE considers atomic interaction
types and their energetic contributions as input features applied to the neural network.
Using DOVE, we applied this convolutional neural network model to Crystal structure of
SARS-CoV-2 spike receptor-binding domain with ACE2 (PDB entry 6M0J), SARS-CoV-2
macrodomain in complex with ADP ribose (PDB entry 6WOJ), (Table S1) and considering
correct and acceptable according to CAPRI, a decoy of high probability (>0.5) and very
small probability (<0.01). The term “Deep” in the manuscript title represents the DOVE
method applied in our modelling studies.

Moreover, Laurini et al., performed computational-based simulations of the inter-
action between S-Protein region—receptor-binding domain (S-RBD) of SARS-CoV-2 and
Angiotensin-Converting enzyme 2 (ACE2), highlighting the residues that play an important
role across human receptor/viral protein binding interface [37]. During the course of our
research investigations, a concurrent scientific inquiry conducted by Han et al. (2022)
confirmed that Spike proteins from Omicron, Delta, and the prototype SARS-CoV-2 exhibit
comparable affinity for binding to human angiotensin-converting enzyme 2 (hACE2) [38].
In a recent study, it was elucidated that monoclonal antibodies targeting the receptor
binding motif were ineffective in neutralizing the Omicron variant [39]. Building upon
this noteworthy finding, we proceeded to evaluate the efficacy of various compounds
in inhibiting the interaction between the wild-type Spike protein and ACE2 receptors.
Hence, this manuscript aims to undertake a parallel investigation into potential inhibitors
of the SARS-CoV-2 Spike protein, utilizing an experimental Pseudovirus ACE2 Inhibition
TR-FRET Assay.

2. Materials and Methods

All calculations reported in this work involved various methods. All methods were
carried out in accordance with relevant guidelines and regulations. For evaluating protein
docking for SARS-CoV-2 models, we used a convolutional deep neural network-based ap-
proach (Refer Supplementary Data methods). For in vitro screening against Spike S1: ACE2
binding assay, we used ACE2 Inhibition TR-FRET (Time Resolved Forster/Fluorescence
energy transfer) Assay. For the solvation free energy calculations between different ligand
bound complexes, we used MMGBSA calculation and its implied mathematical equations.
For extended assay conditions, the list of compounds and their test range used in this study
for WT Spike: ACE2 Binding, data analysis, molecular descriptors and all other details
relevant to our SARS-CoV-2 study have been reported in the Supplementary Section. All
data generated or analysed during this study are included in this published article (and its
Supplementary Information Files).

2.1. Mutational Landscape

Mutational studies were carried out in an elucidated way by (Li Q et al., 2020) [40],
who analysed 80 natural variants and 26 glycosylation spike mutants using a pseudovirus
assay. The group concluded glycosylation deletions were less infectious.

2.2. Mac 1 Hydrolytic Activity and Cell Culture Experiments

Cell culture experiments have revealed that SARS Mac1 is dispensable for viral repli-
cation in some cell lines [41–44] (Fehr et al., 2016, Erikson et al., 2008, Putics A et al., 2005,
Fehr et al. 2014). In addition to the animal studies reciprocating that Mac1 hydrolytic activ-
ity promotes immune evasion and that it is essential for viral replication and pathogenicity
in the host [45], targeting Mac1 may also have the benefit of enhancing the innate immune
response, as Mac1 is required for some corona viruses to block interferon (IFN) production.
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2.3. TR-FRET (Time Resolved-Forster/Fluorescence Energy Transfer) Assay

FRET assays utilize donor fluorophores with longer emission times (1–2 ms), such
as lanthanide ion complexes, to reduce potential interferences caused by the excitation
energy. The optimal distances between donor and acceptor fluorophores are similar to FRET
pairs. As TR-FRET assays utilize a time delay between fluorophore excitation and signal
acquisition (approximately 50–150 µs in duration) and this acquisition delay is sufficient
for avoiding interference by the usual short-lived fluorescence from test compounds.

2.4. Experimental Conditions
2.4.1. ACE2:SARS-CoV-2 Spike Inhibitor Screening

The ACE2:SARS-CoV-2 Spike Inhibitor Screening Assay Kit is designed for screen-
ing and profiling inhibitors of this interaction namely, ACE2, His-Tag, Eu-labeled (BPS
Bioscience, #100705, San Diego, CA, USA), SARS-CoV-2 Spike S1 Protein, biotin-labeled
(BPS Bioscience, #100720), 3X ACE2: Spike TR-FRET Buffer (BPS Bioscience, #79963) and
Dye-labeled acceptor (BPS Bioscience). The enzyme and substrate concentration used are
shown in Supplementary Section—Table S2.

2.4.2. Assay Conditions

Five µL of ACE2-Eu were incubated with 5 µL of dye-labeled acceptor and 5 µL of
inhibitor (see Table S3). Binding reaction was started by the addition of 5 µL of Spike
S1-Biotin, as described in the protocol kit #78281 (Spike S1 [Wild-Type] [SARS-CoV-2]:
ACE2 TR-FRET Assay Kit). The reactions were incubated for 1 h at room temperature, and
the TR-FRET signal was finally measured in an Infinite M1000 microplate reader (Tecan,
PerkinElmer, Waltham, MA, USA) at excitation of 340 nm and emissions at 620 nm and
665 nm.

2.5. Data Analysis

Binding assays were performed in duplicate at each concentration. The TR-FRET
data were analyzed using Prism (GraphPad, San Diego, CA, USA). Percent inhibition
was determined by normalizing the data to signal from negative control wells (Blank,
wells without biotinylated ligand, set as 100% inhibition) and positive control wells (No
compound, wells in the absence of any inhibitor but with respective buffer, set as 0%
inhibition). Data for a reference inhibitor, Anti-Spike, were included as a control for
inhibition. The values of percentage activity were plotted on a bar graph.

2.6. Molecular Dynamics Simulation (MDS)

To understand the dynamic behavior of the docked complex of the macrodomain
and the top leads, molecular dynamics (MD) simulations of 200 ns (nanoseconds) run
for each complex were carried out using the Desmond version 4.4 (Schrodinger suite)
after carrying out the molecular modelling of different complexes with active site-bearing
pocket residues, viz., Ile23, Val49, Gly51, Ala52, Pro125, Leu127, Ser128, Ala129, le131,
Phe132, Val155 and Phe156. Protein was set in water for solvation using the TIP3P box.
Following solvation, charge neutralization was carried out by the addition of Na+ and
Cl- ions [46]. Neutralization was carried out by adding 3 Na+ ions. Salt concentration
was set to 0.15 M sodium and chloride ions to approximate physiological condition. Force
field OPLS5 was set, and the grid dimensions were parameterized with an internal size
of 10 Å 10 Å 10 Å (x Å y Å z Å). Minimization was carried out for the total simulation box
in volume (Å3) 253,786, which contained protein, water, and ions for 2000 steps using the
steepest descent algorithm and then for 3000 steps using the conjugate gradient [47]. The
structure was analyzed for its stability and potential energy after the completion of the
steps. The total system was then equilibrated. The simulation was performed under the
conditions of constant temperature and pressure as the protocol for simulations as defined
by [48] was followed. Briefly, the Martyna–Tobias–Klein scheme was used for pressure
coupling. PME algorithm [49,50] was used for calculating the electrostatic forces. The
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particle mesh Ewald was utilized to manage the long-range electrostatics, with a relative
tolerance between long and short-range energies of 1 × 10−9. A real-space cut-off of 9
was used to analyze short-range interactions; all runs were performed at 300 K at constant
volume and temperature (NPT ensemble) under certain periodic boundary conditions in
order to achieve a completely converged system for 200 production runs. MD simulations
were carried out by using the workstation-HP Z4 Generation 4 Z-Platform W2235, with
‘GeForce RTXTM 3070 Ti and RTX 3070 graphics card’, available at Dr. Lin’s Computational
Biology Lab, Chu de Quebec Hospital, Quebec City, QC, Canada.

2.7. Binding Affinity Analysis

The energy of the interaction was calculated from the snapshots taken from the
simulation run. Solvation free energy and ∆Gvacuum were also calculated and compared
between the different ligand-bound complexes. Higher binding affinity in complexes might
be attributed as Omicron Spike Protein has a Positive Electrostatic Surface that Promotes
ACE2 Recognition. In contrast to the alpha, beta, and gamma variants, the omicron
variant’s RNA Binding Domain (RBD) exhibits a comparable affinity to the prototype RBD
when binding to hACE2. This similarity in binding affinity might be attributed to the
presence of multiple mutations that potentially compensate for both immune evasion and
enhanced transmissibility.

Interaction distances were used to gauge the binding enthalpy of the s-protein to
ACE2 system. These distances were defined as the distance between the centers of the inter-
molecular bond donor and acceptor heavy atoms. The binding entropies were not directly
calculated due to the inherent difficulties achieving “convergence” of these calculations
on such large systems. It should be noted that, for an accurate calculation of the s-protein
binding entropy, the full s-protein trimeric construct would need to be simulated (not just
the RBD) and the complete receptor bound complex would also include membrane models
to anchor the host/viral proteins.

2.8. MMGBSA Calculations

MMGBSA method [51] was employed to calculate the free energy and energy decom-
position per residue, and the ∆Gbind,solv was calculated. Such computational calculations
have been used recently in identifying the PLpro-SARS-CoV-2 inhibitors [52]. For calculat-
ing the ligand binding energies and ligand strain energies for docked complexes of leads, we
used the Prime module of Schrodinger, which was set to (i) Variable-dielectric generalized
Born Model (VGSB) and which uses water as continuum solvation model for refinement,
(ii) OPLS3—force field, and (iii) minimization sampling method which minimizes all-atom
in each residue. Binding free energies and prediction of reliable ligand binding poses consist
of performing multiple short MD simulation replicas, wherein the last 25 ns (175–200 ns)
and 100 frames over this ensemble were taken into consideration using embedded python
script in Desmond, viz., thermal_mmgbsa.py. The energy of the interaction was calculated
from the snapshots taken from the simulation run. Solvation free energy and ∆Gvacuum
were also calculated and compared between the different ligand-bound complexes. For the
free energy calculation, the following equations were used:

∆Gbinding = Gcomplex − Greceptor − Gligand

∆G Tot = ∆Ggas + ∆Gsolv

∆Ggas = ∆Eele + ∆Evdw

∆Gsolv = ∆Epolar-solvation + ∆Enon-polar

Implying



Bioengineering 2023, 10, 961 7 of 20

∆Gbind = ∆EMM + ∆GSOL+ ∆GSA

where ∆EMM is the difference in the minimized energies between the mac domain-inhibitor
complex and the sum of the energies of the unbound mac domain and inhibitor. ∆GSOL
is the difference in the GBSA solvation energy of the protein–inhibitor complex and the
sum of the solvation energies for the unbound mac and inhibitor. ∆GSA is the difference
in surface area energies for the complex and the sum of the surface area energies for the
unbound mac domain and inhibitor.

3. Results
3.1. Binding of RBD of the SARS-CoV-2 Spike Protein to ACE2 Monitored by TR-FRET Assay

Time-resolved FRET (TR-FRET) assays are increasingly used to monitor molecular
interactions at nanometer scale with a high signal-to-noise ratio due to temporal sep-
aration between sample excitation and energy transfer measurements. TR-FRET com-
bines proximity features of FRET assays with time-resolved fluorometry (Refer TR-FRET
assay Supplementary Section). Pseudovirus ACE2 Inhibition TR-FRET Assay was car-
ried out to check inhibitory effects of compounds against Spike: ACE2 binding (Refer
to Supplementary Information for experimental conditions (Table S2) and materials and
methods). For a list of ten TR-FRET assayed compounds and their test range used in
this study, see WT Spike:ACE2 Binding assay (Table S3). Reactions were incubated for
1 h at room temperature, and TR-FRET signal was finally measured in an Infinite M1000
microplate reader (Tecan) at excitation of 340 nm and emissions at 620 nm and 665 nm
(Supplementary protocol).

3.2. Inhibition of SARS-CoV-2 Spike RBD Binding to ACE2

Percentage inhibition is summarized in Tables 1 and 2. Moreover, data for a reference
inhibitor, Anti-Spike (0.0001 µM, 0.001 µM, 0.01 µM concentrations), were included as a
control for inhibition. The values of percentage activity of compounds against Spike S1
(WT): ACE2 Binding were plotted on a bar graph (Figure 3). “Compound F2173-1125” was
brightly coloured in the assay experiment and led to interference with TR-FRET signalling.
At 30 µM concentration, percentage inhibition for all compounds revealed “F1877-0839” as
the most potent inhibitor and showed 79% inhibition, which could be ascribed due to its
possession of ribose scaffold moiety.

Table 1. Effects of Compounds on WT Spike: ACE2 Binding: Inhibitory effects of compounds against
Spike: ACE2 binding are summarized in Table 1.

Inhibitor, Conc. Percent Inhibition

F5084-0852, 30 µM 0
F1877-0839, 30 µM 79
F2619-0022, 30 µM 30
F1877-1292, 30 µM 12
F0466-0005, 30 µM 0
F2085-0027, 30 µM 2
F0772-2453, 30 µM 43
F0470-0003, 30 µM 69
F0827-0193, 30 µM 38
F2173-1125, 30 µM 0

Anti-Spike, 0.0001 µM 21
Anti-Spike, 0.001 µM 49
Anti-Spike, 0.01 µM 76
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Table 2. Data for the Effect of Compounds 1–10 on WT Spike: ACE2 Binding.

Compound I.D.
TR-FRET Ratio % Activity

% Inhibition
Repeat 1 Repeat 2 Repeat 1 Repeat 2

No Compound 0.99 1.00 99 101 0

F5084-0852, 30 µM 1.00 1.03 103 111 0

F1877-0839, 30 µM 0.77 0.77 20 21 79

F2619-0022, 30 µM 0.89 0.93 62 77 30

F1877-1292, 30 µM 0.96 0.96 88 89 12

F0466-0005, 30 µM 1.01 0.99 104 97 0

F2085-0027, 30 µM 0.97 1.00 93 103 2

F0772-2453, 30 µM 0.89 0.86 62 51 43

F0470-0003, 30 µM 0.80 0.79 32 29 69

F0827-0193, 30 µM 0.89 0.89 63 61 38

F2173-1125, 30 µM * 1.15 1.20 153 172 0

Anti-Spike, 0.0001 µM 0.92 0.95 72 86 21

Anti-Spike, 0.001 µM 0.87 0.85 54 49 49

Anti-Spike, 0.01 µM 0.79 0.77 27 22 76

Background 0.71 0.71
* Compound was brightly coloured in the assay, leading to interference with the TR-FRET signal in assay.
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4. Result and Discussion

Motivated by the fact that macrodomain can be inhibited by multiple drug-like ligands,
and the drugs acting at protein–protein interfaces on spike protein [53]) and less-studied
protein/domain, viz., Mac1 domain of Nsp3 reducing viral entry to a mammalian host
cell. We speculated that a range of drug molecules may efficaciously interact with ADP
binding pocket. The discovery and characterization of macrodomain inhibitors have
been described here. To design ligands with high specificity and affinity, it is crucial to
understand structural determinants for protein–ligand complexes at an atomic level. We
carried out all-atom MDS run for 200 ns and free energy calculations for the top two hits
that are widely used in studies of biomolecules, guided with fast and efficient deep learning
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(for selecting the target) and QPLD, which provides change in angle conformations that
bound more accurately inside the binding pocket. In addition to identification of several
high-potency drugs and/or molecules, we unveiled consensus-binding mechanism that the
oxazole ring of both the drugs prefers to bind to core residue anchoring Phe 156, a residue
novel to the SARS-CoV-2 virus family. Ligands anchoring at this site might facilitate future
design and optimization of an inhibitor for the SARS-CoV-2.

In our modeling studies, to acquire comprehensive insight into a putative inhibitor, a
three-step docking procedure using molecular docking filters such as (HTVS, XP docking)
was used. Figure S3 represents the two-dimensional chemical structure representation of
identified compounds used in study. After an in-depth analysis of binding patterns, the
third step in terms of induced fit docking (flexible) was employed. The glide docking of
Schrödinger LLC Maestro package (New York, NY, USA) was initially carried out using
Standard Precision (SP docking) followed by the scoring function of “extra precision” (XP)
Glide. XP takes care of (i) large desolvation penalties to both ligand and protein polar
and charged groups in appropriate cases and (ii) identification of specific structural motifs
that provide exceptionally large contributions to enhanced binding affinity. Results were
ranked by docking scores and were found to be −12.87, −9.61 and −11.19 kcal/mol for
(F1877-0839), (F0470-0003) and cocrystal-docked complexes, respectively (Table S4). In-
hibitory activity profound in compounds “F1877-0839” and “F0470-0003” may be attributed
due to the presence of a thiazole ring in both compounds. Visualization of best post-docking
poses of the drug-target receptor complexes in terms of hydrogen bonding, hydrophobic
and π–π interactions were analyzed using Chimera visualization tool. Three-dimensional
images were drawn using Pymol version 1.3 The PyMOL Molecular Graphics System.

The docked-ligand molecule interaction within subsites is shown in Figure 4A,B).
Adenine moiety is sandwiched between α2 and β7 in a mostly hydrophobic environment
created by Ile23, Val49, Pro125, Val155, and Phe156. Polar contacts are facilitated by Asp22,
which forms a hydrogen bond to N6 atom via its carboxylate group, and by the main-chain
amide of Ile23, which binds to N1 atom. A striking insight in our study is that residue
Phe156 is replaced by Asn in closest homologues from SARS-CoV and MERS-CoV. Phe156
is one of important residues in SARS-CoV-2, and in our simulation studies, lead inhibitors
show consistent hydrogen bonding with such residue, Phe156, revealing the potency of
the ligand-bound protein complexes of (F1877-0839) and (F0470-0003) (Figure 4C,D). As
depicted in Figure 4E,F, the diphosphate moiety forms hydrogen bonds with key interacting
residues Ser128 and Ile131. Phe132, Leu127, Ala129, Ala52, and Gly51 pave the way for
hydrophobic interactions. Scaffold development of above-mentioned two inhibitors bound
very well at the Mac1 active site providing critical structure–activity data for inhibitor
optimization and our analysis reveal a path for accelerating the development of such
inhibitors as potential candidates for antiviral therapeutics.

As MDS complements experimental research and provides structural information at
the atomic level with dynamics without facing the same experimental limitations, MDS
is an excellent tool for carrying out in silico investigations in drug discovery and other
scientific research.

We first equilibrated crystal structure of SARS-CoV-2-ACE2 [Protein Data Bank (PDB)
entry 6WOJ] in physiologically relevant environment. MDS was performed as previously
described with slight modifications. MDS for 200 ns was run for the final equilibrated
structure (Supplementary Simulation methods). Furthermore, to understand stability of
the ligand in the binding pocket of the macrodomain, RMSD plots for the backbone atoms
for both protein and ligand-bound protein complexes of (F1877-0839) and (F0470-0003).
All runs for MD simulations of nsp3 macrodomain–ligand-bound complexes have been
performed at the normal temperature. Structural deviations of each protein–ligand complex
in terms of RMSD, which characterizes conformational stability in protein Cα backbone,
RMSF for checking residual fluctuation cum flexibility, and rGYR for compactness of each
complex system, were investigated during MDS run of 200 ns. The stability of protein–
ligand complexes was gauged during 200 ns. Ligand properties in terms of PSA, SASA,
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and rGYR illustrating the stability of the macrodomain best inhibitors (F1877-0839) and
(F0470-0003), respectively, into the protein-binding pocket are displayed in Figure S4.
For simulated docked complex containing compound (F0470-0003), average RMSD of
protein Ca-backbone, which was of magnitude of (0.6 Å), attained a steady state after
100 ns simulation run, while compound (F1877-0839) remained steady for the initial 50 ns
with deviation of 1 Å, and for the remainder 150 ns, showed an average RMSD of 1.2 Å
(Figure S4). The average values for RMSF as well as rGYR are reported in (Figure S4), and
our overall simulation study reveal the stability of both the simulated complexes, signifying
the binding mode at the catalytic site of the macrodomain.
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Figure 4. Docked complexes of “F1877-0839” and “F0470-0003” and their binding modes disclosed in
the ribbon model. (A) Cyan representation of docked complex of “F1877-0839” (B) Docked complex
of “F0470-0003”. (C) Hydrogen bonding interactions of compound “F1877-0839” at binding pocket of
the macrodomain-ACE2 interface. (D) Zoomed in catalytic site displaying key hydrogen bonding
residues especially Phe156 and molecular interaction with subsites in the protein–ligand docked
complex. (E) ADP-ribose bound at catalytic site, while (F) represents the 2D interaction showing
various molecular interactions of the cocrystal.
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Molecular interaction diagrams can be evidenced in terms of histograms and plots
shown in Figure 5, where residues Ala38, Gly48, Val49, Leu126, Ala129, Ile131, Phe132, and
Phe156 contributed to hydrogen bonding interactions throughout the 200 ns simulation
run. However, residues Val49, Phe132 and Phe156 interacting were more energetically
favourable, consistent in terms of maintaining the hydrogen bond contact, and played
an important role in the regulation of binding the drugs at the catalytic site, paving the
way for such class of compounds as potent inhibitors. These results reveal the potency
of identified inhibitors for designing of potential therapies targeting this unique highly
conserved protein domain.
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protein Ca-backbone along with respective ligands F1877-0839 and F0470-0003.
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Furthermore, to exemplify the conformational changes of every rotatable bond of
both drug leads, the torsional profile was calculated during a simulation run of 0.00
to 200.00 ns. Figure S5A,B represent probability density of torsion of (F1877-0839) and
(F0470-0003) illustrated in terms of dial plots; the data so obtained have been plotted on bar
plots (histograms) and provide insights into conformational strain ligand that undergoes
to maintain a protein-bound conformation. Additionally, the protein RMSF is useful for
characterizing local changes along the protein chain has been shown (Figure S5C,D). The
docked complex of Compound ID: F1877-0839 and Compound ID: F0470-0003 WT Spike:
ACE2 Binding (A) labelled with interacting residues (B) without interacting residues are
illustrated in Figures S6 and Figure S7, respectively.

To retain best compounds initially, filters like Rule of Five, Drug Likeness, and ligand-
based Absorption, Distribution, Metabolism, and Excretion/Toxicity prediction (ADMET)
profiling aids in decreasing potential risks during clinical development (Table S5), and other
molecular descriptors were taken into consideration. Interestingly, RMSD of the protein’s
backbone calculated against the crystal (initial) one (PDB entry 6WOJ) saturated at 1.7 Å
after ∼10 ns, revealing the stability of the complex. One caveat to our study is that we
used monomeric forms of RBD and ACE2 for MDS, which revealed that the Spike protein
was highly unstable. The native Spike protein is a trimer and has several other domains,
including the nearby N-terminal domain, and the native ACE2 protein can exist as a dimer.

Conformational dynamics analysis of the structural stability of complexes throughout
200 ns molecular dynamic simulations were estimated by calculating the protein–ligand
stability in terms of RMSD. RMSD of the protein provides us insights into its structural
conformation throughout the simulation. RMSD analysis discloses if the simulation has
equilibrated. Both the simulated complexes were subjected to stability analysis. As shown
in Figure 5E,F, displays corresponding to RMSD’s of the protein Ca-backbone along with
respective ligands F1877-0839 and F0470-0003 (Supplementary Section for conformational
Dynamics). This molecular dynamic study further confirmed our TR-FRET assay where
inhibition of the drug (F0470-0003) was less than the (F1877-0839), due to much conforma-
tional change in the aforementioned drug, thus imparting its low stability than the potent
drug-(F1877-0839) attaining high stability.

Spike Protein Has a Positive Electrostatic Surface That Promotes ACE2 Recognition

The use of electrostatic potential surfaces is a common approach for mapping comple-
mentary interaction interfaces in biomolecular complexes (Weiner et al., 1982;
McCoy et al., 1997) [54,55]. We used structural modeling to demonstrate that the macro
domain is attracted to ACE2 receptors by long-range electrostatic forces leading to efficient
recognition of the receptor (Figure 6). Our results agree with recent studies by [56] for
the gradual increase of +ve charge for emerging variants, including higher lineages of
omicron. The catalytic site of the macrodomain as per electrostatic calculations is concerned
(Figure 6) when the ligand binds were rotated to 180◦, the surface is red showing its high
+ve charge. To our knowledge, our mapping identified a novel circular pocket, highlighted
with the dark circle (Figure 6) formed by residues Ser 5, Phe(F)6, Tyr(Y)8, Leu(L)11, Ile(I)17,
Val29, leu136, Leu138, and Tyr 150, when rotated translationally. We coined the pocket
with a single-letter amino acid name and designated it as the “FILLY” pocket. Residues
surrounding the pocket are Arg 139 and Val 149. A short black arrow pointing toward the
enclosed site in Figure 6 discloses the identified pocket. Do such residues in the “FILLY”
pocket represent any allosteric site or aid in glycosylation or represent a channel? This
needs to be scientifically investigated to understand its biological significance.

Interestingly, as shown in the inset of Figure 5A–D, we found that during the equili-
bration, significant role of branched-chain amino acids such as Valine (Val), Leucine (Leu),
Isoleucine (Ile), and aromatic amino acids, viz., phenylalanine (Phe), whose levels are high
in COVID-19 hospitalized patients, such residues became equilibrated during molecular
dynamics simulations, aiding us in reciprocating our identified leads as potent inhibitors.
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5. MMGBSA Calculations

It is of great interest in modern drug design to accurately calculate the free energies
of protein–ligand or nucleic acid–ligand binding. MM-PBSA (mol. mechanics Poisson-
Boltzmann surface area) and MM-GBSA (mol. mechanics generalized Born surface area)
have gained popularity in this field. Structure-truncated MM/PB(GB)SA free energy
calculation, and per-residue energy decomposition based on multiple poses have been
accessed using the fastDRH tool (Wang Zhe et al., 2022), which predicts the ligand binding
mode and the hotspot residue of protein for ligand binding. The protein–ligand complex
interaction is represented in Figure 7A–F.

To calculate free energy and energy decomposition per residue and the ∆ Gbind,solve
MMGBSA calculations (Supplementary Section for the methodology and the binding affin-
ity). In Table 3, compound F1877-0839 showed higher binding free energy
(∆G Total = −106.38 kcal/mol) than that of another compound, viz., F0470-0003 and cocrys-
tal, which showed binding affinity of −99.68 kcal/mol and −92.01 kcal/mol, respectively.
Better efficacy of combined strategy of molecular docking and free energy calculations to
predict the binding-free energy indicate that F1877-0839 may be used as lead discovery and
optimization of macrodomain targeting SARS-CoV-2.
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Figure 7. (A,B) per residue energy decomposition of (F1877-0839)-mac1 complex and MM/PB(GB)SA
computation of the key interacting residues. (C,D): per residue energy decomposition of (F0470-
0003)-mac1 complex and MM/PB(GB)SA computation of the key interacting residues. (E,F): per
residue energy decomposition of (cocrystal)-mac1 complex and MM/PB(GB)SA computation of the
key interacting residues.

Table 3. Free energy calculations (MM-GBSA) of identified lead compounds and Cocrystal.

Name of
Compound Solv GB vdW Coulomb Covalent Hbond ∆GTotal

(kcal/mol)

F1877-0839 29.66 ± 6.24 −72.14 ± 2.96 −233.35 ± 2.03 14.97 ± 0.02 −0.86 ± 0.14 −106.38 ± 1.56

F0470-0003 48.16 ± 5.16 −54.17 ± 2.89 −40.41 ± 2.46 1.23 ± 0.30 −0.78 ± 0.11 −99.68 ± 1.52

Cocrystal 23.75 ± 5.09 −62.55 ± 2.78 −31.65 ±2.17 6.7 ± 0.27 −7.78 ± 0.10 −92.01 ± 1.58

The bold values represent the best among the given factors.
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6. Catalytic Mechanism

In order to decipher the structural information on the binding sites, it is important to
know the catalytic mechanism involved at the drug–protein interface. For “Compound ID:
F1877-0839” residues, viz., Gly48, Val 49, Ala50, Ile131, Phe156, and Asp157, contributed
via hydrogen bonding, while interacting residues, such as Val49, Leu126, and Phe156,
interacted via hydrogen bonding in “Compound ID: F0470-0003”. We hypothesize it is the
ribose scaffold of both compounds that induce the conformational change and compete with
ADP-ribose binding site, paving the way for key interactions with Phe156 and disclosed
potency inhibition of 79% for “Compound ID: F1877-0839” and 69% for “Compound ID:
F0470-0003”. Moreover, differences in both core structures are due to the substitution of
chlorobenzyl ring in “Compound ID: F0470-0003”, while substitution of oxygen at the ortho
position, and this varying electron density might impact long-range electrostatic forces
for receptor recognition. The peculiarity of our study identified water networks, which
play an important role in protein–ligand recognition; however, their contribution to ligand
binding is often difficult to identify. As shown in Figure S4C,D, we were able to identify
the water networks. In continuation to such contribution’s residues, viz., Ala38, Lys44,
Ala129, and Phe132, are involved in bridging interactions in “Compound ID: F1877-0839”.
However, water-mediated interactions are also profound in “Compound ID: F0470-0003”
with Ala38, Ala129, Ile131, and Phe132 residual contributions. Water networks reorganize
upon ADPr binding, with a network of tightly bound water molecules acting as protein–
ligand bridges; moreover, tightly bound water molecules are co-opted by fragment binding,
with implications for inhibitor design. Ligand-induced conformational changes in the
SARS-CoV-2 ADRP structure were prevalent in the simulated complex.

X-ray crystallography augments structure-based drug design and depends upon the
accurate model of the shape, electrostatic potential, solvation and flexibility of the target
site. Studies have found that the terminal ribose of ADPr adopts the β epimer, with the C1′′

hydroxyl hydrogen bonded to the backbone nitrogen of Gly48. The proximal ribose ring is
stabilized in the pocket by hydrophobic interactions with Phe132 and Ile131, as well as a set
of hydrogen bonds with Gly46 (OH2, and Gly49 (OH1). All of these residues are conserved.
The ligands and protein side chains are shown in ball-and-stick representation, with the
ligand bonds coloured in purple. Hydrogen bonds are shown as green dotted lines, while
the spoked arcs represent protein residues making nonbonded contacts with the ligand.
The red circles and ellipses indicate protein residues (Refer Supplementary Figures S8–S10
that are in equivalent 3D positions when the two structural models are superposed and
were generated using Ligplot+ [57]. Moreover, both contain the 1,3,4-thiadiazole ring at
the central core region of the molecule and were suitably docked at the distal side of the
binding pocket. Ligplot Interactions of docked Complex of Compound ID: F0470-0003 and
schematic view of detailed ligand atom interactions with the protein residues is illustrated
in Figures S8–S10 respectively.

The distal ribose ring is stabilized by the residues Pro125, Leu126 and Leu127 via
hydrophobic interactions. The diphosphate moiety binds between two loops, that cover
three segments with high sequence conservation, including a glycine-rich segment (Gly46-
Gly47-Gly48) within the former loop; thus, it is conceivable that there is a conformational
change in the binding pocket. Structural differences include the peptide flips of Gly48 and
Ala129 that allow two new hydrogen bonds with the diphosphate portion of ADPr and
a coupled conformational change in the Phe132 and Asn99 side chains accommodate the
terminal ribose of ADPr. Residues Ala38, Gly48, Val49, Leu126, Ala129, Ile131, Phe132, and
Phe156 contributed to hydrogen bonding interactions throughout the 200 ns simulation
run. Screening of the top most inhibitors at the catalytic active site of macrodomain
revealed that the protonation states of catalytic site residues and active site hydrogen bond
networks in the docked complexes revealed the molecular basis of functionality relevant
flexibility in the active site loops. The large number of bridging waters identified here
provides an unmatched opportunity to systematically examine the thermodynamics of
water displacement.
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Conformational Dynamics

RMSD of the protein Ca-backbone from its starting position increased to 1.4 Å for the
first 100 ns and then became stable around 1.8 Å in the last 100 ns course of the simulation.
Deviations converged and attained equilibrium during 75 ns simulation time of indicating
0.4 Å deviation in the protein–ligand (F1877-0839) complex, whereas in RMSD of the
protein–ligand (F0470-0003) complex, it was quite different as we saw the complex had
undergone a conformational change and simulations had not equilibrated much during the
initial 50 ns simulation; however, with the simulation progression run, as represented in
(Figure S3B), structural deviation with a magnitude of >1.8 Å was visible.

7. Conclusions

The present study illustrates molecular modelling insights into SARS-CoV-2 (WT)
Spike inhibitors using experimental ACE2 Inhibition TR-FRET Assay, high throughput
Screening and MDS. MDS results validated a corresponding experimental data of identified
leads and found Compound ID: “F1877-0839” as the best drug among all, inhibiting Spike
protein in micromolar range, thereby making it a therapeutic potential agent to treat
Coronavirus. In parallel, this study is the first of its kind to identify novel pockets in SARS-
CoV-2 dubbed FILLY pockets. Concurrently, this investigation represents a pioneering
endeavor in the identification of previously uncharacterized binding sites in SARS-CoV-2
termed FILLY pockets. The potential involvement of FILLY pockets in mediating transport
pathways and their putative relevance in the context of protein engineering necessitate
further comprehensive exploration and investigation. Further, our studies are under process
of determining how changing the functional group of the screened compounds identified
through pseudovirus inhibition assay can impact the biological activity. Moreover, our
findings could further be improved by exploring the other lead candidates by leveraging
drug–target interactions along with experimentally known bindings by use of genetically
expressed datasets, which, in addition to the clinical trial data outcomes, could be helpful
for drug selection.

8. Significance

COVID-19 is triggered by infection with SARS-CoV-2 virus, wherein interaction be-
tween the receptor binding domain of the SARS-spike protein on surface of viral particle
and its receptor present on cell surface of human cells, the angiotensin I, converts enzyme 2
(ACE2). Our findings suggest that electrostatic interactions are a major contributing factor
for increased omicron transmissibility. Our structural modelling studies revealed that
Spike receptor binding domain (S RBD) plays a pivotal role in enhancing ACE2 recognition.
The unique contribution of our study lies in identification of water networks that play
important role in protein–ligand recognition. Our molecular dynamics simulation results
validated a corresponding experimental data of identified leads and found Compound
ID: “F1877-0839” as the best drug, inhibiting Spike protein in micromolar range, thereby
making it a therapeutic potential agent to treat coronavirus. Moreover, this study is the
first of the kind to identify the novel FILLY pockets in SARS-CoV-2.

9. Limitations

With the unprecedented number of deaths as the experts forecast for the next several
years and the recent emergence of XBB recombinant variants, the mechanisms of SARS-
CoV-2 entry into host cells still remain a mystery, and could be further explored by focusing
on different targets, for which our studies are under process. Greater focus on exploring
other receptors, viz., Kidney Injury Molecule-1/T cell immunoglobulin mucin domain 1
(KIM-1/TIM-1), tyrosine-protein kinase receptor UFO (AXL), lectins, Cathepsins, etc., will
further help in exploring their importance, which might help in deciphering their important
role in promoting viral infection of the human respiratory system and indicate their role as
alternative receptors for future clinical intervention strategies.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering10080961/s1, Figure S1 (A): Serial dilu-
tions of 10 patient serum samples were individually mixed with the pseudotyped viruses at 37 C
for 1 h before being added to Huh-7 cells for incubation of 24 h to determine the EC50; Figure S1
(B): Human CoVs bind to ADP-ribose with similar affinity where (A and B) depict the binding of
human Mdo2 and SARS-CoV, MERS-CoV & SARS-CoV-2 Mac1 proteins; Figure S2: Representative
Figure, The SARS-CoV-2 conserved macrodomain is a mono-ADP-ribosylhydrolase, Reprinted with
permission from Ref. [23]; Figure S3: Top most selected ligands used for checking the efficacy of
Effects of Compounds on WT Spike: ACE2 Binding; Figure S4: (A&B) Ligand properties in terms
of PSA, SASA, and rGYR illustrating stability of simulated docked complexes of F1877-0839 and
F0470-0003 respectively. (C&D): Simulated Interaction diagram of F1877-0839 and F0470-0003; Figure
S5: (A&B) Torsional profile of the drugs; F1877-0839 and F0470-0003. (C &D): correspond to the
respective RMSF fluctuation of the drugs at the active site of the ligand; Figure S6: Docked complex
of Compound ID: F1877-0839 WT Spike: ACE2 Binding (A) Labelled with Interacting residues (B)
without interacting residues; Figure S7: Docked complex of Compound ID: F0470-0003 WT Spike:
ACE2 Binding (A) Labelled with Interacting residues (B) without interacting residues; Figure S8:
(Left): Ligplot Interactions of docked Complex of Compound ID: F1877-0839. (Right): schematic view
of detailed ligand atom interactions with the protein residue; Figure S9: (Left): Ligplot Interactions
of docked Complex of Compound ID: F0470-0003. (Right): schematic view of detailed ligand atom
interactions with the protein residue; Figure S10: (Left): Ligplot Interactions of cocrystal Docked
Complex. (Right): schematic view of detailed ligand atom interactions with the protein residue;
Table S1: Convolutional deep neural network-based approach named DOcking decoy selection with
Voxel-based deep neural nEtwork (DOVE) for evaluating protein docking for SARS-CoV-2 models;
Table S2: Enzymes and Substrates used for experiment; Table S3: List of Compounds and their test
range used in this study for WT Spike: ACE2 Binding; Table S4: Induced fit Docking results of all the
selected compounds and cocrystal at the active site of the macrodomain; Table S5: ADMET analysis
of the inhibitors used in this study.
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