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Abstract: Subarachnoid hemorrhage (SAH) denotes a serious type of hemorrhagic stroke that often
leads to a poor prognosis and poses a significant socioeconomic burden. Timely assessment of the
prognosis of SAH patients is of paramount clinical importance for medical decision making. Currently,
clinical prognosis evaluation heavily relies on patients’ clinical information, which suffers from
limited accuracy. Non-contrast computed tomography (NCCT) is the primary diagnostic tool for SAH.
Radiomics, an emerging technology, involves extracting quantitative radiomics features from medical
images to serve as diagnostic markers. However, there is a scarcity of studies exploring the prognostic
prediction of SAH using NCCT radiomics features. The objective of this study is to utilize machine
learning (ML) algorithms that leverage NCCT radiomics features for the prognostic prediction of
SAH. Retrospectively, we collected NCCT and clinical data of SAH patients treated at Beijing Hospital
between May 2012 and November 2022. The modified Rankin Scale (mRS) was utilized to assess
the prognosis of patients with SAH at the 3-month mark after the SAH event. Based on follow-
up data, patients were classified into two groups: good outcome (mRS ≤ 2) and poor outcome
(mRS > 2) groups. The region of interest in NCCT images was delineated using 3D Slicer software,
and radiomic features were extracted. The most stable and significant radiomic features were
identified using the intraclass correlation coefficient, t-test, and least absolute shrinkage and selection
operator (LASSO) regression. The data were randomly divided into training and testing cohorts
in a 7:3 ratio. Various ML algorithms were utilized to construct predictive models, encompassing
logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting
machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-
layer perceptron (MLP). Seven prediction models based on radiomic features related to the outcome
of SAH patients were constructed using the training cohort. Internal validation was performed using
five-fold cross-validation in the entire training cohort. The receiver operating characteristic curve,
accuracy, precision, recall, and f-1 score evaluation metrics were employed to assess the performance
of the classifier in the overall dataset. Furthermore, decision curve analysis was conducted to evaluate
model effectiveness. The study included 105 SAH patients. A comprehensive set of 1316 radiomics
characteristics were initially derived, from which 13 distinct features were chosen for the construction
of the ML model. Significant differences in age were observed between patients with good and poor
outcomes. Among the seven constructed models, model_SVM exhibited optimal outcomes during a
five-fold cross-validation assessment, with an average area under the curve (AUC) of 0.98 (standard
deviation: 0.01) and 0.88 (standard deviation: 0.08) on the training and testing cohorts, respectively.
In the overall dataset, model_SVM achieved an accuracy, precision, recall, f-1 score, and AUC of
0.88, 0.84, 0.87, 0.84, and 0.82, respectively, in the testing cohort. Radiomics features associated with
the outcome of SAH patients were successfully obtained, and seven ML models were constructed.
Model_SVM exhibited the best predictive performance. The radiomics model has the potential to
provide guidance for SAH prognosis prediction and treatment guidance.

Keywords: subarachnoid hemorrhage; non-contrast CT; radiomics; prognosis; machine learning
algorithms
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1. Introduction

Subarachnoid hemorrhage (SAH), the third most prevalent subtype of stroke, is a
critical condition that poses a significant threat to patients’ lives and imposes a substantial
social and economic burden [1,2]. Proper and timely prognosis prediction holds paramount
significance in the case of patients afflicted with SAH, playing a pivotal role in guiding
judicious treatment determinations. This process not only facilitates precise risk quantifi-
cation but also aids in the discernment of the most fitting therapeutic strategies and the
formulation of meticulously tailored care blueprints. Additionally, prognostic assessment
offers precise and comprehensive information to both patients and their families regarding
the gravity of the disease, possible clinical trajectories, and the imperative nature of thera-
peutic interventions. This multifaceted approach enhances collaborative engagement in the
comprehensive oversight of the patient’s medical condition. Such an in-depth prognostic
evaluation engenders an atmosphere of informed partnership, thereby augmenting the
effective orchestration of the treatment regimen.

Currently, non-contrast computed tomography (NCCT) scans stand as the foremost
diagnostic modality for SAH [3]. However, the conventional clinical interpretation of NCCT
images, while valuable, offers a limited scope of informative insights. In this context, the
burgeoning field of radiomics, an evolving imaging technology, has garnered attention.
Radiomics entails the extraction of quantitative features from medical images, serving
as diagnostic markers of paramount significance [4–6]. This approach presents distinct
merits, notably its non-invasive nature and cost-effectiveness, both of which underpin its
capacity to establish the bedrock for personalized medical interventions. Consequently,
radiomics assumes an increasingly indispensable role in the panorama of disease diagnosis
and prognosis prediction. With its foundations deeply rooted in the field of artificial
intelligence, the paradigm of machine learning (ML) has pervaded an array of diverse facets
within our daily routines [7–10]. ML algorithms, emerging as indispensable tools, play a
pivotal role in facilitating precise diagnostics and comprehensive treatments of conditions
such as tumors, cardiovascular ailments, and cerebrovascular diseases [11–13]. Through the
harnessing of data-derived insights, the application of ML techniques is actively reshaping
the contemporary landscape of medical practice, exemplifying a significant transformation
in the field.

Previous studies have primarily focused on the prognosis of SAH based on clinical
information and imaging characteristics [14–17]. Additionally, some investigations have
explored the prediction of hemorrhage expansion and functional outcome assessment
of spontaneous intracerebral hemorrhage through the utilization of radiomics features
obtained from NCCT [18–22]. However, there are few studies on the prognosis prediction of
SAH based on NCCT radiomics features using ML algorithms. The fundamental objective
of this study was to employ ML algorithms with the purpose of accurately predicting
the prognosis of SAH, utilizing radiomics features extracted from NCCT scans. Through
the construction of a predictive model using ML algorithms, the study aimed to provide
valuable insights for guiding prognostic assessments and treatment strategies in SAH cases.

2. Results
2.1. Clinical Features

The study included a total of 105 patients diagnosed with SAH, with an average age
of 59.64 ± 11.29 years. Within this participant pool, the male demographic comprised
39 individuals, representing a proportion of 37.14%. In terms of other pertinent metrics,
a total of 26 participants, accounting for 24.76%, had a history of smoking. Similarly, an
equivalent proportion of 24.76% (26 participants) had a history of alcohol consumption.
Among the broader participant demographic, a notable 62 individuals (59.05%) presented
a medical history of hypertension (HTN), while 16 individuals (15.24%) had a documented
history of diabetes mellitus (DM).

Out of these, 85 patients were categorized as having a good outcome, while 20 patients
experienced a poor outcome. The only notable distinction between the two groups was
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identified in terms of age. No significant differences were observed in terms of sex, smoking
history, alcohol history, history of HTN, or history of DM between the group with good
outcomes and the group with poor outcomes. Detailed clinical characteristics are displayed
in Table 1.

Table 1. Clinical characteristics.

Variable
Total n = 105

p Value
Good Outcome (85) Poor Outcome (20)

Sex
Male 31 8 0.77

Female 54 12

Age <60 46 6 0.05
≥60 39 14

Hypertension Yes 50 12 0.92
No 35 8

Diabetes
Mellitus

Yes 11 5 0.18
No 74 15

Smoking Yes 20 6 0.55
No 65 14

Drinking Yes 22 4 0.58
No 63 16

2.2. Stable Feature Selection

In the preliminary analysis, a total of 1316 radiomics features were derived from the
NCCT scans, encompassing a spectrum of attributes, including first-order features, shape
features, and texture features. After data processing and intraclass correlation coefficient
(ICC) assessment, 1266 radiomics features remained for further analysis. A t-test and
least absolute shrinkage and selection operator (LASSO) regression were performed, re-
sulting in the selection of 13 radiomics features that significantly differed between the dif-
ferent outcome groups. These features were ‘original_gldm_DependenceVariance’, ‘origi-
nal_glszm_SizeZoneNonUniformity’, ‘wavelet-LLH_glcm_MaximumProbability’, ‘wavelet-
LHL_ngtdm_Busyness’, ‘wavelet-LHH_firstorder_Skewness’, ‘wavelet-HLL_gldm_
DependenceVariance’, ‘wavelet-HLL_glszm_LargeAreaEmphasis’, ‘wavelet-HLH_glszm_
LargeAreaHighGrayLevelEmphasis’, ‘wavelet-HLH_ngtdm_Contrast’, ‘wavelet-HHL_
glrlm_LongRunHighGrayLevelEmphasis’, ‘wavelet-LLL_firstorder_TotalEnergy’, ‘logarithm_
glszm_LargeAreaHighGrayLevelEmphasis’, and ‘exponential_firstorder_InterquartileRange’
(Figure 1).

2.3. Predictive Model Construction and Evaluation

Various ML algorithms were utilized to construct the model, encompassing logistic
regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting
machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost),
and multi-layer perceptron (MLP). A series of seven ML predictive models were generated,
denoted as follows: model_LR, model_SVM, model_RF, model_LGBM, model_AdaBoost,
model_XGBoost, and model_MLP. These models were rigorously evaluated using 5-fold
cross-validation. Among the models, the model_SVM demonstrated the most impressive
performance. During cross-validation on the training cohort, it achieved an average area
under the curve (AUC) of 0.98 (standard deviation: 0.01), indicating excellent predictive
accuracy. The robustness of the model was further confirmed in the testing cohort, where it
maintained a high level of performance with an average AUC of 0.88 (standard deviation:
0.08). The utilization of 5-fold cross-validation ensures the reliable and unbiased estimation
of model performance. These cross-validated AUC values reinforce the reliability and
generalizability of the model_SVM in accurately predicting outcomes.
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The results illustrated in Figures 2 and 3 demonstrate varying levels of performance
among the other models. In the training cohort, these models exhibited a spectrum of
average AUC values, ranging from 0.87 to 0.99. Similarly, in the testing cohort, the AUC
values ranged from 0.77 to 0.87. This highlights the differences in predictive accuracy
achieved by each model.
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Figure 1. Feature selection and proportion of radiomics features. (a) ICC test results. The features
with an ICC > 0.8 were selected for further research. (b) Five-fold cross-validation for radiomics
features selection in the LASSO regression model. The black vertical line represents the minimum
error. (c) LASSO regression coefficient profiles. Colored lines depict features and illustrate how their
coefficients change with different regularization levels. (d) Radiomics feature coefficients based on
LASSO regression results. ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and
selection operator.
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Figure 2. Results of cross-validation of different models in the training cohort. (a) Cross-validation of
model_LR. (b) Cross-validation of model_SVM. (c) Cross-validation of model_RF. (d) Cross-validation
of model_LGBM. (e) Cross-validation of model_AdaBoost. (f) Cross-validation of model_XGBoost.
(g) Cross-validation of model_MLP. LR, logistic regression; SVM, support vector machine; RF, random
forest; LGBM, light gradient boosting machine; AdaBoost, adaptive boosting; XGBoost, extreme
gradient boosting; MLP, multi-layer perception.
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Figure 3. Results of cross-validation of different models in the testing cohort. (a) Cross-validation of
model_LR. (b) Cross-validation of model_SVM. (c) Cross-validation of model_RF. (d) Cross-validation
of model_LGBM. (e) Cross-validation of model_AdaBoost. (f) Cross-validation of model_XGBoost.
(g) Cross-validation of model_MLP.

The receiver operating characteristic (ROC) curves for all models, encompassing both
the training and testing cohorts, have been visualized in Figure 4a,b. The model_SVM
demonstrated a high level of performance in the training cohort, achieving an AUC value of
0.94, indicating excellent predictive accuracy. Notably, in the testing cohort, the model_SVM
outperformed all other models, exhibiting an AUC value of 0.88. These findings highlight
the superior predictive capability of the model_SVM, suggesting its potential as a robust
and reliable tool for accurate outcome prediction. The decision curve analysis (DCA)
curve indicated that the RF model had the highest net benefit among the different models
(Figure 4c).
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Figure 4. ROC and DCA curves of the seven ML models. (a) ROC curves for model_LR, model_SVM,
model_RF, model_LGBM, model_AdaBoost, model_XGBoost, and model_MLP within the training
cohort are presented. (b) The corresponding ROC curves for the testing cohort encompassed the
same set of models. (c) Additionally, the DCA curves were constructed for these models in the testing
cohort. ROC, receiver operating characteristic; DCA, decision curve analysis; ML, machine learning.
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The evaluation results for precision, recall, accuracy, and the f1-score of each model
in the testing cohort are exhaustively delineated in Table 2. In summary, the model_SVM
model utilizing the selected radiomics features exhibited the highest performance in distin-
guishing between different prognostic outcomes among SAH patients. It demonstrated
exceptional accuracy and achieved high AUC values, underscoring its potential for clinical
application in the prognostic stratification of SAH patients.

Table 2. Performance of ML models.

Model Accuracy Precision Recall F1-Score

Model_LR 0.75 0.56 0.75 0.64
Model_SVM 0.84 0.87 0.84 0.82
Model_RF 0.78 0.76 0.78 0.74

Model_LGBM 0.81 0.80 0.81 0.80
Model_AdaBoost 0.75 0.75 0.75 0.75
Model_XGBoost 0.84 0.84 0.84 0.83

Model_MLP 0.81 0.85 0.81 0.77

3. Discussion

SAH is a severe form of hemorrhagic stroke that carries a significant socioeconomic
burden and often leads to poor prognosis. Assessing the prognosis of patients diagnosed
with SAH holds utmost significance in guiding clinical decisions pertaining to both diagno-
sis and treatment strategies for SAH [15,23]. By accurately predicting a patient’s prognosis,
clinicians can effectively evaluate preoperative risks, opt for the most appropriate thera-
peutic approaches, and formulate individualized treatment regimens. The comprehensive
prognostic assessment serves an additional purpose in furnishing precise insights into the
disease’s severity, potential ramifications, and the imperative of timely intervention for
patients and their families, thereby fostering an enhanced milieu of collaborative treatment
engagement. This multifaceted prognostic evaluation, thus, assumes a pivotal role not only
in clinical management but also in patient communication and shared decision-making.

NCCT scans of the brain have demonstrated high efficacy in the detection of high-
density hemorrhagic foci, rendering them a pivotal modality in clinical practice for the
diagnosis of SAH due to their rapid acquisition and cost-effectiveness. Radiomics, a
data-extraction approach characterized by its ability to automatically derive an extensive
spectrum of quantitative imaging features, has emerged as a compelling frontier within
the realm of medical imaging. This computational technique holds exceptional promise,
offering the potential to furnish clinicians with supplementary, non-invasive insights. These
insights, in turn, stand to substantially enhance the precision and confidence of clinical
decision-making processes. Despite this potential, there are limited radiomics models
available for predicting the prognosis of SAH. Within the scope of this research, radiomics
characteristics were extracted from NCCT scans, followed by the development of ML
models aimed at predicting the prognosis of SAH.

The comparative analysis of clinical data derived from patients exhibiting good and
poor outcomes has unveiled a noteworthy dissimilarity in terms of age distribution between
the two cohorts. Aging stands as a widely acknowledged and pivotal risk determinant
linked to a less favorable prognosis among individuals afflicted with SAH, as substantiated
by previous studies [24,25]. This discovery holds noteworthy implications for clinical
practice. It emphasizes the need for increased attention and tailored interventions when
treating this group of patients. Understanding the impact of advanced age on the pro-
gression of SAH becomes crucial for enhancing patient outcomes and guiding treatment
strategies. This involves re-evaluating and adjusting strategies to better suit the distinctive
requirements of the elderly SAH population. Nevertheless, in terms of various other clinical
characteristics, no statistically significant differences were observed between the studied
groups. These results suggest that, within the parameters examined, there is a lack of
noteworthy divergence among the groups in relation to these clinical features. During the
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extraction and selection of radiomics features, 13 features were found to be significantly dif-
ferent between the SAH patients with different prognoses, including 3 first-order features,
and 10 texture features. The most important feature based on the coefficients from LASSO
regression was ‘wavelet-LLL_firstorder_TotalEnergy’, ‘wavelet-LHL_ngtdm_Busyness’,
and ‘wavelet-LLH_glcm_MaximumProbability’. Wavelet filtering assumes a critical role in
the extraction of imaging biomarkers, effectively augmenting the representational capacity
and classification performance of these features [26,27]. Within the framework of this study,
pronounced distinctions were observed among patients with SAHs of diverse prognoses
regarding the imaging biomarkers extracted via wavelet filtering.

Enhancements in computational capabilities and algorithmic refinements have pro-
pelled the substantial headway of ML in prognosticating ailments [28–30]. In this study,
seven predictive models were constructed to differentiate between SAH patients with dif-
ferent prognoses, with model_SVM demonstrating the best performance. The SVM has
emerged as a prominent supervised learning algorithm that finds extensive application in
the domains of pattern recognition and ML. Owing to its remarkable characteristics, this
model demonstrates a superior ability to generalize across diverse datasets. Notably, the
SVM adeptly accommodates situations involving limited sample sizes and high-dimensional
data, thereby rendering it highly suitable for intricate feature-based predicaments. The
utility of SVM becomes particularly evident in scenarios where the underlying patterns are
intricate and necessitate sophisticated computational methodologies for accurate analysis
and prediction. SVM finds extensive applications in disease diagnosis, prognosis assessment,
and biomarker research [31–34]. Model_SVM effectively distinguished SAH patients with
different prognoses in both the training and testing cohorts.

Based on the internal validation through cross-validation, the model_SVM demon-
strated exceptional performance, suggesting its robustness and accuracy. It outperformed
the other six models in terms of AUC value, accuracy, precision, sensitivity, and f1 score in
the testing cohort, indicating better discriminatory power. Furthermore, the DCA revealed
that model_SVM provided the highest net benefit. This suggests that using model_SVM
for clinical decision-making has excellent clinical applicability, as it offers greater benefit
compared to the other models evaluated. Overall, based on these evaluations and analyses,
model_SVM stands out as a highly reliable and accurate predictive model with a superior
performance and strong clinical applicability.

Currently, the prognosis prediction of SAH patients relies on the clinical experience
of physicians and radiologists, which can introduce bias and errors. Accurately predict-
ing the prognosis of SAH patients holds paramount significance in guiding treatment
strategies and making informed decisions. Among the ML models formulated within this
investigation, particularly model_SVM demonstrates a remarkable aptitude for precisely
foretelling the prognostic landscape of SAH patients, providing essential information for
determining appropriate treatment strategies. The integration of ML-based prediction
models incorporating NCCT radiomics features carries profound clinical implications for
SAH prognosis. These computational models play a pivotal role across multiple dimen-
sions. This methodology not only facilitates a more accurate assessment of patient risks,
but also offers invaluable insights for selecting optimal therapeutic strategies. Moreover,
these models provide indispensable support in the realm of personalized treatment plan-
ning, underscoring their significance within the broader spectrum of medical care. This
holistic and comprehensive approach has the transformative potential to reshape both SAH
diagnosis and treatment, resulting in a tangible enhancement of patient outcomes.

However, it is essential to acknowledge the limitations of this study. Firstly, the ret-
rospective design of the study might introduce selection bias, potentially compromising
the generalizability of the results. Moreover, the investigation was executed within a soli-
tary institution, encompassing a sample size that is relatively modest. This circumstance
could potentially influence the statistical robustness and the broader applicability of the
radiomics model. Additionally, the exploration was bound by practical constraints that
precluded the execution of a multicenter data validation process. Therefore, it remains
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imperative to meticulously validate and refine the model further, ensuring its steadfastness
and utility across a diverse range of clinical settings. Subsequent investigations should
give precedence to the incorporation of more extensive and heterogeneous cohorts from
multiple centers, thereby reinforcing the dependability and applicability of findings. In
upcoming research endeavors, the incorporation of images characterized by thinner slice
thickness holds comparable significance. This augmentation in imaging data is likely
to provide a more comprehensive delineation of latent features and patterns, leading to
increased accuracy and robustness within the model. This endeavor would foster a more
exhaustive comprehension of the performance and potential clinical utility intrinsic to
the ML-based predictive model. The strategic resolution of these limitations is poised to
contribute significantly to the advancement and wider dissemination of radiomics-based
prognosis prediction for SAH. While the clinical translation of ML-based radiomics models
necessitates sustained development, the advancement of artificial intelligence is progres-
sively propelling the astute metamorphosis of clinical diagnosis and treatment paradigms.
Notwithstanding the intrinsic limitations inherent to the present study, it is anticipated that
its findings will duly serve as a wellspring of inspiration for forthcoming investigations,
thereby furnishing invaluable guidance to inform and shape clinical practices. With the
inclusion of more diverse populations and datasets, its clinical guiding value will continue
to be enhanced.

4. Materials and Methods
4.1. Study Population

The study population consisted of patients with SAH who were treated at Beijing
Hospital between May 2012 and October 2022. The study enrolled adult patients, aged
18 years or older, who were diagnosed with a SAH based on NCCT. Furthermore, these
patients were subjected to follow-up assessments after a period of 3 months. Patients
without available clinical records, NCCT images of poor quality, and multiple scans were
excluded from the study. The study workflow is shown in Figure 5.
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Figure 5. The study workflow. The study comprises four parts: population inclusion and data
collection, radiomic features extraction and selection, predictive model construction, and predictive
model evaluation.

4.2. Clinical and Imaging Data

Clinical and NCCT data were collected retrospectively. The clinical information
encompassed the patient’s gender, age, smoking and alcohol history, as well as their history
of HTN and DM. The modified Rankin Scale (mRS) was utilized to assess the prognosis
of patients with SAH. Additionally, mRS regarding the follow-up evaluations conducted
after a three-month period was collected. Based on the results of mRS, patients were
divided into two groups: the good outcome group (mRS 0–2) and the poor outcome group
(mRS 3–6). NCCT scans were performed using the Aquilion ONE CT scanner (Canon
Medical Systems, Otawara, Japan) with a detector row of 320 × 0.5 mm. The scanning
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parameters included 135 kV, 300 mAs, and reconstruction with adaptive iterative dose
reduction. The reconstructed slice thickness was 5 mm.

4.3. Image Segmentation and Feature Extraction

Image segmentation was conducted using 3D Slicer software, with the region of
interest (ROI) delineated on the NCCT images to isolate the cerebral hemorrhage area.
Radiomic features were extracted using the Pyradiomics package in Python. The extracted
features included first-order features, shape features, and texture features.

To select the most relevant radiomics features for the study, the ICC was calculated to
assess the stability of the features. Features with an ICC greater than 0.8 were chosen for
further analysis. The selected features were normalized, and the homogeneity of variances
was tested using the Levene test. A t-test was then performed to identify significantly
different variables between the good-outcome and poor-outcome groups. Features with a
p-value less than 0.05 were considered statistically significant. The LASSO regression was
utilized to further refine the selection of the most significant parameters.

4.4. Predictive Model Construction and Evaluation

The process of constructing predictive models involved a randomized allocation
of the dataset into distinct training and testing cohorts, with a distribution ratio of 7:3.
Various ML algorithms were utilized to construct predictive models based on the radiomic
features associated with the patients’ recovery outcomes within the training cohort. These
algorithms encompassed LR, SVM, RF, LGBM, AdaBoost, XGBoost, and MLP. To evaluate
the performance of the predictive models, five-fold cross-validation was conducted in the
training cohort. Confusion matrices were used to assess performance, and ROC curves
were plotted to determine the AUC as a measure of predictive performance. Accuracy,
precision, recall, and f-1 score evaluation metrics were calculated. Additionally, DCA was
performed on each model to evaluate its effectiveness.

4.5. Statistical Analysis

The statistical analysis was carried out utilizing the R software package. This analysis
encompassed the application of the Levene test, chi-square test, t test, and ROC analysis. A
significance threshold of p = 0.05 was employed for statistical evaluations.

5. Conclusions

The study successfully identified relevant radiomics features associated with SAH
patients’ outcomes and demonstrated the high accuracy of the model_SVM using NCCT
radiomics features. These findings suggest that the radiomics model has the potential to
enhance prognosis prediction and treatment efficiency for SAH.
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