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Abstract: One of the early manifestations of systemic atherosclerosis, which leads to blood circulation
issues, is the enhanced arterial light reflex (EALR). Fundus images are commonly used for regular
screening purposes to intervene and assess the severity of systemic atherosclerosis in a timely manner.
However, there is a lack of automated methods that can meet the demands of large-scale population
screening. Therefore, this study introduces a novel cross-scale transformer-based multi-instance
learning method, named MIL-CT, for the detection of early arterial lesions (e.g., EALR) in fundus
images. MIL-CT utilizes the cross-scale vision transformer to extract retinal features in a multi-
granularity perceptual domain. It incorporates a multi-head cross-scale attention fusion module to
enhance global perceptual capability and feature representation. By integrating information from
different scales and minimizing information loss, the method significantly improves the performance
of the EALR detection task. Furthermore, a multi-instance learning module is implemented to
enable the model to better comprehend local details and features in fundus images, facilitating the
classification of patch tokens related to retinal lesions. To effectively learn the features associated with
retinal lesions, we utilize weights pre-trained on a large fundus image Kaggle dataset. Our validation
and comparison experiments conducted on our collected EALR dataset demonstrate the effectiveness
of the MIL-CT method in reducing generalization errors while maintaining efficient attention to retinal
vascular details. Moreover, the method surpasses existing models in EALR detection, achieving an
accuracy, precision, sensitivity, specificity, and F1 score of 97.62%, 97.63%, 97.05%, 96.48%, and 97.62%,
respectively. These results exhibit the significant enhancement in diagnostic accuracy of fundus
images brought about by the MIL-CT method. Thus, it holds potential for various applications,
particularly in the early screening of cardiovascular diseases such as hypertension and atherosclerosis.

Keywords: deep learning; multiple instance learning; cross-scale transformer; arteriosclerosis; fun-
dus image

1. Introduction

In recent years, atherosclerosis has become a widespread vascular lesion worldwide.
According to a recent analysis, approximately 50.20% of people aged 30–79 will be affected
by atherosclerosis in 2020, which is equivalent to around 1940.25 million people [1]. The
prevalence of arterial dysfunction is projected to continue rising as the population ages. It
is estimated that by 2050 there will be a total of 128 million individuals aged 80 or older [2].
Early systemic atherosclerosis often does not exhibit obvious clinical symptoms, but as the
disease progresses, it can cause impaired blood circulation or even lead to infarction. Retinal
vessels can reflect abnormalities in the systemic vascular system, and enhanced retinal arte-
rial light reflex (EALR) is an early manifestation of systemic atherosclerosis [3]. Moreover,
the retinal vasculature is one of the few vessels that can be observed noninvasively [3]; thus,
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regular testing of EALR can aid in understanding the degree of systemic atherosclerosis [4]
and facilitate timely medical intervention to prevent further deterioration.

Ophthalmologists commonly use 2D color fundus images and 3D optical coherence
tomography images for screening and diagnosing conditions [5]. However, compared to op-
tical coherence tomography, fundus images are more suitable for large-scale screening due
to their noninvasive and painless nature. Fundus images are obtained by photographing
the inner wall of the eye from different angles using a fundus camera. These images provide
direct visualization of retinal arteriovenous vasculopathy and other features of fundus dis-
ease [5]. Hence, ophthalmologists can determine the presence of retinopathy by examining
fundus images [5]. EALR is characterized by alterations in the diameter and brightness
of the retinal arterioles [3], resulting in increased optical density of the arterial wall and
narrowing of the arteriole lumen, leading to enhanced reflection. This phenomenon is
observed in different stages as changes in the retinal arterial reflection band and reflection
brightness [3,4]. When EALR occurs, the arterial reflective band widens and the color
changes from normal red to a metallic bright copper shade [4]. With further progression of
atherosclerosis, the vessels will acquire a white silvery reflective appearance [4].

Currently, the diagnosis of EALR relies on empirical observation of fundus images to
determine the presence of EALR by comparing the reflection degree and width of arterial
reflective bands with those of blood vessels. However, this traditional diagnostic method
requires doctors to spend a significant amount of time analyzing fundus images, resulting
in high workload, low efficiency, and impracticality for large-scale ophthalmic disease
screening. Consequently, computer-aided diagnosis technology based on deep learning
has emerged as an effective solution for fast, fully automated, and highly accurate EALR
detection [6–9]. Deep learning networks have the ability to develop more abstract high-
level features, automatically capturing the most crucial and distinctive data characteristics
in the images, thereby improving the accuracy of EALR detection. Nevertheless, existing
studies typically employ a two-stage process: the design of deep learning networks to
segment retinal vessels at the pixel level, followed by the identification of arteriovenous
vessels and the extraction of morphological parameters such as color and brightness.
Finally, classifiers are employed to identify lesion symptoms like EALR. These methods
increase the complexity of algorithms, and the accuracy of EALR detection heavily relies
on the accuracy of the vessel segmentation stage. Specifically, previous research methods,
including the Gabor-based approach and the deep learning network-based retinal vessel
segmentation method introduced by Henry et al., have shown limitations in accurately
segmenting retinal vessel edges [7]. Similarly, the method proposed by Fu et al., which
combines a deep learning network with a fully connected conditional random field, has
struggled to differentiate arteriovenous vessels [8]. Additionally, Yan et al.’s recent method,
which utilizes segmental level loss, demonstrated reduced segmentation accuracy in cases
where vessels were obstructed by diseased tissue [9].

The contributions of MIL-CT are as follows: Firstly, as the earliest work on fundus
image-based EALR detection, our proposed MIL-CT constructs a transformer model using
a multi-head cross-scale attention (MHCA) fusion mechanism to enhance the multi-scale
global modeling capability of the transformer, thereby improving classification performance.
Secondly, by leveraging the multi-level hybrid architecture of the transformer, our approach
(MIL-CT) can extract features at different scales, achieving higher classification accuracy
by utilizing varying granularity in features and integrated distribution patterns. Finally,
by introducing a multi-instance learning (MIL) head to leverage the features extracted
from individual patch tokens, we can easily integrate them into the MIL-CT model, further
enhancing classification accuracy.

To train the proposed MIL-CT model, we performed pre-training using a large-scale
fundus dataset, which significantly improved the performance of the model in the down-
stream EALR detection task. Evaluating our method on the collected EALR dataset, we
demonstrated superior performance and reliable interpretability compared to existing
state-of-the-art (SOTA) methods. This innovation also provides valuable insights for the
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early diagnosis of cardiovascular diseases, such as atherosclerosis, as retinal vessels exhibit
unique spatial variability and global correlation.

2. Methodology
2.1. Overall Framework

Figure 1 depicts the overall framework of the MIL-CT approach. Initially, labeled
fundus images are acquired and utilized as raw data for training and validation purposes.
Next, these images undergo preprocessing to ensure compatibility with the input of the
model. The processed data are then fed into the MIL-CT model, which leverages an MIL
strategy. Specifically, the multi-scale feature extractor of the MIL-CT model is based on the
transformer, enabling effective interaction among input sequences of different scales. To
enhance the utilization of patch tokens from the extracted multi-scale images and capture
complementary information at specific scales, we introduce a novel plug-and-play MIL
module. Ultimately, the effectiveness of our proposed approach is validated through
quantitative evaluation and interpretability analysis.
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2.2. Cross-Scale Transformer

In traditional convolutional neural networks (CNNs), feature extraction is accom-
plished by stacking convolutional and pooling layers. This results in feature maps with
diminishing scale but increasing channel dimensions. Typically, feature maps closer to the
input exhibit larger scale, lower channel dimensionality, and contain more detailed infor-
mation. On the other hand, feature maps farther from the input have smaller scale, larger
dimensionality, and contain more semantic information. In the context of detecting EALR
in fundus images, the fusion of multi-scale features proves advantageous for performance
enhancement. However, the vanilla vision transformer (ViT) fails to efficiently utilize such
multi-scale features [10]. Therefore, we propose a transformer model that incorporates
cross-scale feature fusion to facilitate effective interaction between input sequences at
different scales.

2.2.1. Vanilla ViT

Vanilla ViT [10] is a scientific approach that can be employed for feature extraction in
EALR detection using fundus images as a backbone, as shown in Figure 2. The method
begins by partitioning the image into fixed-sized patches. These patches are then trans-
formed into sequences of token patches through linear projection. To preserve crucial
location information relevant to vision applications, position embedding is incorporated
into each token, including classification tokens. All tokens undergo processing through a
sequence of transformer encoder blocks and are ultimately classified using the classification
tokens. Each transformer encoder block consists of a multi-headed self-attentive (MHSA)
mechanism and a feedforward network (FFN). The FFN comprises two linear layers, with a
hidden layer dimensionality expansion rate denoted as e. Following the first linear layer, a
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GELU nonlinear activation function is utilized. Layer normalization (LN) is applied before
and after each block, which are connected by residual shortcuts.
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Figure 2. Vanilla ViT divides the input fundus image into multiple patches. Each patch is then
projected into a fixed-length vector and fed into the transformer encoder. To perform classification on
the images, a dedicated classification token is included in the input flattened patches. The output
corresponding to this token represents the final ELAR prediction.

To ensure compatibility between the fundus images and transformer encoders, we
undertook preprocessing of the input data. We use X = {xi}n

i=1 ∈ Rw×h×r to represent the
fundus images in the database (where w, h, and r denote the dimensions of image width,
height, and color channels, respectively), and their corresponding labels are represented
by Y ∈ Rn×1 (i.e., indicating whether they are EALR). Each fundus image was divided
into patches of size p × p, with p set to 16 in this study based on the optimal experimental
setup [10]. Consequently, n = (w × h)/(p2) patches were obtained as input from a single
image. This allows us to express the input for the transformer as x0, and the processing of
the i-th block can be represented as follows:

x0 =
{

xcls

∣∣∣∣∣∣xpatch

}
+ xpos (1)

yi = xi−1 + MSHA(LN(xi−1)) (2)

xi = yi + FFN(LN(yi)) (3)

where xcls ∈ R1×q and xpatch ∈ Rn×q are classification and patch tokens, respectively,
xpos ∈ R(n+1)×q is the position embedding with q as the dimension, and {·||·} is the
concatenate operation. In particular, the mathematical representation of LN is

LN(x) =
x− E(x)

Var(x) + ε
· γ + β (4)

where γ and β are the learnable parameters of the LN operation.
ViTs stand out from traditional CNNs due to their unique design feature: the inclusion

of classification tokens. Unlike CNNs, which usually obtain final feature embedding by av-
eraging features across spatial locations, ViTs incorporate classification tokens that interact
with patch tokens in each transformer encoder, thus serving as the ultimate embedding
representation. As a result, the classification tokens are seen as a way to merge all patch
token information [11]. This distinct architectural design enables ViTs to achieve cross-scale
information fusion for both branches.
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2.2.2. Multi-Scale Feature Extraction

The choice of patch size in a vanilla ViT has a significant impact on model accuracy
and complexity. It is generally believed that using finer-grained perceptual patches can lead
to better performance at the cost of increased floating-point operations per second (FLOPs)
and memory consumption. For instance, studies have shown that a vanilla ViT with a patch
size of 16 achieves a 6% improvement compared to a coarser-grained ViT with a patch size
of 32, though it requires four times more FLOPs [11]. Motivated by this, our proposed
method aims to leverage multi-grain patch size perception to extract multi-scale features
from fundus images and design different feature extractor sizes to balance complexity
between branches. As illustrated in Figure 3, we introduce multi-grain size perception, or
embedded patch size, into a multi-branch ViT to obtain the cross-scale features of fundus
images. We then devise a cross-scale attention mechanism to fuse the extracted information
effectively from each branch.

Bioengineering 2023, 10, x FOR PEER REVIEW  5  of  28 
 

Figure 2. Vanilla ViT divides the input fundus image into multiple patches. Each patch is then pro-

jected into a fixed-length vector and fed into the transformer encoder. To perform classification on 

the images, a dedicated classification token is included in the input flattened patches. The output 

corresponding to this token represents the final ELAR prediction. 

2.2.2. Multi-Scale Feature Extraction 

The choice of patch size in a vanilla ViT has a significant impact on model accuracy 

and complexity. It is generally believed that using finer-grained perceptual patches can 

lead to better performance at the cost of increased floating-point operations per second 

(FLOPs) and memory consumption. For instance, studies have shown that a vanilla ViT 

with a patch size of 16 achieves a 6% improvement compared to a coarser-grained ViT 

with a patch size of 32, though it requires four times more FLOPs [11]. Motivated by this, 

our proposed method aims to leverage multi-grain patch size perception to extract multi-

scale features from fundus images and design different feature extractor sizes to balance 

complexity between branches. As  illustrated  in Figure 3, we  introduce multi-grain size 

perception, or embedded patch size, into a multi-branch ViT to obtain the cross-scale fea-

tures of fundus images. We then devise a cross-scale attention mechanism to fuse the ex-

tracted information effectively from each branch. 

Specifically, we design a cross-scale feature extractor that comprises multiple trans-

former  encoders  at  different  scales.  Each  encoder  consists  of  two  branches:  a  coarse-

grained main branch  (C-Branch) and a fine-grained complementary branch  (F-Branch). 

The C-Branch employs a larger patch size, uses more transformer encoders with wider 

embedding dimensions, and processes coarse-grained retinal information. In contrast, the 

F-Branch uses a smaller patch size, has fewer encoders, and uses smaller embedding di-

mensions to process fine-grained retinal information. These two branches employ multi-

head cross-scale attention (MHCA) fusion to perform EALR detection using features ex-

tracted from different scales. To capture the location information between patches in the 

fundus image, we adopt an approach similar to the vanilla ViT [10] and introduce learna-

ble position embeddings for each token of each branch prior to the cross-scale transformer 

(CT) encoder. 

 

Figure 3. The architecture of the proposed CT model. The model divides the fundus image into
patches of various sizes simultaneously. These patches are then fed into two branches with similar
structures: the C-Branch and F-Branch. Generally, the F-Branch is shallower than the C-Branch to
promote smoother learning and balance computational costs. The MHCA fusion module efficiently
facilitates interaction between the feature vectors of the classification tokens and patch tokens from the
two branches, allowing the model to capture information in the multi-granularity perceptual domain.

Specifically, we design a cross-scale feature extractor that comprises multiple trans-
former encoders at different scales. Each encoder consists of two branches: a coarse-grained
main branch (C-Branch) and a fine-grained complementary branch (F-Branch). The C-
Branch employs a larger patch size, uses more transformer encoders with wider embedding
dimensions, and processes coarse-grained retinal information. In contrast, the F-Branch
uses a smaller patch size, has fewer encoders, and uses smaller embedding dimensions to
process fine-grained retinal information. These two branches employ multi-head cross-scale
attention (MHCA) fusion to perform EALR detection using features extracted from different
scales. To capture the location information between patches in the fundus image, we adopt
an approach similar to the vanilla ViT [10] and introduce learnable position embeddings
for each token of each branch prior to the cross-scale transformer (CT) encoder.
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2.2.3. Cross-Scale Attention Fusion

The cross-scale attention (CA) mechanism in our proposed methodology enhances
the fusion of multi-scale features by efficiently combining classification tokens and patch
tokens from different branches. This mechanism builds upon the conventional MHSA
approach, which calculates the similarity between patch tokens to adjust input information.
To extract retinal information from various perceptual domains, we introduce branch-
specific classification tokens as agents within the CA mechanism. These tokens facilitate
fusion by exchanging information with patch tokens from other branches. Since the
classification token has already learned abstract information from all the patch tokens
within its own branch, interacting with a patch token from another branch enables the
smooth flow of information between different branches.

Once the patch tokens from other branches are fused with the classification token,
they are projected back to their respective branches. This enriches the representation of
each patch token, capturing valuable cross-scale information. Subsequently, at the next
transformer encoder, the classification token interacts with its own patch tokens once
again. This iterative process further promotes the transfer of knowledge learned from
other branches, enhancing the representation of each patch token with comprehensive
information. By employing the CA mechanism, our methodology effectively integrates
information across different scales, enabling enhanced feature representation and better
diagnostic accuracy in detecting early arterial lesions.

Next, we describe the CA module for the C-Branch, as depicted in Figure 4, and
replicate the same process for the F-Branch by simply exchanging the indexes “f ” and “c”.
By doing so, we can apply similar attention mechanisms at different scales to achieve the
fusion of multi-scale features. Initially, the classification tokens of the C-Branch are fused
with the patch tokens of the F-Branch through a concatenate operation:

x̂c =
{
P c(xc

cls)
∣∣∣∣∣∣x f

patch

}
(5)

where P c(·) is the projection function for dimension alignment. Then, CA can be performed
between x̂c and xc

cls as

CA(x̂c, xc
cls) = so f tmax(QKT/

√
q/t) ·V (6)

where the softmax function is used to normalize the similarity score, t is the number of
heads, and query Q, key K, and value V can be expressed as

Q = P(xc
cls) ·Wq

K = x̂c ·Wk
V = x̂c ·Wv

(7)

where Wq, Wk, Wv ∈ R(c/t)×c are learnable parameters. Note that by utilizing only classifi-
cation tokens in the query, the computational and memory complexity of generating the
attention map in CA becomes linear rather than quadratic, as seen in the MHSA mechanism.
This modification enhances the overall efficiency of the process. Furthermore, we have
substituted the FFN in the vanilla ViT with a structure that incorporates LN and residual
shortcuts. As a result, the final output zc can be represented as follows:

zc =
{
Bc(uc

cls)
∣∣∣∣∣∣xc

patch

}
(8)

where Bc(·) is the back-projection function for dimension alignment. We also obtain the
united attention score uc

cls from the MHCA module:

uc
cls = P

c(xc
cls) + MHSA

(
LN
({
P c(xc

cls)
∣∣∣∣∣∣x f

patch

}))
(9)
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cation tokens in the C-Branch serve as query tokens in the self-attentive mechanism and effectively
interact through similarity weight assignment. Similarly, the F-Branch undergoes a similar mirror-
ing process.

Similarly, the process of merging the classification token from the F-Branch with
the patch token from the C-Branch is identical to the aforementioned process, thereby
facilitating efficient interaction of cross-scale information. It is important to note that
the proposed MHCA fusion mechanism in our MIL-CT method shares similarities with
CrossViT [11] in terms of using a multi-head attention mechanism. However, there are
key differences in how we utilize this mechanism. As shown in Figure 3 of the revised
manuscript, we primarily employ the CT module in the MIL-CT to extract multi-scale
visual features from fundus images. The CT module ensures minimal information loss
while providing the MIL module with patch tokens of the different granularity perceptual
domains required for instance embedding. Additionally, the MHCA fusion mechanism
in MIL-CT is fixed as a single-layer MHCA, as we found that utilizing a single layer of
cross-attention was more effective for our specific task.

2.3. Multiple Instance Learning

As previously mentioned, our study utilizes a CT architecture to facilitate the fusion
of multi-scale features. This is achieved through effective interaction between classification
tokens from one branch and patch tokens from another branch. However, it is also im-
portant to refine the information of patch tokens within a single feature extraction branch.
This is especially crucial when considering that retinal diseases may manifest in various
locations [6], leading to varying contributions from different patches.

To address this issue, we have adapted the bag—instance relationships presented in
multiple instance learning (MIL) [12,13] to the image—patch relationships in ViTs. We have
introduced the MIL approach into the CT structure to leverage the information shared
among all patch tokens within each specific perceptual domain branch. Consequently, as
shown in Figure 5, the MIL scheme involves the following three main steps: (1) construction
of low-dimensional embeddings for all patch tokens within a given branch; (2) obtainment



Bioengineering 2023, 10, 971 8 of 26

of bag representations through aggregation functions; and (3) determination of the final
probabilities at the bag level using bag-level classifiers.
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Figure 5. Schematic diagram of the proposed plug-and-play MIL module. In this module, the patch
tokens are treated as instance relations. After low-dimensional embedding, an attention aggregation
function is used to assign weights to the instance embeddings. The aggregated bag representations
are then fed into a linear classifier to obtain the final bag-level probabilities. This approach provides
complementary information to the predicted probabilities generated by the classification tokens.

Similarly, we will illustrate the data flow chart of MIL by using the C-Branch as an
example, while applying the same operation to the F-Branch.

2.3.1. Low-Dimensional Embedding

Low-dimensional embedding learns meaningful representations of patch tokens and
extracts the features most relevant to retinal pathology, thus reducing redundant informa-
tion. Assuming that the bag—instance relationship containing coarse-grained perceptual
domain information output in the C-Branch is denoted as Zc =

{
zc

1, zc
2, . . . , zc

n
}

, then for
each obtained feature vector zc

i ∈ Rd it will be fed into a low-dimensional embedding of
dimension m, which consists of a linear layer, LN, and ReLU activation function:

hc
i = max

(
LN(WT

linearzc
i ), 0

)
(10)

where Wlinear ∈ Rd×m represents the weight of the linear layer.

2.3.2. Attention Aggregation Function

Due to the varying contributions of different patch tokens to the bag, we aim to
maximize their utilization while effectively distinguishing their dissimilarities. To achieve
this, as illustrated in Figure 5, we propose an attention module that incorporates a bilinear
layer to derive the spatial weight matrix of the instance embedding. The detailed procedure
is described below:

αc
i = so f tmax

(
WT

l2max
(

LN(hc
i WT

l1), 0
))

(11)

where Wl1 ∈ Rl×m and Wl2 ∈ Rl×1 represent the weight of the two linear layers. The
attention weights can be assigned to instance embeddings, thereby highlighting the dis-
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tinct contributions made by different instances. The aggregated bag representation Ac is
defined as

Ac = ∑n
i=1 αc

i hc
i (12)

2.3.3. Bag-Level Classifier

A linear bag-level classifier is used to estimate the final bag-level probability P c,
mathematically represented as

P c = Wc
bagA

c (13)

where Wc
bag ∈ R2×l represents the weight of the bag-level classifier.

By following the same procedure, we can easily derive the final bag-level probability
P f for the F-Branch. These probabilities can be seamlessly combined to yield estimates of
the probabilities for the MIL head:

Pmil =
{
P c
∣∣∣∣∣∣P f

}
(14)

2.4. Pre-Training and Fine Tuning

In order to maximize the utilization of the generalization bias learned from the fundus
image dataset and expedite the model training process, our study employed a large fundus
image classification dataset, specifically Kaggle [14], to pre-train the proposed MIL-CT
model. Subsequently, the pre-trained MIL-CT model was fine-tuned for the downstream
task of EALR detection using our dataset.

Throughout the training process, we formulated a jointly optimized objective loss
function to guide the learning process of specific branches in the model:

L(ygt, ymlp, ymil) = −η∑2
j=1 ygt

j log(ymlp
j )− (1− η)∑2

j=1 ygt
j log(ymil

j ) (15)

where ygt represents the ground-truth label and η is the loss hyperparameter. Meanwhile,
ymlp and ymil represent the estimations made by the multi-layer perceptron (MLP) classifier
and the MIL bag-level classifier, respectively. Specifically, for each scale branch, we extract
information from the patch tokens and classification tokens based on the aforementioned
cross-entropy-based joint optimization loss function. This loss function assigns weights to
both the MIL classifier and the MLP header using the hyperparameter η. The losses ob-
tained from each scale branch are then summed to derive the overall objective optimization
function.

3. Experimental Setup
3.1. Data Description

We conducted a study on the detection of EALR in fundus images. For this purpose,
we utilized two datasets: the publicly available pre-trained Kaggle dataset [14] and the col-
lected EALR dataset. The Kaggle dataset was obtained from the 2015 Diabetic Retinopathy
Detection Competition, organized by Kaggle and EyePACS [14]. The combined dataset com-
prises a total of 86,729 fundus image samples, with 33,133 training samples and 53,596 test
samples. These images are classified into five levels based on the severity of diabetic
retinopathy and have varying resolutions of approximately 3500 × 2500 pixels. In addition
to these datasets, we also created a new dataset called EALR, which consists of 1579 fundus
images taken from 1114 patients at the Xuanwu Hospital Ophthalmology Department
between January 2014 and June 2022. Each fundus image in the EALR dataset underwent
review and labeling by two ophthalmologists and a retinal specialist.

Table 1 presents comprehensive statistical information regarding the datasets. The
Kaggle dataset categorizes fundus images into five classes, with values ranging from 0 to
4 denoting normal, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR,
and proliferative diabetic retinopathy (PDR), respectively. The corresponding samples are
depicted in Figure 6, specifically Figure 6a–e. In contrast, the EALR dataset classifies fundus
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images into two stages, where 0 represents normal and 1 indicates the detection of EALR.
These samples can be observed in Figure 6, specifically Figure 6f,g. It is worth noting that
both datasets exhibit inter-class imbalance, a commonly encountered challenge in medical
image datasets. Specifically, class 0 (lesion-free) samples account for 72.61% and 64.53%
of the total number of samples in the Kaggle dataset and the EALR dataset, respectively.
On the other hand, class 4 and EALR samples make up only 2.21% and 35.47% of the total
samples, respectively. This data distribution significantly deviates from that of natural
image datasets. The imbalance in data distribution poses a substantial problem during the
training process of traditional deep learning models. Such models tend to predict categories
with higher frequency, which can lead to misdiagnosis and delayed treatment, potentially
worsen patient outcomes, or result in more serious consequences, especially in medical
image classification. Therefore, addressing the data imbalance issue is a crucial aspect that
requires our utmost attention in this research.

Table 1. Data distribution of Kaggle and EALR datasets.

Source Category Stage Training Set Testing Set Total Proportion

Kaggle [14]

0 Normal 23,814 39,553 63,367 72.61%

1 Mild
NPDR 2444 3762 6206 7.11%

2 Moderate
NPDR 5294 7861 13,155 15.07%

3 Severe
NPDR 873 1214 2087 2.39%

4 PDR 708 1206 1914 2.21%

EALR
0 Normal 815 204 1019 64.53%
1 EALR 448 112 560 35.47%

Bioengineering 2023, 10, x FOR PEER REVIEW  10  of  28 
 

3. Experimental Setup 

3.1. Data Description 

We conducted a study on the detection of EALR in fundus images. For this purpose, 

we utilized two datasets: the publicly available pre-trained Kaggle dataset [14] and the 

collected EALR dataset. The Kaggle dataset was obtained  from  the 2015 Diabetic Reti-

nopathy Detection Competition, organized by Kaggle and EyePACS [14]. The combined 

dataset comprises a total of 86,729 fundus image samples, with 33,133 training samples 

and 53,596 test samples. These images are classified into five levels based on the severity 

of diabetic retinopathy and have varying resolutions of approximately 3500 × 2500 pixels. 

In addition to these datasets, we also created a new dataset called EALR, which consists 

of 1579 fundus images taken from 1114 patients at the Xuanwu Hospital Ophthalmology 

Department between January 2014 and June 2022. Each fundus image in the EALR dataset 

underwent review and labeling by two ophthalmologists and a retinal specialist. 

Table 1 presents comprehensive statistical  information regarding  the datasets. The 

Kaggle dataset categorizes fundus images into five classes, with values ranging from 0 to 

4 denoting normal, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, 

and proliferative diabetic retinopathy (PDR), respectively. The corresponding samples are 

depicted in Figure 6, specifically Figure 6a–e. In contrast, the EALR dataset classifies fun-

dus images into two stages, where 0 represents normal and 1 indicates the detection of 

EALR. These samples can be observed in Figure 6, specifically Figure 6f,g. It is worth not-

ing that both datasets exhibit inter-class imbalance, a commonly encountered challenge in 

medical image datasets. Specifically, class 0 (lesion-free) samples account for 72.61% and 

64.53% of the total number of samples in the Kaggle dataset and the EALR dataset, respec-

tively. On the other hand, class 4 and EALR samples make up only 2.21% and 35.47% of 

the total samples, respectively. This data distribution significantly deviates from that of 

natural image datasets. The  imbalance  in data distribution poses a substantial problem 

during the training process of traditional deep learning models. Such models tend to pre-

dict categories with higher frequency, which can lead to misdiagnosis and delayed treat-

ment, potentially worsen patient outcomes, or result in more serious consequences, espe-

cially in medical image classification. Therefore, addressing the data imbalance issue is a 

crucial aspect that requires our utmost attention in this research. 

 

Figure 6. The five categories  in  the Kaggle dataset are  (a) normal,  (b) mild NPDR,  (c) moderate 

NPDR, (d) severe NPDR, and (e) PDR. The two categories in the EALR dataset are (f) normal and 

(g) EALR. 

   

Figure 6. The five categories in the Kaggle dataset are (a) normal, (b) mild NPDR, (c) moderate
NPDR, (d) severe NPDR, and (e) PDR. The two categories in the EALR dataset are (f) normal and
(g) EALR.

3.2. Data Processing
3.2.1. Image Quality Screening

When acquiring fundus images, various factors, such as pixel count, exposure, and
contrast, can differ due to variations in the environment, equipment, and human involve-
ment. Some images may suffer from issues like severe overexposure, underexposure, lens
contamination, and out-of-focus jitter. These problems significantly impact the efficacy
of the classification model. The quality of data preprocessing plays a vital role in the
learning capability of the model and ultimately determines its classification performance.
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Therefore, enhancing image quality stands as a crucial step in determining the effectiveness
of the classification model. In the preprocessing of fundus images, the first essential step
involves manually filtering out low-quality images. These images lack comprehensive
information regarding retinal structure and fail to provide useful pathological features for
model learning. We have randomly selected a fundus image in Figure 7 to visualize the
changes after the data processing process.
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Figure 7. Visualization results of data processing. Firstly, redundant borders were removed (a) to
ensure a clean and focused representation. Next, Contrast Limited Adaptive Histogram Equalization
(CLAHE) was applied to enhance image quality and improve the visibility of important features (b).
Subsequently, a Gaussian smoothing filter was employed to reduce noise and refine the details
further (c). Finally, data augmentation techniques were utilized to generate additional training
samples (d). (e) shows examples of eight different data augmentation transformations. Additionally,
the last two images in the lower right corner demonstrate a sample that incorporates all data
enhancement methods, with their application determined by random probability.

3.2.2. Removing Redundant Borders

Black redundant borders exist in the fundus image. This region does not contribute
effective feature information and does not significantly aid in model parameter training
during the training process. To address this, a specific approach is implemented. The image
is traversed cyclically, identifying the first valid pixel point in all four directions that is
not part of the background region. Subsequently, the image is cropped based on these
determined points.

3.2.3. Contrast Limited Adaptive Histogram Equalization (CLAHE)

In fundus images, the concave structure of the retina results in a darker edge region
compared to the central region, leading to a significant contrast difference from the center
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to the edge. To address this issue, it is necessary to enhance the contrast of fundus images
prior to model training. In our study, we utilized the CLAHE method, which effectively
adjusts contrast by constraining noise amplification in contrast adaptive histogram equal-
ization [15]. This method involves cropping the histogram using a predefined clipping
threshold and then repeatedly averaging the distribution across individual gray values
until the frequencies associated with all gray values fall below the threshold [15]. For our
experiment, we applied the CLAHE algorithm for contrast enhancement preprocessing
of diabetic retinal fundus images. The clipping threshold parameter, clipLimit, was set to
seven, and the tileGridSize parameter was set to six.

3.2.4. Smoothing Gaussian Filtering

To mitigate the impact of uneven brightness conditions, we employ Gaussian filtering
to equalize the brightness and contrast of the image. This aims to minimize discrepancies
arising from varying exposures and contrasts, allowing for the capture of the maximum
amount of detailed features in the affected areas of the fundus image. The smoothed
Gaussian filtering algorithm entails calculation of the results through the weighted average
of each pixel value and the surrounding pixels. This specific weighted average calculation
method can be expressed as follows:

x̃i(σ) = κ(xi − G(xi; σ) · xi) + δ (16)

where G(xi; σ) denotes the Gaussian smoothing function and σ represents the standard
deviation, which is used to determine the distribution of the background pixel values in
the images. The contrast of the image is improved by optimizing the distribution of pixel
values, δ represents the intensity, and the pixel values are distributed between 0 and 255. In
this experiment, we set the parameters as follows: α as 4, σ as r/30, and β as 128.

3.2.5. Data Augmentation

The primary challenge in detecting EALR lies in the abundance of retinal vessels and
the indistinct differences they present. Consequently, a substantial amount of image infor-
mation must be provided to the neural network to extract more specific and comprehensive
lesion features. Although the dataset employed contains a significant volume of fundus
image data, inconsistencies exist in the distribution of images across different categories,
with the normal category containing a disproportionately large number of fundus images.
This disparity may cause the deep learning network to predominantly learn features from
that particular category during training, subsequently affecting subsequent classification or
detection tasks. Hence, data augmentation is necessary to equalize the number of images
in each category, thereby positively influencing the training of subsequent models. Given
the abundance of images in the normal category, we solely perform data augmentation
on the abnormal category to enhance the robustness of the model. For our experiments,
we primarily employ random rotation, horizontal flip, vertical flip, proportional scaling,
horizontal shift, vertical shift, shear transformation, and fill processes to augment the
sample size and ultimately achieve balanced data distribution across categories.

3.3. Training and Validation

To conduct a comprehensive evaluation of MIL-CT and its competing models, mini-
mize the risk of overfitting, and utilize the available EALR dataset effectively, we adopt a
five-fold cross-validation approach. This methodology enables a thorough assessment by
averaging the performance metrics obtained from five independent runs. All experiments
were conducted using the PyTorch framework (version 1.8.1) on an NVIDIA RTX 3090 GPU.

For training the models, we employed a total of 200 epochs. The initial learning rate
was set to 1 × 10−3, with the Adam optimizer employed and a weight decay of 5 × 10−4.
A batch size of 32 was used, along with a momentum of 0.9. Further details regarding the
optimization process and additional hyperparameters will be discussed in the ablation
experiments section.
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3.4. Evaluation Criteria

We employed a comprehensive range of quantitative metrics to evaluate the perfor-
mance of the MIL-CT model in detecting EALR. These metrics include accuracy (ACC),
precision (PRE), sensitivity (SEN), and specificity (SPE). ACC represents the proportion of
correctly classified samples as either EALR or normal, while PRE measures the proportion
of true-positive samples among those identified as EALR. SEN reflects the proportion
of accurately predicted EALR samples, while SPE indicates the proportion of correctly
identified normal samples.

To further assess the balance of the model between SEN and SPE, we utilized visual-
izations such as the receiver operating characteristic (ROC) curve and its area under the
curve (AUC). Additionally, we calculated the F1 score, which is the average of PRE and
SEN. A high F1 score close to 1 indicates strong EALR detection performance in terms
of ACC.

Furthermore, we employed gradient-weighted class activation mapping (Grad-
CAM) [16] to visualize the regions of interest in fundus images, thus facilitating inter-
pretable analysis. Finally, we assessed the parametric number and computational efficiency
of the model using the number of parameters (Params) and FLOPs.

4. Results
4.1. Quantitative Analysis

Table 2 presents the quantitative evaluation results of the proposed model variants in
a five-fold cross-validation, demonstrating the effectiveness of integrating CT with MIL-
ViT. Initially, we used vanilla ViT as the baseline model and constructed feature extraction
backbones for three other models: (1) the CT model, where vanilla ViT serves as a cross-scale
feature extractor with patch sizes of 16 and 12 for the F-Branch and C-Branch, respectively;
(2) the MIL-ViT model, where vanilla ViT acts as the feature extraction backbone; and
(3) the MIL-CT model, which combines the first two models.

The results show that the average ACC, PRE, SEN, SPE, and F1 scores of the CT model
are improved by 21.10%, 22.96%, 29.66%, 39.23%, and 22.10%, respectively, compared
with the baseline model. By utilizing the CT model for multi-scale feature extraction and
employing an MHCA module, the model enhances its ability to perceive global information,
improves feature representation, and synthesizes information from different scales, thereby
reducing information loss. Consequently, the CT model demonstrates good performance in
the EALR detection task.

Likewise, the MIL-ViT model also shows significant improvements relative to the
baseline model across various metrics. It achieves average enhancements of 17.70%, 18.90%,
24.56%, 32.20%, and 18.67% for ACC, PRE, SEN, SPE, and F1 scores, respectively. These
experimental results validate the advantages of the MIL-ViT model in extracting overall
features from fundus images. By introducing the MIL module, the model more accurately
understands local details and features, especially the lesions or abnormal regions associated
with EALR.
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Table 2. Quantitative evaluation results of the variants of the proposed model.

Model Variant Type ACC (%) PRE (%) SEN (%) SPE (%) F1 (%)

Vanilla ViT [10]
Normal 77.22 79.46 87.25 58.93 83.18
EALR 77.22 71.74 58.93 87.25 64.71

Average 77.22 76.73 73.09 68.97 76.66

CT
Normal 93.51 99.46 90.43 99.11 94.73
EALR 93.51 85.06 99.11 90.43 91.55

Average 93.51 94.35 94.77 96.03 93.60

MIL-ViT
Normal 90.89 95.10 90.55 91.52 92.77
EALR 90.89 84.19 91.52 90.55 87.70

Average 90.89 91.23 91.04 91.18 90.97

MIL-CT
Normal 97.62 97.35 99.02 95.09 98.18
EALR 97.62 98.16 95.09 99.02 96.60

Average 97.62 97.63 97.05 96.48 97.62

Notably, the MIL-CT model exhibits the most favorable EALR detection results due to
the efficient information interaction between the CT and MIL models. Compared to the
baseline model, the MIL-CT model achieves mean enhancements of 26.42%, 27.24%, 32.78%,
39.89%, and 27.34% for ACC, PRE, SEN, SPE, and F1 scores, respectively, by combining
cross-scale fundus information with multiple instances of bag-level classification results.

Additionally, we visually depict the performance of the proposed model variants in
EALR detection through Figure 8 (ROC curves) and Figure 9 (confusion matrix). These
figures highlight the robustness and accuracy of the MIL-CT model.
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Therefore, the CT model, the MIL-ViT model, and the MIL-CT model, when combined,
demonstrate excellent performance in the study of EALR detection based on fundus images.
These models effectively integrate and recognize multiple fine-grained perceptual domains
by leveraging the global feature extraction capability of a transformer along with an MIL
module. As a result, they offer a scientific approach to the EALR detection problem while
significantly improving accuracy and reliability.
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Figure 9. The confusion matrix of the (a) vanilla ViT, (b) CT, (c) MIL-ViT, and (d) MIL-CT models
for EALR detection. Note that only the results of the median in the five-fold cross-validation are
calculated here.

4.2. Comparison with SOTA Models

Table 3 presents the quantitative evaluation results of our proposed MIL-CT model,
comparing its performance with recent parallel works that have achieved advancements in
enhancing the efficiency and accuracy of the vanilla ViT model [10]. The results in Table 3
demonstrate that MIL-CT surpasses all other methods with equivalent FLOPs and Params.

Table 3. Quantitative comparison results with SOTA transformer models.

Model ACC (%) PRE (%) SEN (%) SPE (%) F1 (%) Params (M) FLOPs (G)

Vanilla ViT [10] 77.22 76.73 73.09 68.97 76.66 102.44 16.88

MobileViT [17] 87.03 86.96 85.52 84.02 86.98 5.57 1.42

EfficientFormer [18] 84.18 84.04 81.35 80.04 84.07 31.89 3.94

CaiT [19] 74.05 73.61 76.20 67.23 73.75 46.82 8.63

XCiT [20] 71.52 70.46 73.17 59.40 70.07 47.64 8.92

BEiT [21] 75.32 75.22 74.28 70.34 75.27 81.18 12.70

VOLO [22] 75.32 74.77 75.55 64.30 74.16 58.58 13.61

SwinT [23] 61.71 52.83 65.32 37.10 52.92 109.07 15.19

ConViT [24] 76.58 76.49 77.81 71.84 76.53 86.39 16.81

MIL-CT (our) 97.62 97.63 97.05 96.48 97.62 32.35 6.51
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Importantly, the F1 score of MIL-CT is notably higher, exhibiting a significant im-
provement of 23.23% (86.98% vs. 97.62%) compared to the second-ranked MobileViT
model [17], despite the increased FLOPs and Params. Additionally, MIL-CT showcases
similar computational efficiency and Params to EfficientFormer [18] while outperforming
other models in terms of F1 score, with improvements ranging from 16.12% to 84.47%.
Therefore, our method consistently outperforms all models except for MobileViT [17]
and EfficientFormer [18] in terms of accuracy and parameter count, validating further
the efficacy of multi-scale features in transformers. In comparison to other transformer
models, MIL-CT achieves superior accuracy with fewer parameters, thereby reducing
computational complexity.

In light of the dominant position of computer vision applications and the increasing de-
mand for fundus image analysis, we deployed various CNN architectures, including popu-
lar models such as the hand-crafted ResNet [25] and the search-based EfficientNet [26,27], to
comprehensively compare their performance with our proposed MIL-CT model. The results
of the comparative experiment are presented in Table 4.

Table 4. Quantitative comparison results with SOTA CNN models.

Model ACC (%) PRE (%) SEN (%) SPE (%) F1 (%) Params (M) FLOPs (G)

ResNet101 [25] 81.65 81.41 81.65 74.62 81.23 44.55 7.87

ResNeXt101 [28] 73.42 72.73 69.14 64.87 72.82 88.79 16.54

SEResNet101 [29] 73.73 72.96 68.18 62.63 72.55 49.33 7.64

ECAResNet101 [30] 73.73 72.95 68.38 63.03 72.65 44.57 8.11

MobileNetv3 [27] 84.49 84.46 84.57 81.42 84.48 4.18 0.22

BiT [31] 76.90 76.56 77.12 70.81 76.67 44.76 0.04

Xception71 [32] 83.86 83.67 84.13 78.66 83.66 42.33 9.88

EfficientNetv2 [26] 86.39 86.37 86.02 83.67 86.38 19.22 1.50

ConvNeXt [33] 74.68 74.41 73.17 68.79 74.52 50.18 8.68

DenseNet121 [34] 85.44 85.58 84.25 83.55 85.50 7.90 2.83

MIL-CT (our) 97.62 97.63 97.05 96.48 97.62 32.35 6.51

First, MIL-CT exhibits superior accuracy, efficiency, and compactness when compared
to the ResNet family of models (ResNet [25], ResNeXt [28], SEResNet [29], and ECARes-
Net [30]). Specifically, MIL-CT outperforms these models in terms of ACC, PRE, SEN,
SPE, and F1 score, except for MobileNetv3 [27], which is marginally faster. Notably, even
after increasing Params in our CNN model to enhance its fitting ability, MIL-CT remains
remarkably competitive. Its improvement ranges are approximately 13.00% to 32.96%,
13.04% to 34.24%, 12.82% to 42.34%, and 15.31% to 54.05%, respectively. Furthermore, our
model achieves an F1 score higher than 86.38%, emphasizing its crucial role in enhancing
EALR detection, particularly given that most competing models fall below this threshold by
11.51%. We are optimistic that, by incorporating neural architecture search methods [26,27],
our approach can bridge the Params gap with EfficientNet [26].

4.3. Ablation Studies
4.3.1. Effect of Patch Sizes

MIL-CT utilizes MHCA to establish global correlations among fundus images at
various scales, effectively capturing information from multiple perceptual domains of
different granularity. This approach significantly enhances the detection of small-sized
fundus lesions. To assess the impact of patch size on EALR detection performance, we
conducted experiments using (8, 16) and (12, 16) as the patch sizes in the F-Branch and
C-Branch, respectively. Based on the results presented in Table 5, we observed that MIL-CT
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with a patch size of (12, 16) outperforms MIL-CT-1 in EALR detection while requiring
fewer patches. This implies that excessively pursuing fine-grained features may result
in a significant scale difference between the two branches, thereby affecting the smooth
learning of features (with the number of patch tokens in both branches being doubled).
Hence, selecting an appropriate patch size is crucial for improving detection accuracy in
studies focusing on EALR detection using fundus images.

Table 5. Ablation experiment with different architecture parameters. The underlined values indicate
changes from MIL-CT.

Model
Patch Size Dimension

F C T ACC (%) F1 (%) Params (M) FLOPs (G)
F-Branch C-Branch F-Branch C-Branch

MIL-CT-1 8 16 96 192 1 4 3 97.35 97.13 32.35 7.53
MIL-CT-2 12 16 192 192 1 4 3 96.75 96.40 38.91 8.60
MIL-CT-3 12 16 96 192 2 4 3 97.40 97.31 33.82 7.25
MIL-CT-4 12 16 96 192 1 4 4 97.53 97.23 33.25 6.51
MIL-CT-5 12 16 96 192 1 4 5 97.28 96.95 34.79 6.51
MIL-CT-6 12 16 96 192 1 4 6 97.05 96.88 35.17 6.51

MIL-CT
(our) 12 16 96 192 1 4 3 97.62 97.62 32.35 6.51

4.3.2. Effect of the F-Branch

When conducting EALR detection using MIL-CT, a multi-scale approach is employed
to capture lesions of varying patch sizes. Larger lesions can be effectively detected by the
C-Branch, while smaller lesions require the F-Branch for detection. In order to balance the
computational load, we designed the F-Branch to be shallower and narrower compared
to the C-Branch. To investigate whether increasing the complexity of the F-Branch would
lead to performance improvements, we designed the MIL-CT-2 and MIL-CT-3 models, and
their results are presented in Table 5. Despite both models having increased Params and
FLOPs, there was no significant improvement in EALR detection performance. In addition,
our modeling test results in Appendix B regarding the retention of only the F-Branch and
C-Branch are consistent with this conclusion. We believe that there are three potential
reasons for this:

1. Information redundancy: The F-Branch is specifically designed to handle smaller scale
lesions efficiently. If the width and depth of the fine-grained branch are increased
excessively, it may introduce an abundance of parameters, resulting in information
redundancy. These redundant parameters can hamper the training process of the
model and make it challenging to learn meaningful features.

2. Localization problem: The F-Branch focuses more on the intricate details and local
information of the image. However, in EALR detection, smaller scale lesions may
lack distinctive global features. Consequently, deepening the fine-grained branch may
not provide additional valuable information since it is better suited to address image
details rather than global features.

3. Limitations in additional information: Typically, the F-Branch only provides simplistic
supplementary information about the fundus image. Due to its narrower width and
shallower depth, this branch possesses relatively limited representational power and
may only capture a few basic features in the image. Even if the fine-grained branch is
deepened, its capacity might still be insufficient to learn more complex and abstract
features, thereby failing to enhance the performance of model.

Hence, even with increased width and depth in the F-Branch, there may not be a
noticeable enhancement in the performance of the model. Instead, the F-Branch might be
better suited to providing complementary features in fundus images, which can then be
fused with the more intricate and abstract features captured by the C-Branch, resulting in
more accurate EALR detection.
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4.3.3. Effect of the Number of CT Encoders

In investigating the detection of EALR in fundus images, the presence of spatial corre-
lation and long-range dependence emerges as a significant feature. To effectively capture
the mutual information between different patches, MIL-CT incorporates CT encoders that
utilize the MHCA mechanism. These encoders aim to model global spatial relationships
and facilitate information transfer across distant regions. In order to evaluate the impact
of CT encoders on the performance of MIL-CT, we attempted to stack CT encoders with
four, five, and six layers to construct the MIL-CT-4, MIL-CT-5, and MIL-CT-6 models,
respectively.

However, experimental results indicated that including more CT encoders did not
result in a significant performance improvement compared to the baseline model (MIL-CT
model with three layers of CT encoders). The F1 scores of the MIL-CT-4, MIL-CT-5, and MIL-
CT-6 models were found to be 0.40–0.76% lower than the baseline model. Additionally, the
inclusion of additional CT encoders introduced unnecessary complexity without providing
significant benefits. These results suggest that MIL-CT already possesses sufficient capacity
to capture features in fundus images, making the incorporation of extra CT encoders
redundant.

To address concerns such as overfitting and resource inefficiency, we recommend
adjusting the capacity of MIL-CT appropriately when conducting EALR detection, rather
than blindly adding more CT encoders. This approach ensures that the model maintains
adequate expressive power while avoiding unnecessary complexity.

4.3.4. Sensitivity to MIL

The patch token-based bag-level classifier loss method employs the MIL technique [27]
to divide the input image into multiple patches and independently calculate the cross-
entropy (CE) loss for each patch. This approach enhances the perception of different regions
by classifying each patch individually, thereby better capturing local features and detailed
information. In this study, we aim to apply patch token-based bag-level classifier loss to
the fundus image-based EALR detection problem.

To adjust the weighting relationship between patch token-based bag-level classifier loss
and classification token loss, we introduced the hyperparameter η, which varies between 0.2
and 1.0. This was chosen in order to achieve a balance between the importance of the two
losses. Through our ablation experiments, we investigated the impact of different values of
η on EALR detection performance and conducted sensitivity analysis. The experimental
results are presented in Table 6. We observe that when the weight of the classification token
loss is too low (close to 0), the model prioritizes the patch token-based bag-level classifier
loss, neglecting the importance of the balanced classification token loss. The classification
token loss serves to model global spatial relationships and facilitate information transfer
through an MHCA mechanism, enabling a better representation of interrelationships
between lesions. Consequently, if the weight of the classification token loss is too small,
the model fails to fully leverage this global information transfer mechanism, leading to a
decline in performance.

Table 6. Experimental results of sensitivity analysis for the loss hyperparameter of MIL.

η ACC (%) PRE (%) SEN (%) SPE (%) F1 (%)

0.2 95.17 95.17 94.70 94.23 95.17
0.4 96.36 96.35 95.82 95.28 96.35
0.5 97.62 97.63 97.05 96.48 97.62
0.6 97.74 97.89 97.36 96.18 97.81
0.8 94.46 94.49 94.15 93.84 94.47
1.0 93.51 94.35 94.77 96.03 93.60
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However, as the weight of the classification token loss increases, the model strikes a
balance between both losses, allowing for a synergistic combination of global information
and local features. With higher weights assigned to the classification token loss, the
model places greater emphasis on modeling global information, resulting in gradual
improvements in EALR detection performance. When the weight attains its optimal
value (0.6), the model achieves peak performance while maintaining a proper equilibrium
between global information and local features. Nevertheless, exceeding the optimal weight
value for the classification token loss (greater than 0.6) causes a progressive increase in the
relative importance of the patch token-based bag-level classifier loss. This overemphasis
on local features may lead to neglect in terms of modeling global relationships, resulting
in a gradual deterioration in performance. Consequently, an excessive weight for the
classification token loss can negatively impact overall model performance.

In conclusion, the patch token-based bag-level classifier loss method effectively cap-
tures local features and detailed information in fundus images, while the classification
token loss method models global spatial relationships. By appropriately adjusting the
weights of the classification token loss, the importance of global information and local
features can be balanced, thereby improving EALR detection performance.

4.3.5. Combination of Pre-Training

After conducting an experimental evaluation, we explored the impact of different
pre-training strategies on the performance of lesion detection in fundus images. These
strategies comprised the baseline model (without the use of pre-trained weights), the
contrast model (utilizing weights pre-trained on ImageNet [35]), and our proposed model
(employing weights pre-trained on the large fundus image Kaggle dataset [14]).

According to the findings presented in Table 7, it is evident that both the contrast
models and the model using ImageNet pre-trained weights achieved lower F1 scores in
EALR detection compared to our proposed model, with reductions of 2.68% and 1.15%,
respectively.

Table 7. Effect of different pre-training experiments on ELAR detection performance.

Pre-Trained Dataset ACC (%) PRE (%) SEN (%) SPE (%) F1 (%)

Without Pre-training 95.01 95.00 94.38 93.74 95.00
ImageNet [35] 96.52 96.52 95.79 95.07 96.50

Kaggle [14] 97.62 97.63 97.05 96.48 97.62

In the baseline model, we opted not to implement any pre-trained weights. Specifically,
we initialized the weights from scratch and trained them using the EALR dataset. However,
this approach may not effectively capture the relevant features associated with lesions due
to the limited nature of the fundus image.

Conversely, utilizing weights pre-trained on ImageNet can provide some generic visual
features for comparison models, which prove effective for common object classification
tasks. Nevertheless, since the features of EALR lesions differ from those involved in the
object classification tasks of ImageNet, these pre-trained weights may not sufficiently
capture the specific features attributed to EALR in fundus images.

On the other hand, the utilization of weights pre-trained on the large fundus image
Kaggle dataset proves more suitable for the EALR detection task compared to the previous
two cases. These weights are acquired through pre-training on a domain similar to the
fundus image dataset, enabling them to better capture the features associated with EALR
lesions. This pre-training strategy enables the model to learn a representation more tailored
to the EALR detection task, resulting in improved generalization on new fundus image
data and ultimately yielding better performance.
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5. Discussion
5.1. Interpretability Analysis

In this study, we utilized Grad-CAM to visualize the attention regions of various
models in the EALR detection task. Grad-CAM calculates the importance weights of each
pixel by multiplying the output of the model with the gradient between the feature maps
using backpropagation and global average pooling operations. These weights generate
color maps that highlight the model’s regions of interest in the fundus image.

As shown in Figure 10, analyzing the Grad-CAM attention heat maps of different
models reveals that CNN-based architectures (ResNet101 [25], MobileNetv3 [27], Con-
vNeXt [33], DenseNet121 [34], EfficientNetv2 [26], BiT [31], and Xception71 [32]) tend to
focus on retinal vascular coverage regions and irrelevant background areas. Due to their
local receptive fields and the nature of convolutional layers, CNN models are inclined to
learn from local information and specific details, potentially ignoring global lesion features
in EALR detection tasks. Conversely, transformer-based models (EfficientFormer [18], Mo-
bileViT [17], SwinT [23], CaiT [20], vanilla ViT [10], ConViT [24]) primarily concentrate on
continuous regions, thus capturing global features. However, these models often struggle
to accurately identify important regions associated with lesions, possibly due to distractions
present in continuous areas.
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Based on these observations, we propose the MIL-CT model, which overcomes the
limitations of focusing solely on local or global features. MIL-CT accurately focuses on
the morphological changes in retinal vessels, which is critical for EALR detection. This
is achieved through a transformer encoder with an MHCA mechanism, enabling the
model to capture global spatial relationships and transfer information across different
perceptual domains. By doing so, MIL-CT effectively captures the interrelationships
between vessels exhibiting different morphologies. Furthermore, MIL-CT incorporates MIL
and introduces a novel bag-level classifier. This approach maximizes the potential of the
feature representations extracted from individual patches, which are often neglected by
transformer-based models. Consequently, MIL-CT enhances the detection of morphological
features associated with EALR.

Considering the aforementioned observations and experimental results, we conclude
that MIL-CT outperforms traditional CNN and transformer models in the EALR detection
task. It achieves this by capturing cross-scale features and patch token features through an
MHCA mechanism and an MIL framework based on MIL. Additionally, MIL-CT prioritizes
the morphological features of blood vessels associated with EALR. These advantages
establish MIL-CT as an effective model for EALR detection.
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5.2. Comparison with Competitive Works

To the best of our knowledge, this is the first study on EALR detection. It analyzes
vessel features in fundus images to assess ocular health by extracting information about
vessel structure, density, and distribution through the analysis of light-reflected vessel
features. However, numerous studies have proposed competitive deep learning models
for the detection of diabetic retinopathy (DR). Therefore, we applied these methods to the
EALR dataset to evaluate their suitability for EALR detection. The following provides a
brief description of these SOTA models:

1. Scratched-CNN-1 [36]: Zago et al. employed a pre-trained VGG16 model and a
custom CNN for DR detection. The custom CNN consists of five convolutional layers,
five maximum pooling layers, and one FC layer. This model achieved the best SEN
value of 0.94 with an AUC of 0.912.

2. WP-CNN [37]: Liu et al. developed a weighted path CNN (WP-CNN) to detect DR
images requiring referral. The WP-CNN incorporates multiple convolutional layers
with different kernel sizes in different weighted paths, which are then merged through
averaging. Results show that the WP-CNN has higher SEN compared to pre-trained
ResNet, SeNet, and DenseNet structures, with higher ACC of 94.23%.

3. CNN-Adaboost [38]: Jiang et al. integrated three pre-trained CNN models, Incep-
tionv3, Inception-ResNetv2, and ResNet152, to classify the DR dataset into DR requir-
ing referral and DR not requiring referral. Training of the CNN utilized the Adam
optimizer to update weights and was integrated using the Adaboost algorithm. This
method achieved an ACC of 88.21% with an AUC of 0.946.

4. CNN-Ensemble-1 [39]: Qummar et al. trained five integrated CNN models with
deep convolution (ResNet50, Inceptionv3, Exception, DenseNet121, DenseNet169)
using the publicly available Kaggle retinal image dataset to encode rich features and
improve the classification of different stages of DR.

5. SDL [40]: Shankar et al. proposed a deep learning-based model for automatic detection
and classification of fundus DR images. They preprocessed the fundus image dataset
by removing noise, performing histogram segmentation, and extracting regions of
interest. Subsequently, they employed a collaborative deep learning (SDL) model to
hierarchically classify the DR fundus images.

6. CNN-Ensemble-2 [41]: Bellemo et al. utilized an integrated CNN model consisting of
two CNNs (an adaptive VGGNet structure and residual neural network structure) to
classify fundus images. The AUC of this integrated CNN was 0.723, while the expert
classification result achieved an AUC of 0.741.

7. GWO-DNN [42]: Gadekallu et al. used a deep neural network model based on
principal component analysis to classify features extracted from the DR dataset using
the grey wolf optimization (GWO) algorithm. They normalized the dataset using the
standard scaler normalization method and employed principal component analysis
for dimensionality reduction. They selected the best hyperparameters through GWO
and finally trained the dataset using a deep neural network (DNN) model. Results
showed that the model outperformed traditional machine learning algorithms.

8. ResNet-Attention [43]: Li et al. employed ResNet50 and four attention modules to
classify the fundus dataset in terms of requiring referral or not. The best results
achieved by this model included 92% SEN, 96.3% AUC, and 92.6% ACC.

9. Scratched-CNN-2 [44]: Mobeen et al. used their self-created CNN architecture along
with pre-trained models (including AlexNet, VGG-16, and SqueezeNet) to detect DR
classes in the fundus dataset. Their CNN architecture achieved the highest ACC of
98.15%, specificity (SPE) of 97.87%, and SEN of 98.94%.

10. M-R-FCN [45]: Wang et al. enhanced R-FCN by incorporating a feature pyramid
network and five region suggestion networks, achieving an SEN of 92.59% for DR
detection on the fundus dataset.
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To assess the adaptability of these competitive methods for EALR detection, we
replicated these models and evaluated them using the EALR dataset. The results are
summarized in Table 8. As depicted in the results, our MIL-CT method outperforms all
SOTA techniques in terms of EALR detection performance. It improves ACC, PRE, SEN,
SPE, and F1 score by 4.93–32.85%, 4.87–31.36%, 6.26–34.12%, 7.63–35.41%, and 5.02–32.33%,
respectively, bringing them to 97.62%, 97.63%, 97.05%, 96.48%, and 97.62%, respectively.
Consequently, we argue that DR and EALR are distinct types of ocular lesions, and their
characteristics and physiological processes may differ. Therefore, the effectiveness of
transfer learning may be limited. Additionally, the model may have learned some features
from the DR study that are not relevant to EALR, resulting in decreased performance
in EALR detection. Furthermore, this approach may encounter challenges related to
model uncertainty and interpretation. Thus, our approach has the potential to assist
physicians in accurately diagnosing and treating EALR, thereby reducing patient suffering
and financial burden.

Table 8. Experimental results on competitive models.

Work Model ACC (%) PRE (%) SEN (%) SPE (%) F1 (%)

Zago et al. [36] Scratched-CNN-1 75.85 76.22 74.30 72.75 76.00

Liu et al. [37] WP-CNN 74.98 75.44 73.48 71.97 75.16

Jiang et al. [38] CNN-Adaboost 78.70 78.76 76.86 75.02 78.73

Qummar et al. [39] CNN-Ensemble-1 73.48 74.32 72.36 71.25 73.77

Shankar et al. [40] SDL 81.31 81.69 80.40 79.48 81.45

Bellemo et al. [41] CNN-Ensemble-2 79.33 79.51 77.81 76.28 79.41

Gadekallu et al. [42] GWO-DNN 87.09 87.04 85.68 84.26 87.06

Li et al. [43] ResNet-Attention 91.92 91.95 90.17 88.42 91.83

Mobeen et al. [44] Scratched-CNN-2 93.03 93.10 91.33 89.64 92.95

Wang et al. [45] M-R-FCN 85.83 85.88 84.70 83.57 85.85

Our proposed model MIL-CT 97.62 97.63 97.05 96.48 97.62

5.3. Limitation and Future Work

Although our MIL-CT method has presented promising results in detecting EALR
using fundus images, there is still room for improvement. Firstly, we have only tested
a limited number of models and have not conducted a comprehensive evaluation of all
possible models. Therefore, it is necessary to expand our testing to include a wider range
of vision models with different sizes and architectures. Additionally, exploring knowledge
sharing and transfer among different models can further enhance the performance and
generalization capabilities of these models. Finally, while most studies have utilized
data augmentation methods to address the imbalance in fundus images, our preliminary
experiments in Appendix A suggest that bootstrap-based oversampling methods seem to
improve the generalization of the model. However, this conclusion still requires validation
on a broader dataset.

For future work, we plan to validate the effectiveness of the MIL-CT method using
a larger sample size. Furthermore, we aim to develop more accurate models specifically
designed for EALR detection. Additionally, we will explore other architectural search
strategies and knowledge distillation methods to improve performance and reduce model
complexity. By incorporating these improvements, we anticipate that the effectiveness of
the MIL-CT method in EALR detection tasks will be enhanced, providing reliable tools for
the diagnosis and treatment of chronic diseases related to retinal disorders.
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6. Conclusions

In this study, we propose a novel CT-based MIL method called MIL-CT for detecting
EALR. MIL-CT leverages the CT backbone to extract retinal features in the multi-granularity
perceptual domain. The method incorporates an MHCA fusion module to enhance global
perceptual capability, feature representation, and information integration across different
scales. This approach effectively reduces information loss and improves the performance
of the EALR detection task. Furthermore, our proposed MIL module enables the model to
better comprehend local details and features in fundus images. It accurately classifies the
features of patch tokens. By combining classification tokens and multi-instance classifica-
tion results, the method considers both global and local information, resulting in improved
accuracy in EALR detection.

Through ablation experiments, comparison experiments, and interpretability analysis
experiments conducted on fundus image datasets, we demonstrated that EALR effectively
reduces generalization errors while efficiently attending to retinal vessel details. Addi-
tionally, our method achieves SOTA performance, outperforming all proposed models in
EALR detection. These results highlight the potential of the MIL-CT method in significantly
enhancing the diagnostic accuracy of fundus images, particularly in EALR detection. This
contribution is valuable in terms of the early screening of cardiovascular diseases such as
hypertension and atherosclerosis.
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Appendix A

The EALR dataset suffers from a severe data imbalance issue, and most studies address
this problem in fundus images through data augmentation methods. However, these
methods may potentially reduce the model’s generalization ability. In particular, bootstrap-
based oversampling methods do not impose constraints on the probability distributions
of the original samples. They aim to obtain probabilities that closely resemble the true
distribution of the data, thus appearing to enhance the model’s generalization ability. Hence,
we investigated the impact of bootstrap methods on EALR detection performance. To this
end, we implemented the bootstrap method based on the maximum entropy principle
proposed by Lei et al. [46]. Firstly, we obtained the probability distribution of fundus image
samples using the bootstrap method and optimized it using the maximum entropy principle.
Secondly, we applied a probability enhancement algorithm based on the distribution of
a few classes of samples. This ensured consistency in the probability densities of EALR
samples before and after the dataset was balanced, thereby improving the effectiveness of
MIL-CT classification. The experimental results presented in Table A1 demonstrate a slight
improvement in ACC, PRE, SEN, and F1 scores for the bootstrap-based method compared
to the image augmentation-based method. These findings suggest that the bootstrap-based
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oversampling method enhances the model’s generalization ability. Nevertheless, further
validation of this conclusion requires a broader dataset.

Table A1. Effect of different algorithms for handling data imbalance experiments on ELAR detection
performance.

Algorithm ACC (%) PRE (%) SEN (%) SPE (%) F1 (%)

Bootstrap 97.82 97.70 96.79 96.83 97.71
Image Augmentation 97.62 97.63 97.05 96.48 97.62

Appendix B

Attentional information fusion plays a critical role in acquiring EALR-related infor-
mation in retinal images. The experimental results presented in Table A2 demonstrate
that the proposed MIL-CT approach outperforms the F-Branch-only and C-Branch-only
approaches, with an improvement of 0.64% and 1.93%, respectively, in terms of the F1
score. We assert that the cross-scale attention fusion module enhances the model’s global
perception and feature characterization ability by integrating information from differ-
ent scales while minimizing information loss. This enables more effective detection and
classification of EALR-related features. For instance, subtle variations in arterial light
reflection characteristics across various scales can be captured and utilized efficiently for
accurate detection.

Table A2. Effect of model branching on ELAR detection performance for different granularity sensory
domains.

Algorithm ACC (%) PRE (%) SEN (%) SPE (%) F1 (%)

F-Branch Only 97.05 96.93 96.82 96.28 97.00
C-Branch Only 96.29 96.35 95.93 95.28 95.77

CT 97.62 97.63 97.05 96.48 97.62
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