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Abstract: Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides
excellent soft-tissue contrast and high-resolution images of the human body, allowing us to under-
stand detailed information on morphology, structural integrity, and physiologic processes. However,
MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive
Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through
undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating
Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review
(SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements
of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves
searching and selecting relevant studies from various databases, including Web of Science and Scopus,
followed by a rigorous screening and data extraction process using the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It focuses on various techniques,
such as residual learning, image representation using encoders and decoders, data-consistency layers,
unrolled networks, learned activations, attention modules, plug-and-play priors, diffusion models,
and Bayesian methods. This SLR also discusses the use of loss functions and training with adver-
sarial networks to enhance deep MRI reconstruction methods. Moreover, we explore various MRI
reconstruction applications, including non-Cartesian reconstruction, super-resolution, dynamic MRI,
joint learning of reconstruction with coil sensitivity and sampling, quantitative mapping, and MR
fingerprinting. This paper also addresses research questions, provides insights for future directions,
and emphasizes robust generalization and artifact handling. Therefore, this SLR serves as a valuable
resource for advancing fast MRI, guiding research and development efforts of MRI reconstruction for
better image quality and faster data acquisition.

Keywords: Magnetic Resonance Imaging; parallel MRI; compressive sensing; k-space; deep learning;
deep MRI reconstruction; Deep Bayesian Learning; deep dictionary learning; acquisition time reduction;
fast MRI

1. Introduction

Magnetic Resonance Imaging (MRI) is a method of obtaining detailed images of the
internal structure of the body by using magnetic fields and radio waves. Several medical
conditions can be diagnosed, treated, and detected using these images [1]. However, a well-
known issue is its “long scan time”, which requires patients to remain still for a long time,
sometimes almost an hour. [2]. This process would be difficult for patients, particularly
for those with claustrophobia, pain, and difficulties to stay still, ultimately leading to scan
failure. Long scan time also reduces scanner usage, reducing broad access to this exam and
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increasing costs. Therefore, minimizing the scan time is highly significant in clinical studies
and very important in clinical practice. This can be achieved using undersampled k-space
data which accelerates the MRI scanning process [3,4].

In Figure 1, a fast MRI reconstruction process is demonstrated through a set of nota-
tions. The knee image is represented as X, and its corresponding fully sampled k-space data
is denoted as yFull, which allows obtaining the fully reconstructed image XFull. To accelerate
MRI acquisition, a sampling mask, denoted as M, is applied to selectively acquire k-space
data, resulting in the undersampled k-space data y. Using this undersampled data and the
sampling mask, an aliased reconstructed image Xaliased is obtained, which is usually of no
practical clinical use. However, fast reconstruction methods can recover a better image X,
removing the artifacts of the undersampling acquisition.

(a) (c)

(d) (e) (f)

(b)

Figure 1. Fast MRI Knee Image Reconstruction: From Fully Sampled to Aliased Images: (a) Recon-
structed MRI obtained from DL method (X), (b) yFull, (c) XFull, (d) M, (e) y, and (f) Xaliased (adapted
with changes from [5]).

Many MRI reconstruction techniques such as Sensitivity Encoding (SENSE) [6], Gener-
alized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [7], and Self-Consistent
Parallel Imaging Reconstruction (SPIRiT) [8] utilize undersampled k-space data and in-
formation obtained from multiple radio-frequency (RF) receiver coils to reconstruct high-
quality MR images. These techniques use more data from multiple coils with different
spatial sensitivities, filling the missing k-space data by exploiting the correlation between
k-space data from different RF receiver coils. They enable improved spatial resolution,
minimize motion artifacts, and enable faster clinical workflows by leveraging parallel
imaging principles and iterative reconstruction models [6,7,9]. Joint Compressive Sensing
and Parallel imaging (CS-P) methods combine the power of both techniques to enhance
the quality and efficiency of MRI reconstruction. By jointly exploiting the sparse repre-
sentation of MRIs and the parallel acquisition of data, these methods enable high-quality
reconstruction from undersampled measurements [10–13].

Reconstruction accuracy can also be affected by noise in the acquired data [14–16].
Parallel MRI increases localized noise, usually defined by the g-factor of the specific
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method [17–20]. CS approaches improve it by using regularization filters that smooth the
images, however, they are computationally costly and they rely on the proper selection of
the regularization penalty and their parameters.

In recent years, Deep Learning (DL) has emerged as a powerful tool for improving the
quality and speed of MRI reconstruction [1,2,5,21–31]. By learning complex mappings using
undersampled k-space data and fully-sampled images, DL can reconstruct high-quality
images from limited data. It has been demonstrated that DL networks such as Convolu-
tional Neural Networks (CNNs) [32], Variational Networks (VN) [33,34], and Generative
Adversarial Network (GAN) [35–37] significantly reduce undersampling artifacts, improve
MRI quality, and enabling fast MR imaging.

MRI researchers have leveraged DL to efficiently estimate quantitative tissue param-
eters from complex-valued data, including MR quantitative mapping [38], quantitative
susceptibility mapping [39], and MR fingerprinting [40]. These networks incorporate the
physical model of the quantitative parameters, enabling accurate mappings [41,42]. Thus,
DL-based approaches in MRI reconstruction have the potential for significant benefits.
However, uncertainties arising from missing k-space data points and network weights
have hindered their adoption in clinical practice. To overcome the challenges associated
with uncertainties in DL-based MRI reconstruction, Bayesian methods have been evolved
to use deep learning [43–45]. These methods aim to address the uncertainties associated
with undersampled reconstruction by providing spatially uncertainty maps.

The main objective of this paper is to conduct a Systematic Literature Review (SLR) on
deep MRI reconstruction methods, specifically evaluating network architectures, attention
mechanisms, residual learning, and loss functions. The goal is to provide valuable insights
for future directions in fast MRI, with a particular emphasis on robust generalization and
artifact handling. The subsequent section covers several important aspects, including the
motivation behind conducting SLR, an overview of the related work in the field, data
sources utilized for SLR, research questions which will be addressed throughout this SLR.

1.1. Motivation

DL networks have proven successful in reconstructing MRIs from limited measure-
ments by leveraging the ability to learn effective models from sample data. This break-
through sparked considerable interest in deep MRI reconstruction, leading to ongoing
advancements in network architectures, data augmentation techniques, regularization
approaches, and loss functions. Researchers continuously explore ways to enhance per-
formance and generalizability in deep MRI reconstruction. However, deep reconstruction
networks are still an evolving field of research.

Despite significant advances in deep MRI reconstruction, challenges related to accuracy
and speed remain. Additionally, there is a need for further research to gain a better
understanding of the underlying mechanisms involved in this technique. To address these
issues, this paper presents an SLR covering the period from January 2018 to June 2023.
The primary objective is to provide a comprehensive overview of recent advancements in
deep MRI reconstruction. Moreover, this paper explores the challenges and opportunities
in the field and offers insights into its future development. The SLR aims to enhance the
current understanding of deep MRI reconstruction and serve as a guide for future research
in this area.

1.2. Review of Related Works

In recent years, the field of deep MRI reconstruction has garnered significant attention,
leading to the publication of numerous review and survey papers. Table 1 presents a
comparative analysis of these papers, highlighting their categories and features, such
as Compressed Sensing (CS), Super Resolution (SR), Quantitative Mapping (QM), and
Magnetic Resonance Fingerprinting (MRF). It is observed that researchers primarily focus
on DL and CS-based MRI reconstruction models, often overlooking important features
like SR, QM, and MRF. Only two researchers have conducted SLR [2,27]. Moreover, recent
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advancements in Non-Cartesian reconstruction Plug-and-Play priors, Diffusion models,
and Bayesian methods have been largely neglected. Therefore, this paper aims to address
these gaps by considering published papers between Jan. 2018 and June 2023, covering all
the discussed factors comprehensively.

Table 1. Comparative Analysis of Review and Survey Articles on Deep MRI Reconstruction.

Ref. Year Category CS SR QM MRF

[1] 2020 Review X 7 X X
[21] 2020 Review 7 7 7 7

[22] 2020 Survey X 7 7 7

[23] 2021 Survey X 7 7 7

[24] 2021 Survey X 7 7 7

[25] 2021 Review X 7 7 7

[26] 2021 Review X 7 7 7

[27] 2021 SLR 7 7 7 7

[28] 2021 Review X 7 7 7

[29] 2022 Review X X X X
[30] 2022 Review X 7 7 7

[5] 2022 Review X 7 7 7

[2] 2022 SLR X X 7 7

[31] 2023 Review X X 7 7

1.3. Data Source

The article selection process for the Web of Science and Scopus databases involved spe-
cific keyword combinations related to deep learning-based MRI reconstruction. Keywords
included compressive sensing, super-resolution, end-to-end DL for parametric mapping,
DL-based MRF quantitative mapping, deep Bayesian, and deep dictionary learning for
MRI reconstruction. The search aimed to retrieve articles focusing on these specific aspects.

Figure 2 illustrates a flowchart depicting the article selection process based on the guide-
lines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
It is found that in a total of 572 research articles are retrieved from Web of Science (WoS)
and Scopus published between Jan. 2018 to June 2023. An additional 26 articles are identi-
fied through a manual search on Google Scholar. After removing duplicates and assessing
relevancy, 427 articles are selected for further evaluation.

From these 427 articles, 275 articles are screened by excluding 152 articles due to being
review and opinion papers (31), irrelevant subjects (84), or not related to MRI (37). From the
remaining 275 articles to be screened for eligibility, 88 articles are removed by considering
abstract-only (28), lacking evaluation and data metrics (24), and not implementing any DL
model (36). In total, 187 articles from WoS and Scopus are included for SLR. Additionally,
32 more articles and web-links are consider‘ed. These articles are freely selected, some of
which were published even before 2018.

1.4. Research Questions

This paper aims to explore the current landscape of fast MRI reconstruction using DL
models on undersampled k-space data. This SLR addresses the following research questions:

(a) How do advanced network architectures, including residual learning, image representa-
tion using encoders and decoders, data-consistency layers, unrolled networks, learned
activations, attention modules, plug-and-play priors, diffusion models, and Bayesian
methods contribute to the development of fast MRI reconstruction techniques?

(b) What are the recent advancements in the development of loss functions and training
with adversarial networks for MRI reconstruction?

(c) What are the recent advancements and potential implications of MRI reconstruction
applications, including non-Cartesian reconstruction, super-resolution, joint learning
for coil-sensitivity and sampling, quantitative mapping, and MR fingerprinting?
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(d) What are the key research directions and unresolved challenges that need to be
addressed to further advance the field of fast MRI using DL-based reconstruction
networks, including issues related to robustness, accuracy, generalizability, data
acquisition, model interpretability, and deployment in clinical settings?
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Figure 2. Methodology and Criteria for Inclusion and Exclusion of Research Articles from WoS and
Scopus Databases: A PRISMA Guideline-Based Approach, Augmented with a Manual Search on
Google Scholar.

1.5. Contributions

This SLR on DL-based MRI reconstruction models offers the following significant
contributions:

(a) DL Reconstruction Architectures:This SLR comprehensively explores various archi-
tectures utilized in deep MRI reconstruction, including residual learning, image
representation encoders and decoders, data-consistency layers, unrolled networks,
learned activations, attention modules, plug-and-play priors, diffusion models, and
Bayesian methods.

(b) Loss Functions and Training with Adversarial Networks: This SLR emphasizes the use
of loss functions and training with adversarial networks in enhancing deep MRI recon-
struction methods. It discusses how novel loss functions tailored to specific imaging
objectives and training with adversarial networks techniques have led to improved
reconstruction performance and enhanced preservation of clinically relevant features.

(c) Exploration of MRI Reconstruction Applications: Various MRI reconstruction appli-
cations are also explored, including non-Cartesian reconstruction, super-resolution,
joint learning for coil-sensitivity and sampling, quantitative mapping, and MR finger-
printing. These applications demonstrate the versatility and potential of DL models
in addressing different challenges in MRI.
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(d) Future Insights: The paper offers valuable insights into future directions for fast
MRI research, highlighting potential areas for further advancement, including robust
generalization and artifacts handling. Researchers and developers can benefit from
SLR’s guidance to enhance MRI quality and accelerate acquisition speed in their
ongoing efforts.

The remaining summary for the paper is as follows: Section 2 examines papers
improving deep MRI reconstruction methods. Section 3 discusses papers improving
reconstruction-related MRI applications. Section 4 presents publication trends, challenges
and future outlook, and responses to research questions. Finally, Section 5 concludes
the paper by summarizing the findings and emphasizing the significance of discussed
approaches in MRI reconstruction.

2. Papers Improving Deep MRI Reconstruction Methods

DL methods play a vital role in MRI reconstruction of undersampled k-space data
by learning advanced prior information that estimates the missing k-space information.
These architectures enable the development of fast and accurate reconstruction techniques
that surpass the limitations of traditional methods. By automatically learning hierarchical
representations and capturing complex relationships, DL models effectively reconstruct
high-quality MR images from undersampled k-space data. Their ability to generalize to
diverse datasets and adapt to different imaging conditions enhances their applicability in
clinical settings. Overall, DL architectures have revolutionized MRI reconstruction, leading
to improved reconstruction speed, MRI quality, and robustness, and holding great promise
for advancing medical diagnosis and treatment.

The remaining section explores various aspects of DL methods for MRI reconstruction,
including details of the network construction, ranging from kinds of convolutional layers
to attention models, and training configuration, ranging from loss functions to data prepa-
ration. These components are key to successful DL as MRI image reconstruction methods.

2.1. MRI-Specific Aspects of DL Methods

When DL methods are used for MRI image reconstruction, there are several problem-
specific details that need to be taken into consideration. For example, the voxels of MRI
images are usually complex-valued and the acquired MRI data, measured in the k-space,
may have more relevant information than the spatial distribution of the proton density
itself. MR is a very dynamic and complex system, and while the data is captured, several
things are happening and affecting MR signal, such as the sensitivity of the coils, the
inhomogeneity of the magnetic field, and even the relaxation of the resonant spins. Because
of this, some DL methods for MRI reconstruction were modified to recover the entire
k-space, instead of only the final images. More recent approaches exploit both domains,
k-space and image domains. Here, we list some DL methods that exploit k-space, dividing
them into two types: k-space and dual.

The k-space domain uses the original acquired domain, trying to learn models that
preserve the complex-valued data organized in the frequency domain. Models operating
here directly learn mappings between undersampled and fully-sampled k-space, exploiting
structures and features used to represent k-space data [9]. Dual approaches combine image
and k-space domains, leveraging spatial context and frequency information [46]. The choice
of domain depends on data, resources, and goals. Each domain offers unique advantages
for DL-based MRI reconstruction.

Table 2 shows a comparative analysis of input domain-based MRI reconstruction mod-
els. Different input domain-based models are discussed such as self-calibrating nonlinear
reconstruction models, deep generative models, dual-domain recurrent networks, and DL
inverse problem solvers. While these models achieved significant performance, but have
certain limitations, such as limited evaluation of clinical data and reduced interpretability.
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Table 2. Comparative Analysis of Input domain-based MRI Reconstruction Models

Ref. Year Input Domain Contributions Unsolved Challenges

[46] 2018 Dual

Implemented KIKI-net, a cross-domain CNN that
operates sequentially on k-space, image, k-space,
and image to achieve better image reconstruction
and minimize aliasing artifacts

Increasing noise levels in data potentially
lead to blurred output images and lower
PSNR, affecting performance

[9] 2019 k-space

Developed RAKI, a k-space method for non-linear
reconstruction of undersampled data from autocal-
ibration signal data, using subject-specific neural
networks without extensive training databases

CNN architecture heuristically selected, per-
formance may vary with different network
parameters; fixed learning rates in gradient
descent algorithm may not be optimal for
all applications

[4] 2020 Dual

A dual domain recurrent network was developed
to restore both the image and k-space domains,
with an embedded T1 prior for enhanced restora-
tion quality

Limited generalization to unseen data and
imaging conditions, data scarcity, and the
need for large amounts of labeled train-
ing data

[47] 2020 Dual
Implemented MRI dual-domain reconstruction net-
work (MD-Recon-Net) to explore the latent relation-
ship between k-space and spatial data

Limited generalization to unseen data and
imaging conditions

[48] 2021 k-Space
Employed a residual encoder-decoder network
with self-attention layers to achieve adaptive fo-
cus and enhance interpolation performance

Potential sensitivity to variations in acquisi-
tion parameters and noise levels

[49] 2022 Dual

Utilized complex-valued operations on a cross-
domain neural network called the Primal-Dual net
(PD-net) for reconstruction and provided an opti-
mal representation of magnitude and phase infor-
mation in the data

Limited generalization to unseen data and
imaging conditions

[50] 2022 Dual Preserved structure details and removed aliasing
artifacts using double-domain GAN

Limited validation on clinical usability, fur-
ther experiments needed to introduce addi-
tional analysis measurements

[51] 2022 k-space Achieved high-fidelity multi-coil MRI reconstruc-
tion using recurrent variational network

Required more memory during training to
accumulate gradients for back-propagation
during loss function computation

[52] 2022 Dual

Utilized spatial and Fourier domain convolutional
layers in an interleaved hybrid domain CNN
model, incorporating local residual connections to
enhance the reconstruction performance

Still have some residual blur or ringing ar-
tifacts that could affect the accuracy of fine
details in the reconstructed images

2.2. DL Reconstruction Architectures

MRI reconstruction poses challenges that can be addressed by incorporating diverse
architectural components and approaches, resulting in enhanced image quality, robust-
ness, and reconstruction efficiency. These architectures include residual learning, en-
coder/decoder priors, data-consistency layers, unrolled network structure, and attention
modules, among other contributions. Researchers frequently combine these methods and
innovate new variations to attain superior outcomes in medical imaging applications.

2.2.1. Residual Learning

In MRI reconstruction, when network depth increases, DL models face challenges such
as vanishing or exploding gradients, which lead to poor performance. To overcome this
problem, researchers have developed residual learning (also called skip connections). By
learning residual mappings instead of complete transformations, skip connections mitigate
the problem of vanishing gradients and improve training convergence. Thus, in MRI
reconstruction, the network can learn to distinguish undersampled MRIs from their ground
truth images. Skip connections allow information from early layers to bypass multiple
transformations and propagate directly to later layers. Through this mechanism, high-
quality MRIs can be reconstructed by adding residual details to undersampled MRIs [53–60].
In MRI reconstruction, residual learning offers a number of advantages such as:
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(a) Alleviating the vanishing gradient problem, ensuring faster convergence and higher
performance for deep networks.

(b) Improving feature propagation and model’s ability to reconstruct fine details.
(c) Learning the discrepancy between the inputs and outputs, simplifying the task for

the networks.
(d) Enhancing the expressiveness and modeling capability of large networks with multi-

ple layers.

Figure 3 depicts the residual learning-based MRI reconstruction process, comprising
residual blocks with a sequence of a convolution layer, ReLU activation, another convo-
lution layer, and a multiplication operation. This architecture leads to enhanced MRI
reconstruction quality, faster convergence, and efficient memory utilization. Additionally,
the model exhibits robustness to noise, adaptability to diverse data distributions, and
scalability for varying image sizes.

Table 3 presents a comparison of residual learning-based deep MRI reconstruction
techniques, highlighting their contributions and limitations. These models encounter
challenges including limited generalization to diverse imaging settings, difficulties in
handling artifacts, and high computational resource requirements. Despite these challenges,
these techniques demonstrate potential for enhancing MRI reconstruction and advancing
the field of medical imaging.
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Figure 3. Residual Learning-based MRI Reconstruction Process (adapted with changes from [61]).

2.2.2. Image Representation Using Encoders and Decoders

Encoders and decoders are standard methods to transform signals and images into
arbitrary forms where their structures can be easily represented or learned. The encoder
is usually used to convert the signals or images to a different representation, where the
features are easily seen and manipulated, while the decoder converts it back to its original
format (refer Figure 4). Image reconstruction algorithms have exploited this structure
with human-designed filters as encoders and decoders to obtain more effective feature
representations for years. But DL methods have been more effective in learning these
feature representations from sampled data.
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Table 3. Comparison of Residual Learning (RL)-based MRI Reconstruction Models.

Ref. Year Contributions Unsolved Challenges

[53] 2018 Used deep residual learning network to learn global artifact
patterns, and applied dual frame U-net for artifact correction Potential blurriness due to L2 loss function

[54] 2019 Implemented multi-scale dilated network using global and
local residual learnings to preserve image details Lack of interpretability and explainability

[55] 2019

Introduced an enhanced recursive residual network by in-
corporating high-frequency feature guidance, dense connec-
tions, and an error-correction unit for superior reconstruc-
tions with restored structural features

Network depth balancing, challenges in handling 3D
image data, and reliance on precomputed coil sensi-
tivity maps for multi-channel MR data

[56] 2020
Employed sub-band residual learning to enhance high-
frequency details in low-resolution MR images and a parallel
stream for refined image reconstruction

Does not consider 3D structural and spatial details
of MRIs

[57] 2020
Utilized residual learning and attention mechanisms within
an encoder-decoder network to transform spherical harmon-
ics coefficients in diffusion MRI

Need more comprehensive evaluation to access the
effectiveness and robustness of the network

[58] 2020
Utilized a hierarchical architecture, dense local connections,
and global skip-connections to enhance signal synthesis and
artifact suppression

Limited data size may limit the generalizability and
robustness of the model

[59] 2020
Designed a systematic geometric model using bootstrapping
and subnetwork aggregation to increase the expressivity
of network

Expressivity improvement scheme was only validated
on U-Net and the impact of batch normalization was
not analyzed

[60] 2022 Developed denoising of 3D fast spin echo MRIs using spatial-
variant noise-relevant residual learning

Network retraining required for changing imaging
protocols; potential limitations on real patient data,
and longer scan time for ground truth images

Pre Processing

Images reconstructed from 

undersampled K-space 

with zero filling

High Quality MRI outputs

Encoder
Decoder

Latent 

SpaceInput Image
Reconstructed Image

Figure 4. Encoder-Decoder-based MRI Reconstruction Method (adapted with changes from [62]).

Sun et al. [63] reconstructed the multi-contrast CS-MRI using Deep Information
Sharing Network (DISN). Data fidelity units and feature-sharing units were cascaded and
densely connected within DISN. There were the same feature maps for all multi-contrast
MRIs in the feature-sharing units. In order to facilitate information sharing at different
levels, dense connections were used. Zeng et al. [64] reconstructed CS-MRI via Very
Deep Densely Connected Network (VDDCN). The network consisted of blocks that are
densely connected to each prior block. The blocks were composed of recursive feature
extraction modules, fusion sub-blocks, and data-consistency layers. Liu et al. [65] provided
an Iterative Feature Refinement Network (IFR-Net) for CS-MRI. In this model, the feature
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refinement operator and regularization parameter were trainable. It also generalized the
sparsity-enforcing operator by utilizing CNN-based inversion blocks.

Sun et al. [66] implemented Deep Error Correction Network (DECN) for CS-MRI. It
used three modules such as guide, error correction, and data fidelity to overcome CS-MRI
inversion problems. Qiu et al. [67] proposed a deep neural network inspired by the iterative
shrinkage-thresholding algorithm with data consistency (NISTAD) for fast undersampled
MRI reconstruction. Guo et al. [68] designed an Over-and-Under Complete Convolutional
Recurrent Neural Network (OUCR) for MRI reconstruction. Undercomplete branches
were used to emphasize low-level features while preserving global structures in OUCR.
Feng et al. [69] implemented a Dual-OctConv for fast parallel MR reconstruction. It learned
multi-scale spatial-frequency features from real and imaginary components, reducing spatial
redundancy. Dual-OctConv utilized octave convolutions to capture richer representations
and performed inter-group information exchange for contextual aggregation.

Shangguan et al. [70] proposed a Deep fusion connection network (DFCN) to enhance
CS-MRI reconstruction quality. DFCN effectively utilized correlation information between
adjacent slices through dense connections and squeeze-and-excitation blocks. Long skip
connections were used to avoid gradient explosions and limit low-frequency information
flow. Tong et al. [71] designed a Hybrid Image-Wavelet Domain Reconstruction Net-
work (HIWDNet) for fast MRI reconstruction, operating in both transform and image
domains. Additionally, the region adaptive artifact removal module was incorporated
to effectively eliminate aliasing artifacts in large areas. Wang et al. [72] proposed the
Detail and Structure Mutually Enhancing Network (DSMENet), which enhanced structure
and detail information through UNet, detail feature refinement module, and bidirectional
alternate connections.

Jin et al. [73] proposed a method for reducing ghost artifacts in undersampled MRI
scans. They utilized a complex difference transform and a Sparse Complex-valued U-type
CNN (SCU-Net) trained on sparse complex-valued edge maps to perform deghosting. The
final complex MRIs were obtained by applying k-space inverse filtering to the predicted
deghosted edge maps. Zhou et al. [61] developed a deep Residual Non-Local Fourier
Network (RNLFNet), which incorporated non-local Fourier attention and residual blocks.
The model effectively learned information from both the spatial and frequency domains,
capturing local details and global context between degraded MR images and ground
truth image pairs, leading to improved reconstruction quality. Dai et al. [74] utilized a
Gradient-enhanced Fusion Network (GFN) to reconstruct CS-MRI. The network employed
dilated convolution and dense residual learning to extract features, while gradient maps
provided structural information. The gradient priors were used to preserve contrast and
edge information.

Table 4 provides a comparison of encoder and decoder-based models for MRI recon-
struction. The models offer improved reconstruction quality, robustness, and reduced
errors. However, challenges such as limited generalization to unseen data, interpretability
issues, and computational efficiency need further consideration.



Bioengineering 2023, 10, 1012 11 of 44

Table 4. Comparison of encoder and decoder-based models.

Ref. Year Network Contributions Unsolved Challenges

[63] 2019 DISN Improved MRI reconstruction quality and
robustness to misregistration errors

Limited generalization to unseen data and imaging
conditions, lack of interpretability and explainabil-
ity as black box models

[64] 2019 VDDCN
Made the network easy to train using
dense connections and alleviated gradient-
vanishing problem

Limited generalization to unseen data and imag-
ing conditions, data scarcity and the need for large
amounts of labeled training data

[65] 2019 IFR-Net Improved network capacity with better fea-
ture refinement and fully learned parameters

Limited generalization to unseen data and imaging
conditions, prone to overfitting

[66] 2020 DECN Reduced structural reconstruction errors
and improved MRI quality

Lack of interpretability and explainability as black-
box models, may lead to artifacts and noise

[67] 2020 NISTAD
Reduced reconstruction time, simplified hy-
perparameter tuning, and a simpler net-
work architecture with fewer parameters

Not efficient for highly undersampled image se-
quence reconstruction and might not be realistic
enough for real clinical scans

[68] 2021 X-net & Y-net
Reduced number of trainable parameters,
leading to a more efficient and streamlined
model architecture

Lower computational efficiency due to the incor-
poration of additional network branches and the
increased complexity of the model

[70] 2022 DFCN
Reconstruction quality improved by elimi-
nating aliasing effects utilizing correlation
information between adjacent slices

Time-consuming and computationally expensive
hyperparameter tuning, may lead to artifacts and
noise

[71] 2022 HIWDNet

Achieved accurate cross-domain MRI recon-
struction by leveraging image and wavelet
domains. Efficiently reconstructed the struc-
ture while removing aliasing artifacts.

The complex architecture and intricate interactions
of HIWDNet may hinder interpretability

[72] 2023 DSMENet

Enhanced detail and structure information,
adapted to diverse MRI scenarios, and of-
fered improved visual effects and general-
ization. Proved to be a competitive candi-
date for real-time MRI applications

Complex architecture and intricate interactions of
DSMENet limit its interpretability

[73] 2023 SCU-Net
Achieved superior deghosting performance
even at high acceleration factors, leading to
high-quality complex MRIs

Relied on sparsified complex data and required fur-
ther investigation into its effectiveness in handling
complex anatomical structures and capturing fine
details in highly undersampled MRI data

[61] 2023 RNLFNet
Effectively captured long-range spatial de-
pendencies in the frequency domain, lead-
ing to enhanced MRI reconstruction

May have limitations when applied to parallel MRI
and dynamic MRI

[74] 2023 GFN Maintain more detailed MR images by cap-
turing edge structures in gradient images

Lack of interpretability and explainability as black-
box models, may lead to artifacts and noise

2.2.3. Data-Consistency Layers and Unrolled Networks

Data-consistency layers and unrolled networks are two important components in
DL-based MRI reconstruction methods. These components are inherited by classical
iterative reconstruction methods. Data-consistency layers enforce consistency between the
undersampled k-space data and intermediate versions of the reconstructed image inside
the network structure and during the training process. These layers help the network to
produce accurate reconstructions, consistent with the measured k-space data. Meanwhile,
unrolled networks operate in an iterative manner, where the reconstruction process is
unrolled into multiple steps.

Figure 5 shows the general idea of unrolling algorithm involves transforming an
abstract iterative algorithm into a deep neural network. In this process, each iteration,
represented as the function h parametrized by θl , where l = 0, 1, . . . , L− 1, is mapped into a
single network layer. By stacking a finite number of these layers together, we create a deep
network. When we feed data through this L-layer network, it is equivalent to executing the
original iterative algorithm L times, but with finite truncation. The parameters represented
by θl , where l = 0, 1, . . . , L− 1, are learned from real data sets by training the network end
to end to optimize its performance. These parameters can either be shared across different
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layers or vary from layer to layer, depending on the specific demands of an application. In
the unrolled deep network (b), the trainable parameters are colored in blue, indicating that
these parameters will be adjusted during the training process. The resulting deep network,
unrolled from the original iterative algorithm (a), can then be used to perform various tasks,
often with improved performance compared to the abstract iterative algorithm alone.

Algorithm: Input 𝒙𝟎, Output 𝒙𝑳

For 𝒍 = 𝟎, 𝟏, … , 𝑳 − 𝟏 do

𝒙𝒍+𝟏 ← 𝐡(𝒙𝒍, 𝜽𝒍)
end for

𝒙𝑙 𝒙𝑙+1𝒉( ∙; 𝜽𝒍)𝒙0 𝒙𝐿∙∙∙ ∙∙∙

(a) (b)

Figure 5. Unrolled networks: Mapping an Iterative Algorithm into a (a) Deep Network with (b) Train-
able Parameters (in Blue) (adapted with changes from [75]).

Hammernik et al. [33] utilized Variational Network (VN) to learn a complete recon-
struction process for complex-valued multi-channel MR data, eliminating the need for
manual parameter tuning. Chen et al. [34] also utilized VN to reconstruct the Single-Shot
Fast Spin-Echo MR images. Aggarwal et al. [76] proposed MoDL, an image reconstruction
method using CNN-based regularization. It included numerical optimization blocks for
complex models and image priors. The variational model-based formulation with shared
weights achieved better results in data-constrained settings. Kocanaogullari et al. [77]
introduced a Projection based Cascaded CNN (PC-CNN) to reconstruct MRIs. It utilized a
projection-based updated data consistency layer with a secondary output to store resid-
ual images representing innovation at each stage. Polak et al. [78] developed a joint
multi-contrast VN (jVN) approach that leverages shared anatomical structures to improve
efficiency and MRI quality.

Wang et al. [79] employed a deep residual complex CNN, called DeepcomplexMRI,
for MRI reconstruction. It incorporated the correlation between real and imaginary parts
of MRIs and enforced k-space data consistency within its layers. Hosseini et al. [80]
used Dense-RNN architecture, derived from the history-cognizant unrolling, for multi-
coil MRI reconstruction. They calculated gradient descent steps based on a trainable
combination of previous regularization unit outputs. Zhang et al. [81] proposed Total
Variation-Inspired Network (TVINet), which incorporated the deep priors with the iter-
ative algorithm. TVINet utilized the primal-dual hybrid gradient algorithm to provide
interpretability. Vishnevskiy et al. [82] proposed an approach based on deep VNs, known
as FlowVN, for rapid 4D flow reconstruction. The network accurately reconstructed patho-
logical flow in a stenotic aorta in 21 s, allowing for learnable spatiotemporal filter kernels,
activation functions, and regularization weights in each iteration.

Aghabiglou and Eksioglu [83] introduced a noise parameter in CNN and UNet ar-
chitectures, resulting in improved performance of the unfolding structures without a
significant increase in complexity. The adaptively calculated noise level parameter at the
network’s input leads to enhanced reconstruction performance. Zhang et al. [84] intro-
duced Deartifacting Module (DEMO) to effectively eliminate artifacts in CS-MRI. A robust
loss function was derived by augmenting the measurements in the original loss function.
DEMO can be flexibly incorporated into both model-based and unrolled deep neural net-
work CS-MRI methods since it is independent of any backbone algorithm. Ottesen et al. [85]
implemented the Densely Interconnected Residual Cascading Network (DIRCN) for MRI
reconstruction, drawing inspiration from the end-to-end variational network. The method
utilized input-level connections and long-range skip connections to enhance MRI quality at
high acceleration rates.
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Table 5 provides a comparative summary of various data-consistency layers and
unrolled networks-based MRI reconstruction methods. These methods have contributed to
accelerated MRI reconstruction by incorporating regularization techniques and introducing
efficient DL approaches. However, limitations include challenges in generalization to
complex patterns and structures in the images, large training data requirements, and
computational demands.

Table 5. Data-Consistency Layers and Unrolled Networks-based MRI Reconstruction Models.

Ref. Year Network Contributions Unsolved Challenges

[33] 2018 VN
Preserved essential features of MR im-
ages, including pathologies not present
in the training dataset

Suffer from residual artifacts that are particularly
evident in the axial sequences

[34] 2018 VN Provided rapid reconstruction speed of
approximately 0.2 s per section

Variation in reconstruction times based on hard-
ware models, the use of constant regularizations,
and the absence of fully sampled data

[76] 2018 MoDL

Achieved faster convergence per iteration
using numerical optimization blocks for
data-consistency and required less train-
ing data

Use of many conjugate gradient steps in data-
discrepancy layers may lead to increased computa-
tional time, possibly reducing reconstruction speed

[77] 2019 PC-CNN Improved image accuracy by enforcing
data consistency and enhanced convergence

Computational complexity, data dependency, limited
interpretability, and sensitivity to noise and artifacts

[78] 2020 jVN
Image quality was improved, and blur-
ring was reduced through the learning of
efficient regularizers

Generalization to unseen data or different acquisi-
tion scenarios

[79] 2020 DeepcomplexMRI
No sensitivity information calculation re-
quired for resolving aliasing and channel
correlations

High acceleration factors can result in persistent
blurriness in the reconstructed MRIs

[80] 2020 Dense-RNN Showed potential for capturing long-
range dependencies among image units

Does not completely address the slow convergence
issue inherent in proximal gradient descent meth-
ods

[81] 2020 TVINet Ensured data consistency and preserved
the fine details in the reconstructed MRI

Time-consuming and computationally expensive
hyperparameter tuning, lack of uncertainty quan-
tification in deterministic predictions

[82] 2020 FlowVN
Achieved accurate reconstructions of
pathological flow in a stenotic aorta
within a short timeframe of 21 s

Large training data requirement, interpretability

[83] 2022 CNN & UNet

Enhanced unfolding structures without
complexity increase, using an adaptively
calculated noise parameter for improved
reconstruction performance

Suffer from training instability, slow convergence,
and limited explainability, which can hinder its
practical applicability and interpretability

[84] 2022 DEMO Efficiently removed CS-MRI artifacts, such
as motion, zebra, and herringbone artifacts

High computational requirements, including GPUs,
for training and inference

[85] 2023 DIRCN Used long-range skip connections to im-
prove gradient and information flow

Model trained on retrospective public domain data,
needs to be tested on clinically valid prospec-
tive data

2.2.4. Learned Activations and Attention Modules

Non-linear activations play a crucial role in deep networks by selectively focusing
on the most relevant features or regions within the input images. It assigns non-linearly
weights to pixels, regions, or features, enabling the network to recover elements and fea-
tures of higher importance. Recently, researchers realized that these non-linear elements
can be more efficient if activations are learned. This was seen in [33] where the activation
is also learned, instead of fixed, such as in ReLUs. Also, because activations preceded by
CNNs only sense locally, researchers investigated architectural structures able to sense
features non-locally, giving rise to attention modules. With attention modules, the net-
work is able to improve the accuracy and quality of the reconstructed MRIs, capturing
intricate details and subtle structures [86,87]. Although attention modules can introduce
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computational demands, memory-efficient self-attention modules have been developed to
address this limitation, making the integration of attention mechanisms more efficient in
MRI reconstruction [88,89]. Overall, the attention module efficiently guides the network’s
attention to relevant image content, contributing to MRI reconstruction [90–96].

Table 6 summarizes various AM-based MRI reconstruction models and their key
contributions and limitations. These models leverage attention mechanisms to improve
MRI quality and reconstruction performance. For example, the integration of self-attention
modules in convolutional layers helps capture long-range dependencies in MRI images.
However, a common limitation is the limited generalizability and robustness of the models
to different imaging scenarios and acquisition techniques. Another challenge is the reliance
on specific assumptions, such as the same coil number or the conversion of multi-channel
images into single-channel format. Computational complexity, limited training data, and
the need for real data instead of synthesized training data are also highlighted as limi-
tations. Despite these limitations, the models demonstrate promising advancements in
MRI reconstruction and provide a foundation for further research and improvements in
this field.

Table 6. Summary of learned activations and attention modules for MRI reconstruction.

Ref. Year Contributions Unsolved Challenges

[86] 2019
Integrating a self-attention module in each convolutional layer to
capture long-range spatial dependencies by aggregating features
across positions and image regions using weighted calculations

Limited generalizability and robustness of the
model to different imaging scenarios and acquisi-
tion techniques

[87] 2020 Produced high-quality sum-of-squares images using Barbell-
Net by incorporating a channel attention mechanism

Same-coil assumption limits practicality, while inter-
polation or undersampled input leads to informa-
tion loss and reduced performance

[88] 2021
Enhanced the residual U-net with spatial and channel-wise
attention, enabling the network to focus on important informa-
tion and ignore irrelevant details

Require the conversion of multi-channel MR im-
ages into a single-channel format for network input,
which increases the workload

[89] 2022
Improved MRI quality and fidelity in reconstruction using a
deep adversarial network with cross-attention mechanism to
map noise and latent variables onto coil-combined images

Limited performance in capturing the full range
of MRI variations and quality due to reliance on
unsupervised generative modeling

[90] 2022
Utilized dense and hybrid attention blocks in hybrid atten-
tion ResNet to enhance feature extraction and improve MRI
reconstruction quality

High computational resource, limited generaliza-
tion, computationally extensive

[91] 2022
Varying sizes of features were extracted by utilizing a recur-
rent framework with a non-reduction channel attention block
resulting in better reconstruction performance

Struggled to preserve fine structural details in re-
gions with excessive smoothness

[92] 2022
Utilized multi-modality and single-modality reconstruction
attention to enable the network to dynamically assign weights
and prioritize relevant information from the input modalities

Limited generalization to different settings

[93] 2022
Employed the flow residual attention Unet model, integrating
spatial and channel-wise attention blocks, to effectively reduce
artifacts and restore velocity information in all encoding directions

Limited number of training samples restrict the ex-
ploitation of spatiotemporal or 3D spatial features

[94] 2022
Utilized the fully dense attention CNN to improve generaliza-
tion by incorporating attention gates in each decoder layer to
focus on relevant image features

Dependence on the accuracy of MRI spatial frequen-
cies, which can be a drawback in cases where image
features are heavily obscured

[95] 2023
Recovered missing information and preserved realistic struc-
tures and textures in MRI reconstructions using a spatial atten-
tion selection module and a deep data consistency block

Lack of interpretability, computationally extensive,
and limited generalization

[96] 2023

Achieved improved representational ability and captured long-
range dependencies by incorporating a squeeze-and-excitation
lightweight self-attention module with a dilated depthwise
separable convolution dense block

Used synthesized training data instead of real data,
which may impact performance on real undersam-
pled MRI data

2.2.5. Plug-and-Play Priors, Diffusion Models, and Bayesian Methods

In these three approaches, DL networks are learned independently of the reconstruc-
tion process. Once trained, the networks are used in a reconstruction algorithm to recover
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MR image. The main advantage is that the network can be trained with more general data,
which is not exactly the same kind of reconstruction. Also, MRI acquisition model is not
used for training, so the trained DL prior is general enough to be used in reconstructions
with different MRI configurations. The difference among these three approaches lies in
the specifics of how the network should be trained and how the reconstruction algorithm
is constructed.

Plug-and-play priors are the most general and flexible of these three approaches. The
network is trained to replace the image prior of iterative reconstruction algorithms, and it is
plugged on the iterative reconstruction method. Yazdanpanah et al. [97] introduced a deep
plug-and-play prior framework for parallel MRI reconstruction. An encoder-decoder UNet
convolutional network was employed with skip connections as Deep Neural Network
(DNN) architecture. This framework not only accelerates MRI acquisition but also signif-
icantly enhances the overall image quality. Liu et al. [98] introduced the Regularization
by Artifact-REmoval (RARE) framework for MRI reconstruction, which utilizes artifact
removal-trained network priors. RARE is applicable in scenarios where fully-sampled
ground truth data is unavailable for training. Yang et al. [99] combined low-rank prior
and deep-prior to reconstruct CS-MRI. Fast flexible denoising CNN (FFDNet) provided
a deep prior, whereas a low-rank prior was obtained using weighted shadow p-norm. In
this model, the noise level and weights were automatically determined so that they did not
need to be manually set. Hou et al. [100] introduced TRPA, a truncated residual-based Plug-
and-play ADMM algorithm for MRI reconstruction using a denoising neural network with
CCIN layer. TRPA ensured strict convergence to a fixed point and achieved comparable
results. Xie and Liu [101] used Deep Gaussian Denoisers (DGD) to improve CS-MRI recon-
struction. DGD network was trained initially on images and subsequently integrated into a
plug-and-play framework utilizing a classical momentum strategy and a modified proximal
gradient algorithm. Additionally, efficient artifact removal was achieved through the use
of a non-local denoiser. Hou and Li [102] designed an iterative IDPCNN model, which
combined half-quadratic splitting and CNN for MRI reconstruction. The model offered
quick, flexible, and accurate results by incorporating denoising and projection stages.

Diffusion models formulate the reconstruction as a statistical sampling from a learned
probability distribution [103,104]. Also closed connected to Bayesian approaches. Essen-
tially, diffusion models consist of progressive steps that modify the prior distribution of
the data into a Gaussian distribution. A score network is trained and used as an inverse
diffusion, a denoising process with denoising levels controlled by the diffusion steps. The
network is trained to extract certain amount of noise, instead of producing a clean image,
and later it is used in the iterative algorithm that represents the statistical sampling process.

Gungor et al. [105] accelerated MRI reconstruction using a rapid diffusion prior
with an adversarial mapper for efficient image generation. The current drawback of
diffusion models is their reconstruction time, which can be several orders slower than
iterative algorithms used for CS. In practice, reconstruction times are in the order of 10 min
per image, compared to a few seconds of CS reconstruction and less than a second on
fast DL reconstruction approaches, such as a VN. In [106], a generative network was
utilized as the image prior in a maximum a posteriori (MAP) reconstruction algorithm.
In [107], variational autoencoders were proposed to be used as priors in MAP reconstruction.
While in [108], denoising autoencoders are used. In [103], score networks are used in reverse
diffusion, alternating with data-discrepancy steps, essentially a gradient descent step of
data-discrepancy cost. In [104], they propose a similar approach inspired by Bayesian
sampling, that is solved with Langevin steps, where reverse diffusion and data-discrepancy
are used in the same iteration. They also compute uncertainty maps. In [105,109], they
used adversarial networks to train reverse diffusion, together with larger diffusion steps,
in order to improve the convergence speed of the approach.

Recently, Bayesian methods have regained prominence in the context of MRI recon-
struction, as they inherently provide a framework to manage and quantify uncertainties. For
instance, Luo et al. [106] used a deep Bayesian estimation for MRI reconstruction, demon-
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strating improved performance in managing uncertainty. In a later study, Luo et al. [104]
further explored Bayesian MRI reconstruction using diffusion models with joint uncertainty
estimation, which further advanced the practical applications of Bayesian methods in this
field. Narnhofer et al. [110] also utilized Bayesian uncertainty estimation for variational
MRI reconstruction. They used this approach to leverage the power of machine learning
algorithms while incorporating the inherent uncertainty present in medical imaging data.
Similarly, Khawaled et al. [43] proposed a non-parametric assessment of uncertainty in
DL-based MRI reconstruction from undersampled MRI data, demonstrating the benefits of
uncertainty assessment in this context. Beyond MRI reconstruction, Bayesian approaches
have also been applied in other imaging modalities. Leynes et al. [44] proposed a Bayesian
DL method for PET/MRI attenuation coefficient estimation, indicating the flexibility of
Bayesian methods in different imaging contexts. Meanwhile, Tanno et al. [45] applied
uncertainty modeling in DL for safer neuroimage enhancement, showcasing how Bayesian
uncertainty estimation can contribute to safer and more reliable imaging results.

2.3. Training
2.3.1. Dataset

Table 7 provides a comprehensive overview of popular MRI reconstruction datasets,
encompassing a range of body parts and imaging modalities. The datasets incorporate
advanced features such as simulated noise, intensity non-uniformity, pathology, availabil-
ity of raw k-space data, multi-coil data, different field strengths, multi-center data, and
manual segmentations. These features enhance the datasets’ suitability for evaluating
and benchmarking MRI reconstruction models. The datasets mentioned, including Brain-
Web, FastMRI, IXI Dataset, Calgary-Campinas Public Brain MR Dataset, ACDC Challenge
Dataset, and IXI Stroke Dataset, provide ample opportunities for researchers to analyze
and refine MRI reconstruction methodologies. Leveraging these datasets can lead to ad-
vancements in imaging quality, diagnostic precision, and ultimately enhance the field of
MRI reconstruction.

Table 7. Features of Popular MRI Reconstruction Datasets.

Ref Dataset Name Body Part Imaging Modality Additional Features

[111] BrainWeb Brain T1-weighted, T2-weighted Simulated noise, intensity non-uniformity, and
pathology

[112] FastMRI Brain, Knee T1-weighted, PD-weighted Large-scale dataset, raw k-space data available

[113] IXI Dataset Brain T1-weighted, T2-weighted,
PD-weighted Multi-center data, various imaging sequences

[114]
Calgary-
Campinas Public
Brain MR Dataset

Brain T1-weighted, T2-weighted Multi-coil data, different field strengths (1.5T and
3T)

[115] ACDC Challenge
Dataset Heart Cine-MRI Multi-center cardiac MRI data with ground truth

segmentations

[116] IXI Breast MRI
Dataset Breast Dynamic Contrast-Enhanced

MRI (DCE-MRI)
Breast MRI data with manual segmentations for
studying breast cancer

2.3.2. Loss Function

The field of MRI reconstruction is an active area of research, with ongoing devel-
opments and exploration of new loss functions. Researchers frequently customize loss
functions to match the specific characteristics of the imaging task and desired reconstruction
properties. The selection of an appropriate loss function depends on the defined objectives,
the MRI quality criteria, and the trade-off between fidelity, perceptual quality, and other
desired attributes of the reconstructed images. This process ensures that the chosen loss
function aligns with the specific requirements of the MRI reconstruction task, facilitating
the production of optimal results. In this section, we analyze several state-of-the-art deep
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MRI reconstruction techniques, focusing on the choice and design of loss functions, and
their impact on the reconstruction performance.

Xuan et al. [117] applied a combination of a cross-modality-synthesis-based regis-
tration loss and a reconstruction loss to optimize the spatial alignment network and the
multi-modal reconstruction network. Yang et al. [118] improved the reconstruction perfor-
mance by employing an adversarial loss along with a proposed content loss. The content
loss was designed using perceptual loss, frequency domain Mean Square Error (MSE)
loss, and pixel-wise image domain MSE loss, resulting in improved reconstruction details.
Edupuganti et al. [119] utilized an adversarial loss function aiming to capture and estimate
the uncertainty associated with the reconstruction process, thereby offering more reliable
and interpretable results.

Jiang et al. [120] integrated perceptual loss, image loss, and frequency loss into the
loss function during network training to enhance the preservation of fine structures in the
reconstructed images. Li et al. [121] proposed a dual discriminator generative adversarial
loss function that integrated holistic image and multi-scale edge information. This aimed to
stabilize training, prioritize edge recovery, and enhance reconstruction accuracy, resulting
in improved quality and accuracy of the reconstructed images. Zhu et al. [122] proposed
DESN, an efficient MRI denoising method based on a neural network approach. DESN
utilized a unique network architecture, incorporating encoder and decoder networks with
skip connections. The method employed a well-designed loss function, including data
fidelity and image quality penalty terms.

Li et al. [88] employed a combination of generative adversarial loss and cyclic data
consistency loss, resulting in excellent reconstruction performance even at high under-
sampling rates. Quan et al. [35] utilized cyclic loss to enforce data consistency constraints
and promote accurate interpolation of undersampled k-space data. Salehi et al. [123] em-
ployed Geodesic loss to minimize error and improve the accuracy of 3-D pose estimation
in registration applications, enabling more precise alignment and achieving robust perfor-
mance. Georgescu et al. [124] performed dual loss computations after the upscaling layer
and the last convolutional layer, comparing the output to the ground-truth high-resolution
image. The inclusion of the intermediate loss encouraged the network to generate more
accurate results that closely resembled the ground truth.

Kusakunniran et al. [125] proposed the dual-domain loss, which combined L1 losses
in the spatial and frequency domains. This loss function improved reconstruction quality
by addressing differences between reconstructed and ground truth MR images, leading to
a reduction in aliased artifacts. Wang et al. [126] incorporated an enhanced antagonism
loss function to mitigate the generator-discriminator imbalance. It involved adding the
discriminator’s discriminant result to the generator loss, along with the ground truth.
Zhang et al. [84] employed Huber loss, which balanced robustness and precision by
incorporating a hyper-parameter. Huber loss is known for its robustness in handling
outliers compared to other loss functions. Tolpadi et al. [127] utilized ROI-specific loss
function during network training to enable “ROI-specific optimization” to preserve small
clinical features in cartilage and intervertebral discs.

However, the utilized loss functions may face challenges related to generalization
and interpretability. To address these concerns, regularization techniques like weight
decay and training with adversarial networks can be employed to enhance robustness
and generalization. Moreover, incorporating additional metrics such as perceptual loss or
structural similarity index can improve interpretability and provide meaningful insights
into the reconstruction process.

2.3.3. Training with Adversarial Networks

GANs have revolutionized MRI reconstruction by synthesizing photorealistic images.
GANs consist of a generator and discriminator, where the generator, which could be any
reconstruction network previously discussed, aims to produce reconstructed MRIs that
resemble fully sampled ones, while the discriminator distinguishes between real MRIs
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and fake ones. Both networks are trained together, but only the generator is deployed for
MRI reconstruction. The discriminator is only used during training and acts like a trained
evaluator detecting if the images produced by the generator are artificially generated. The
training is completed when the discriminator cannot distinguish if the images are real or
produced by the generator. GAN-based MRI reconstruction models have shown superior
reconstruction performance compared to traditional techniques.

Figure 6 shows GAN-based MRI reconstruction process of reconstructing high-quality
MRIs from undersampled data. The method involves several key steps, starting with the
data preparation phase, where a dataset of undersampled MRI images and their corre-
sponding fully-sampled ground-truth images is acquired. These undersampled images are
obtained through undersampling and zero-filling reconstruction techniques. Thereafter, a
GAN architecture is set up for MRI reconstruction, consisting of two main components: a
generator and a discriminator. The generator is a deep neural network trained to take the
undersampled MRI images as input and generate high-quality, fully-sampled MRI images
as its output. It learns the underlying mapping from the undersampled to the fully-sampled
images. On the other hand, the discriminator, another deep neural network, acts as a binary
classifier. It takes both real (fully-sampled) MRI images and the generated images (output
of the generator) as input and aims to distinguish between them, determining whether they
are real or fake.
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Figure 6. Generative Adversarial Network (GAN)-based MRI Reconstruction Process.

GAN is trained in an adversarial manner, where the generator and the discriminator
engage in a two-player minimax game. The generator attempts to produce realistic MRI
images that can deceive the discriminator into believing they are fully-sampled, while
the discriminator seeks to accurately classify real and generated images. The generator’s
loss function is designed to encourage the generated images to be similar to the fully-
sampled ground-truth images, while the discriminator’s loss function penalizes incorrect
classifications and encourages it to correctly distinguish between real and generated images.
GAN is trained iteratively, with both the generator and discriminator updated using
backpropagation and gradient descent methods to improve their respective objectives and
achieve better reconstruction results.

The remaining section discusses some recently developed GAN-based MRI reconstruc-
tion models.

Quan et al. [35] proposed the RefineGAN model for CS-MRI reconstruction, which
incorporated GANs, residual networks, and a convolutional autoencoder. By integrating
GANs into the framework, the model achieved enhanced reconstruction performance
and improved image fidelity. For MRI motion correction, Johnson and Drangova [36]
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designed the Motion Correction conditional GAN (MoCo-cGAN) network. Dar et al. [37]
proposed the reconstructing-synthesizing GAN (rsGAN) for recovering undersampled
multi-contrast MRI acquisitions. It incorporated shared high-frequency, low-frequency,
and perceptual priors to preserve details and enhance features. Oh et al. [128] used the
Optimal Transport CycleGAN (OT-CycleGAN), an unpaired DL method, for accelerated
MRI. OT-CycleGAN utilized optimal transport theory and a customized penalized least
squares cost to align distributions between different domains. Do et al. [129] proposed
X-net and Y-net networks enable effective reconstruction of T1- and T2-weighted MRIs from
down-sampled data. The inclusion of a GAN and optimized sampling patterns further
enhanced the reconstruction quality.

For better edge restoration and de-aliasing in CS-MRI reconstruction, Li et al. [121]
utilized the Edge-Enhanced Dual Discriminator GAN (EDDGAN). EDDGAN stabilized
the training process and controlled the hallucination of details by employing a multi-scale
edge fusion generator and double discriminator. Zhou et al. [130] utilized a structurally-
strengthened GAN with enhanced feature propagation and expression ability by incor-
porating strengthened connections and residual in residual blocks in its generator. To
provide better generalization, Vasudeva et al. [131] proposed a Complex-Valued GAN
(Co-VeGAN). In this model, complex-valued weights and operations were explored, and a
complex-valued activation function was designed.

Yurt et al. [132] proposed ProvoGAN, a deep generative model for MRI reconstruction
that utilized a progressive volumetrization approach. The model sequentially mapped
cross-sectional slices optimized for rectilinear orientations, effectively decomposing com-
plex volumetric image recovery tasks. Zhao et al. [133] proposed SwinGAN for MRI
reconstruction, which combines GAN and Swin transformer. They utilized a dual-domain
generator, considering both the image and frequency domains, with Swin transformer as
the backbone to capture long-distance dependencies. Lyu et al. [134] utilized a multi-view
transformer-based GAN for the reconstruction of cine MRI. They incorporated cross-view
attention to effectively capture spatiotemporal information between adjacent views. To
reduce the aliasing artifacts in CS-MRI, Gao et al. [135] implemented the Hierarchical
Perception Adversarial Learning Framework (HP-ALF). They reduced the visual percep-
tion gap between the overall and regional perspectives by utilizing image information at
both the image-level and patch-level. HP-ALF effectively enhanced perceptual quality and
minimized MRI distortion.

Table 8 provides a comparative analysis of GAN-based MRI reconstruction models.
These models contribute to improving MRI quality and achieving superior performance
compared to traditional techniques. However, GANs face challenges such as training insta-
bility, slow convergence, limited evaluation of clinical datasets, and lack of interpretability.
The effectiveness of GAN-based methods in MRI reconstruction can be further enhanced by
incorporating auxiliary penalties and enforcing fidelity in the image or k-space domains.

Table 8. Contributions and Limitations of GAN-Based MRI Reconstruction Models.

Ref. Year Contributions Unsolved Challenges

[35] 2018 Under 100 ms, a 256 × 256 MRI can be reconstructed with
high quality (over 42 dB in average at 40% sampling rate)

Limited generalization to unseen data and imaging con-
ditions, data scarcity and the need for large amounts of
labeled training data

[36] 2019
Reduced motion artifacts and motion blurring consis-
tently by retrospectively correcting MR images with sim-
ulated motion

reconstructed MRIs still have a certain amount of smoothness

[37] 2020
Achieved high acceleration factors, successfully recov-
ered pathologies, and could jointly reconstruct and syn-
thesize the target contrast

Large paired datasets are required for training, and fur-
ther optimization and generalization are necessary to
handle diverse multi-contrast imaging scenarios

[128] 2020 Reduced training time and improved network training
stability and network generalization

May not fully capture the clinical significance of the
phase information
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Table 8. Cont.

Ref. Year Contributions Unsolved Challenges

[121] 2021 Balanced edge features against global high-level features
for improved reconstruction accuracy

Lack of interpretability and explainability as black box
models

[130] 2021 Reconstructed finer MRI texture details and effectively re-
moved artifacts, all while utilizing fewer model parameters

Need to evaluate the generalizability and robustness of
the approach across various imaging conditions

[131] 2022 For real-valued activations, a learnable complex-valued
activation was developed to solve the transferability issues

Prone to overfitting, lack of interpretability and explain-
ability as black box models

[132] 2022
Captured global context, recovered fine-structural details,
and had low model complexity with improved learn-
ing behavior

Reliance on fully-supervised training with high-quality
datasets, which could be challenging to compile, and the
potential challenges in generalizing the model to nonrec-
tilinear orientations

[133] 2023 Efficiently captured both long-distance dependencies and
local information

High hardware requirements are associated with the in-
creasing network parameters

[134] 2023
Improved spatiotemporal information was achieved be-
tween adjacent views, with a specific focus on recon-
structing the local cardiac regions

Not suitable for multi-coil data and requires a large num-
ber of network parameters

[135] 2023 Used overall and regional perspectives to remove noise
and restore the fine details

Limited generalization to unseen data and imaging con-
ditions, high computational requirements

2.3.4. Other Training Approaches

Figure 7 illustrates a self-supervised approach to enhance DL-based MRI reconstruc-
tion methods. This approach involves separating the undersampled data into two sets:
one for training and the other for validation and loss calculation. By carefully dividing the
data in this way, the model gains valuable insights during training, leading to improved
performance. This data separation strategy prevents overfitting and enables effective gen-
eralization to unseen data. The validation set plays a crucial role in evaluating the model’s
performance and guiding the training process for fine-tuning the reconstruction. By com-
bining this data separation strategy with data consistency (DC) and regularization (R)
components, the model adapts better to diverse datasets, resulting in robust and accurate
image reconstructions from undersampled data.

Yaman et al. [136] developed a self-supervised learning approach for training physics-
guided DL-MRI reconstruction without depending on fully sampled reference data. SSDU
split acquired k-space indices into two sets, allowing end-to-end training and evaluation of
the network using only acquired measurements. Acar et al. [137] proposed self-supervised
training for deep neural networks in dynamic MRI reconstruction that enabled the use of
more complex models even in the absence of ground-truth data, making it valuable for high
spatiotemporal-resolution protocols. Hu et al. [138] applied a parallel network training
approach using self-supervised learning for MRI reconstruction. During model optimiza-
tion, they utilized two subsets of undersampled data to train two parallel reconstruction
networks, thereby improving frequency information recovery. Reconstruction losses were
defined on all scanned data points, and a difference loss enforced consistency between the
networks. This allowed proper training with only undersampled data. Elmas et al. [139]
proposed FedGIMP, a federated learning framework for MRI reconstruction. It lever-
aged cross-site learning of a generative MRI prior and adaptation with subject-specific
imaging operators.
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Figure 7. Self-Supervised Training Paradigm for Unrolled MRI Reconstruction Network: Regularizer
(R) and Data Consistency (DC) Components (adapted with changes from [137]).

2.4. Other Improvements

Murugesan et al. [140] proposed ReconSynergyNet (RSN) and a deep cascade RSN,
where RSN blocks are interleaved with data fidelity units. They also used Gradient of Log
Feature (GOLF) fusion to provide additional structural information for T2-weighted images
using T1-weighted images with shorter acquisition times. Lastly, the Perceptual Refinement
Network (PRN) was applied to enhance image fidelity. Ueda et al. [141] studied the MRI
reconstruction performance using DL and CS. In this, Advanced Intelligent Clear IQ Engine
(AiCE) (i.e., a DL reconstruction method) and Compressed SPEEDER (C-SPEEDER) were
utilized to improve MRI quality while reducing noise. It provided better performance than
conventional SPEEDER. Thomaz et al. [142] utilized the combination of U-Nets and L1,
L2, and TV optimizations to reconstruct the images from highly undersampled MRI data.
Genzel et al. [143] showed that standard end-to-end deep learning algorithms for inverse
problems are robust against both statistical noise and adversarial perturbations, without
the need for complex defense strategies.

The principle of dictionary learning has also found diverse applications, ranging
from signal processing and computer vision to medical imaging, particularly in the field
of MRI reconstruction. Several studies have explored the integration of deep dictionary
learning for improving MRI reconstruction methods. Singhal and Majumdar [144] intro-
duced structured deep dictionary learning for the reconstruction of multi-echo MRIs. By
combining DL and dictionary learning, their approach improved the quality and precision
of the reconstructed MRIs, enabling better analysis and interpretation of the acquired data.
Rai et al. [145] developed an augmented noise learning framework for medical image
denoising, specifically focusing on MRI. Their framework integrated dictionary learning
techniques to enhance the denoising process, leading to improved image quality and
increased diagnostic value of MRI scans.
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3. Papers Improving Reconstruction-Related MRI Applications

MRI reconstruction applications have a significant impact on advancing the capabil-
ities of MRI imaging. They facilitate faster and higher-quality scans, while also offering
valuable quantitative information for clinical and research purposes. These applications
comprise non-Cartesian reconstruction, super-resolution, joint learning of reconstruction
and coil-sensitivity, joint learning of sampling and reconstruction, quantitative mapping,
and MR Fingerprinting.

3.1. Non-Cartesian Reconstruction

These MRI reconstruction methods are necessary when non-Cartesian sampling trajec-
tories are used for data acquisition. The Non-Uniform Fast Fourier Transform (NUFFT)
plays a critical role in this process by accurately transforming the irregularly sampled
non-Cartesian k-space data onto a Cartesian image representation. This transformation is
necessary and replaces the fast Fourier transform (FFT) when k-space data is not in the
Cartesian grid [146]. Also, NUFFT and its adjoint are usually ill-conditioned operators, re-
ducing the convergence speed of the reconstruction algorithms compared to their Cartesian
counterparts [147]. To address this issue, density compensation (DC) techniques have been
introduced. Classical MRI trajectories like radial or spiral tend to oversample the center of
the k-space, causing a biased weight distribution visible after the adjoint operation. Density
compensation addresses this imbalance by applying factors that equalize the contribution of
different sample locations, resulting in a more even role for each sample during the adjoint
application. By incorporating density compensation, non-Cartesian MRI reconstruction can
mitigate artifacts and enhance the quality and fidelity of the reconstructed images [148,149].

The study conducted by Ramzi et al. [148] emphasized the importance of DC in neural
networks for non-Cartesian MRI reconstruction. By incorporating a dynamic DC mecha-
nism, the study addressed the issue of uneven k-space weighting, resulting in improved
image quality. Notably, this work introduced the first network in the literature that adapts
to different sampling densities, highlighting the significance of DC in achieving satisfactory
results. The benchmark in this study involved the utilization of emulated single-coil k-space
data for evaluation purposes. In their subsequent work [149], they extended their findings
to non-Cartesian multi-coil MRI 2D and single-coil MRI 3D settings. Chen et al. [150]
utilized a method called preconditioned gradient descent (PGD-DC) for DC, addressing
the uneven weighting of the radial k-space data during the MRI reconstruction process.
Dwork et al. [151] presented an algorithm for generating density compensation values
from a set of Fourier samples. The algorithm considered the point spread function over
an entire rectangular region in the image domain. This algorithm demonstrated broader
applications in iterative reconstruction algorithms and neural network system models.
Wang et al. [152] introduced the parallel non-cartesian spatial-temporal Dictionary Learn-
ing Neural Networks (stDLNN) for accelerating 4D-MRI reconstruction. Their method
leveraged the power of DL and dictionary learning to expedite the reconstruction of 4D
MRI data, enabling real-time visualization and analysis of dynamic processes.

3.2. Super-Resolution

SR techniques are extremely useful for MRI. Scanner operators could set the scans for
very high resolution, but in practice, as voxel size is reduced SNR is also reduced, limiting
the smaller voxel size possible to be obtained in the scanner. In this sense, producing
high-resolution images from relatively low-resolution data can solve this problem. Another
advantage is faster acquisition, since time is not spent in the acquisition of these high-
frequency and low SNR components. Another important application for SR techniques is
improving slice thickness. In many 2D scans, the slice thickness cannot be reduced. In this
case, SR can be applied to artificially increase the number or slices with finer thickness [62].

Chaudhari et al. [153] developed DeepResolve, a 3D CNN network that aimed to
generate high-resolution thin-slice images while reducing scan time. It outperformed
tricubic interpolation, Fourier interpolation, and sparse-coding SR in terms of image quality
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metrics. Zhao et al. [154] investigated SMORE, a self-supervised SR algorithm specifically
developed for MRI. SMORE did not rely on external training data and was tailored for MRI
acquisitions with high in-plane resolution but low through-plane resolution. Shi et al. [155]
implemented Fixed Skip Connection Wide Network (FSCWN) for SR. It utilized the combi-
nation of shallow network-based local residual learning and global residual learning in a
progressive wide network to capture and preserve fine details for better reconstruction.

Lyu et al. [156] developed a Deep Ensemble Learning Network (DELNet) for SR,
combining multiple SR models and GANs. The approach achieved superior artifact sup-
pression and enhanced MRI details compared to individual GANs. Masutani et al. [157]
assessed CNNs for their ability to generate single-frame (k) and multi-frame (kt) SR im-
ages. Two shallow networks, k-SRNet and kt-SRNet, were employed, along with two
deeper networks, k-UNet, and kt-UNet, for this purpose. Ferdian et al. [158] presented
4DFlowNet, a DL model combined with computational fluid dynamics, enabling SR in
4D flow MRI. Their approach improved flow estimation and enhanced the understanding
of fluid dynamics. Sarasaen et al. [159] presented a SR model for dynamic MRIs, using
prior knowledge-based fine-tuning. It utilized a 3D UNet with perceptual loss, trained on a
benchmark dataset and fine-tuned with subject-specific static high-resolution MRI.

Lin and Zihao [160] presented a magnitude-image based CNN model with a data
consistency layer, referred to as DC-CNN, for SR in MRI. It was demonstrated that their
method enhanced the quality of MRIs without relying on raw k-space data. Shit et al. [161]
developed SRflow, a DL-based SR model for 4D flow MRI. They utilized a CNN to learn
the inter-scale relationship of the velocity vector map. This led to enhanced spatiotem-
poral vector field resolution, enabling more precise quantification of hemodynamics.
Iwamoto et al. [162] introduced an unsupervised SR model, DEGRNet, using deep ex-
ternal learning and a guided residual dense network. The guided CNN utilized HR
images of a different modality to enhance LR image resolution within the same subject.
Rudie et al. [163] conducted a clinical assessment of SR for 3D volumetric brain MRI,
utilizing a DL-based model for denoising and resolution enhancement. Their focus was
on optimizing scan time while preserving image quality and SR for specific image types.
Qiu et al. [164] designed a Progressive Feedback Residual Attention Network (PFRN) to
enhance the detailed information and visual quality of cardiac MRI. Feature extraction and
retention, progressive feedback modules, and MS-SSIM-L1 loss function contributed to
better MRI quality and reconstruction.

Table 9 summarizes various SR models in MRI along with their main features and
limitations. The models include DeepResolve, DDCN, SMORE, DELNet, SRNet & UNet,
4DFlowNet, 3D UNet, DC-CNN, SRflow, DEGRNet, 3D CNN, and PFRN. These models
offer benefits such as improved resolution, enhanced image quality, and compatibility with
diverse medical imaging modalities. However, they also have limitations, such as increased
computational complexity, potential overfitting, sensitivity to network architecture and
hyperparameters, and the need for further evaluation of diverse clinical datasets. Addition-
ally, limitations related to the specific applications, interpretability of learned features, and
limitations in addressing smaller and more subtle lesions were noted in some models.

Despite these limitations, the studied SR models show promising potential for en-
hancing MRI quality and supporting clinical decision-making. Future research efforts
should focus on addressing the identified limitations, refining the models’ performance,
and investigating their practical utility in clinical settings.
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Table 9. Comparative analysis of SR Models.

Ref. Year Model Main Features Unsolved Challenges

[153] 2018 DeepResolve Offered the benefit of generating high-resolution
thin-slice images while reducing scan time

Focused on magnitude data instead of complex
or multichannel data, which may limit the output
fidelity

[165] 2018 DDCN Improved resolution through dense connections,
efficient parameter sharing, reduced overfitting

-Increased computational complexity due to
dense connections, potential overfitting, sensitiv-
ity to network architecture and hyperparameters

[154] 2019 SMORE Enhanced edges without creating artificial structures
and improved both visual and quantitative metrics

Does not address motion artifacts and requires
accurate knowledge of the point spread function

[155] 2019 FSCWN Captured and preserved fine details for better re-
construction using fixed skip connections

Limited generalization to different imaging set-
tings and clinical applicability

[156] 2020 DELNet Enhanced SR through ensemble learning, leverag-
ing complementary priors

Increased computational complexity due to en-
semble size and dependence on diverse ensemble
members

[157] 2020 SRNet & UNet
Improved image quality and spatial details in car-
diac MRI scans, with the potential for reduced
scan time and increased temporal resolution

Lack of a reference standard for accurate compar-
ison, along with limited clinical evaluation and a
small patient sample size

[158] 2020 4DFlowNet Achieved an upsampling factor of 2 and effec-
tively reduced noise in the images

Increased computational complexity and depen-
dence on accurate flow dynamics modeling

[159] 2021 3D UNet Improved SR of dynamic MRI, fine-tuning for
specific applications

Increased computational complexity due to fine-
tuning and potential overfitting

[166] 2021 VDR-net
Achieved better resolution of reconstructed MRI
images through a Very Deep Residual network
(VDR-net) and 2D Stationary Wavelet Transform

Focused on single-image super-resolution and
may not have been directly applicable to multi-
frame or dynamic imaging scenarios

[160] 2022 DC-CNN Enhanced the quality of MRIs without relying on
raw k-space data

Sensitivity to training data quality and limited
interpretability of the learned features

[161] 2022 SRflow
Achieved enhanced spatiotemporal vector field
resolution, resulting in more precise quantifica-
tion of hemodynamics

Generalizability to different datasets and anatom-
ical regions, potential information loss or artifacts
during SR, and the complexity of learning vector-
field data

[162] 2022 DEGRNet
Utilized clinical image resources without specific
HR training images, making it compatible with
diverse medical imaging modalities

Limited to 2D super-resolution and potential
computational overhead from iterative back pro-
jection method

[163] 2022 3D CNN Clinical assessment of brain SR, improved image
quality, accurate structural details

Does not focus on smaller and more subtle le-
sions especially smaller lesions.

[164] 2023 PFRN

Performed feature extraction directly on LR-MRIs
while retaining a significant amount of feature
information, enabling the extraction of HF details
during the reconstruction process

Assessment on diverse clinical CMRI data is
needed to validate PFRN’s generalizability

[167] 2023 CycleGAN

Addressed the limitations of non-blind ap-
proaches by utilizing a CycleGAN-based model
for domain correction and an upscaling network
for reconstruction

Lack of evaluation on clinical datasets

3.3. Joint Learning: Coil-Sensitivity and Reconstruction

Joint learning of coil sensitivity and reconstruction refers to simultaneously optimizing
the estimation of coil sensitivity maps and the image reconstruction process in MRI. This
approach integrates the two tasks, leveraging the mutual information between them. By
jointly learning, it is possible to improve image quality, especially in scenarios with complex
coil sensitivity variations or artifacts. Deep learning techniques are often employed to
directly estimate the coil sensitivity maps and perform image reconstruction in a single
step. Joint learning enhances the efficiency, accuracy, and robustness of MRI reconstruction,
leading to improved image quality and diagnostic capabilities.

Sriram et al. [168] designed GrappaNet for multi-coil MRI reconstruction, integrating
neural networks and GRAPPA to achieve scan-specific reconstruction. The reconstruction
process was performed jointly across all complex-valued views captured during the parallel
imaging process, allowing the network to effectively leverage all available information.
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Sriram et al. [169] introduced end-to-end VNs for multi-coil MRI reconstruction, addressing
the challenge of the unknown forward process by estimating sensitivity maps within the
network and learning fully end-to-end. Jun et al. [170] implemented Joint-ICNet, a Joint
Deep Model-based MR Image and Coil Sensitivity Reconstruction Network. It jointly
reconstructed MR images and estimated coil sensitivity maps from undersampled multi-
coil k-space data using an unrolled network architecture.

Peng et al. [171] used CNNs to estimate coil sensitivity functions in MRI by lever-
aging information from previous scans. The trained networks effectively mapped the
initial sensitivity to high-resolution counterparts. Additionally, sensitivity alignment tech-
niques were employed to mitigate geometric variation. Yiasemis et al. [51] proposed a
multi-coil MRI reconstruction approach using recurrent variational networks. The method
jointly trains the coil sensitivity and reconstruction network, refining k-space data (obser-
vation domain) to achieve high-quality reconstructions from highly accelerated MRI data.
Zhang et al. [172] proposed a method in which they simultaneously learned coil-sensitivity
and reconstruction for accelerated multi-coil MRI using a VN with explicit feature fusion.

3.4. Joint Learning: Sampling and Reconstruction

Joint learning of sampling and reconstruction in MRI involves simultaneously op-
timizing the sampling pattern or density and the image reconstruction process. This
approach leverages data-driven techniques, such as deep learning, to learn the optimal
sampling pattern directly from the data. By jointly learning, the algorithm improves the
trade-off between acquisition time and image quality, leading to more efficient and accurate
reconstructions. Deep learning frameworks train networks to estimate the optimal sam-
pling pattern and perform reconstruction, capturing complex dependencies. Joint learning
enhances image quality, reduces acquisition time, and improves overall MRI efficiency.

Zhang et al. [173] introduced RecNet, a reconstruction network that generated MRI
reconstructions and uncertainty predictions. RecNet was trained to optimize for both objec-
tives simultaneously. An evaluator network for active acquisition was also proposed, which
could recommend optimal k-space trajectories for MRI scanners and effectively reduce
uncertainty. Bahadir et al. [174] implemented LOUPE (Learning-based Optimization of the
Under-sampling PattErn), a method that simultaneously tackled the problems of optimal
under-sampling and image reconstruction. By training a neural network on full-resolution
MRI scans, LOUPE generated data-dependent optimized under-sampling patterns, result-
ing in superior reconstruction quality even at high acceleration rates. LOUPE framework
was further extended by Zhang et al. [175] with binary stochastic k-space sampling for
in-vivo data, using a modified unrolled optimization network. Learned optimal sampling
pattern outperformed hand-crafted patterns with better reconstruction results. Aggar-
wal and Jacob [176] introduced a continuous strategy for joint optimization of sampling
patterns and CNN parameters using a multichannel forward model with continuously
defined sampling locations, which improved image quality in deep learning reconstruction
algorithms. Weiss et al. [177] introduced PILOT (Physics-Informed Learned Optimized Tra-
jectories), a deep-learning-based method for joint optimization of hardware-viable k-space
trajectories. It integrated acquisition parameters and constraints into the learning pipeline
to optimize image reconstruction networks simultaneously. Zibetti et al. [178] proposed
an alternating learning approach for accelerated parallel MRI, where the sampling pattern
and parameters of VN were simultaneously learned. Wang et al. [146] proposed a joint
optimization approach for fast MRI, optimizing reconstruction methods and sampling
trajectories together using B-spline kernels and multi-scale optimization. Radhakrishna
and Ciuciu [179] proposed PROJeCTOR, a joint learning approach that optimized both
k-space trajectories and image reconstruction simultaneously. Using a projected gradient
descent algorithm, PROJeCTOR learned k-space trajectories in a data-driven manner while
adhering to hardware constraints during training.
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3.5. Quantitative Mapping

End-to-end mapping of MR parameters has been an active area of research in recent
years, with a focus on developing efficient and accurate techniques using DL models. These
models aim to directly map acquired MRI data to quantitative parameter maps, bypassing
complex and time-consuming processing steps.

Figure 8 shows SuperMAP’s training approach which provides a highly effective
alternative to derive quantitative maps from undersampled data. By employing eight
fully sampled parameter-weighted images, it generates the necessary training data. The
SuperMAP network is constructed with multiple skip connections, enabling it to proficiently
learn and accommodate variations between input and output data. Each network block is
equipped with 64 filters, using a kernel dimension of 3. Throughout the training phase, two
loss functions are utilized: Loss1, which optimizes the parametric maps, and Loss2, which
ensures data consistency by comparing the generated results with the actual measurement
data. This comprehensive training strategy empowers SuperMAP to achieve accurate and
reliable quantitative map reconstruction even from limited data samples.
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Figure 8. Diagrammatic Flow of SuperMAP-based End-to-End Quantitative Mapping (adapted with
changes from [39]).

One notable technique is MANTIS (Model-Augmented Neural neTwork with Incoher-
ent k-space Sampling) [38], which combined incoherent k-space sampling with a model-
augmented neural network. By leveraging the power of DL, MANTIS achieved high-quality
parameter maps from highly undersampled MRI data, enabling rapid and accurate quan-
tification. Relax-MANTIS [180], an unsupervised DL framework, took the concept further
by extracting latent maps without relying on reference data. This reference-free approach
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allowed for efficient parametric mapping and eliminated the need for additional acquisi-
tion of reference scans. To enhance the speed of parameter mapping, high-performance
rapid MR parameter mapping using model-based deep adversarial learning [41] combined
model-based MRI reconstruction and deep adversarial learning. This approach leveraged
the strengths of both techniques to achieve fast and accurate parameter mapping.

For simultaneous mapping of multiple parameters, ultra-fast simultaneous T1rho and
T2 mapping using DL [181] presented a DL-based approach. By training a neural network
on multi-contrast images, this method enabled rapid acquisition and accurate mapping
of both T1rho and T2 relaxation times in a single step. In dynamic imaging, kt SANTIS
(Subspace augmented neural network with incoherent sampling) [42] utilized subspace
learning and incoherent sampling to reconstruct dynamic MR images and efficiently map
dynamic parameters. SuperMAP (Deep ultrafast MR relaxometry with joint spatiotempo-
ral undersampling) [39] focused on joint spatiotemporal undersampling to enable rapid
acquisition and accurate mapping of relaxation parameters. By combining DL with joint
undersampling, SuperMAP achieved ultrafast mapping without compromising quality.

These end-to-end mapping techniques demonstrate the potential of DL in achieving
rapid and accurate quantification of MR parameters. By directly mapping acquired data to
quantitative maps, these approaches streamline the process, improve efficiency, and hold
great promise for advancing clinical diagnosis and treatment planning in the field of MRI.

3.6. MR Fingerprinting

Quantitative imaging protocols serve as vital clinical tools, offering objective and
precise measurements in the field of medical imaging. Among these protocols, Magnetic
Resonance Fingerprinting (MRF) emerges as a powerful technique for quantitative MRI.
MRF boasts several compelling advantages, including its flexibility, efficiency, and the
ability to simultaneously quantify multiple properties of interest. This unique flexibility
empowers clinicians to comprehensively assess anatomical and physiological character-
istics within a single acquisition, enabling a more holistic understanding of the imaging
data. Furthermore, MRF’s efficiency is achieved through specialized pulse sequences and
advanced reconstruction models, resulting in reduced scan times and improved patient
comfort and workflow.

Thus, MRF enhances the objectivity and accuracy of diagnosis, treatment response
assessment, and disease progression monitoring. By harnessing the capabilities of MRF,
medical professionals can extract comprehensive and dependable information from MRI
scans, ultimately leading to enhanced patient care and informed clinical decision-making.
In recent years, there has been significant interest in leveraging DL models to enhance the
accuracy, efficiency, and robustness of MRF quantitative mapping.

Figure 9 illustrates the deep learning model for tissue quantification in MRF. Initially,
the feature extraction module processes each MR signal evolution, extracting a feature
vector with reduced dimensions. Subsequently, a spatially constrained quantification
module, employing an end-to-end CNN mapping, is employed to estimate tissue maps
using the extracted features while preserving spatial information. By employing the
spatially constrained quantification (SCQ) method, precise T1 and T2 estimations are
achieved, utilizing only a quarter of the originally required MRF signals. This results in a
remarkable fourfold acceleration in the brain’s tissue quantification process, highlighting
the effectiveness and efficiency of SCQ approach.
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Figure 9. Deep Learning Model for Tissue Quantification in MRF with Spatially Constrained Quan-
tification (SCQ) Methodology (adapted with changes from [182]).

Han et al. [40] proposed a fast group matching technique for MR fingerprinting recon-
struction. By incorporating a group matching algorithm, they achieved accelerated and
accurate mapping of tissue properties in MRF. This approach effectively harnessed the ac-
quired dictionary and enabled efficient quantification. To further improve the speed and reli-
ability of MRF quantitative mapping, DL has been extensively employed. Zhang et al. [183]
explored the use of DL for fast and spatially-constrained tissue quantification in highly-
accelerated MRF data. Their approach leveraged DL models to accelerate data processing
and achieve spatially-constrained quantification, enabling rapid and accurate mapping of
tissue properties.

Li et al. [184] focused specifically on the rapid reconstruction of quantitative relaxation
maps in MRF using DL models. Their proposed DL-based approach significantly reduced
the reconstruction time while maintaining accurate quantification. By accelerating the
mapping process, they demonstrated the potential for real-time applications and improved
clinical workflow.

In addition to acceleration, DL has been employed to enhance the overall accuracy
and robustness of MRF quantitative mapping. Zhao et al. [185] developed a robust sliding-
window reconstruction technique that addressed challenges associated with accelerated
acquisition in MRF. Their approach effectively improved the reliability and speed of quanti-
tative mapping, enabling more precise characterization of tissue properties. Chen et al. [186]
focused on specific aspects of MRF, such as magnetization transfer contrast and chemical
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exchange saturation transfer imaging. Their DL approach enabled accurate and efficient
quantification of these parameters in MRF, contributing to a comprehensive analysis of
tissue properties. Golbabaee et al. [187] proposed a method for CS-MRI quantification
using convex spatiotemporal priors and deep encoder-decoder networks. By combining
dictionary learning with DL models, they achieved accurate quantification of MRI data
acquired under compressive settings, enabling efficient storage and analysis of the recon-
structed MRIs. As the field of MRF quantitative mapping progresses, DL models continue
to evolve. Recent studies have explored the use of complex-valued neural networks [188] to
further enhance the accuracy and speed of quantitative mapping in MRF. Zhang et al. [189]
introduced a theoretically grounded loss function for network training using Cramer-Rao
bound to ensure close to optimal performance in multi-parametric quantitative mapping
from complex-valued MRF data, which was undersampled and reconstructed in the low-
rank sub-space.

In conclusion, the integration of DL models in MRF quantitative mapping has demon-
strated promising results in terms of accelerating the mapping process, improving accuracy,
and enabling real-time applications. These advancements in MRF quantitative mapping
contribute to enhanced diagnostic capabilities, treatment planning, and monitoring of
various diseases and conditions.

3.7. Dynamic MRI

Kustner et al. [190] developed 4D CINENet, a deep learning-based reconstruction net-
work for prospectively undersampled 3D Cartesian CINE imaging. The network utilized an
unrolled optimization algorithm with complex-valued convolutions and intermittent data
consistency blocks to handle the input data effectively. Kofler et al. [191] proposed a deep
supervised dictionary learning approach for fast 2D dynamic MR reconstruction. Their
method demonstrated the potential of combining DL and dictionary learning to achieve
rapid and high-quality reconstruction of dynamic MRI data, facilitating time-resolved
analysis of physiological processes. Yoo et al. [192] utilized an unsupervised deep-learning
algorithm based on the generalized deep-image-prior approach to optimize the recon-
struction network’s weights. Notably, their method achieved successful dynamic MRI
reconstruction without relying on prior training or additional data. Huang et al. [193]
proposed a dynamic MRI reconstruction approach that infused motion information using
deep neural networks. They decomposed the motion-guided optimization problem into a
dynamic reconstruction network, motion estimation, and motion compensation compo-
nents, resulting in improved reconstruction quality. Schlemper et al. [194] presented a deep
cascade CNN approach for 2D MR image reconstruction using Cartesian sampling. The
network demonstrated strong generalization capabilities and could be trained with various
undersampling masks. It achieved high-quality reconstructions in real-time, with each
image reconstructed in just 23 ms.

4. Discussion

In the discussion section, we examine the importance of datasets in DL-based MRI
reconstruction and emphasize the need for diverse and well-curated datasets to enhance
model performance and generalization. We also discuss the challenges faced in this do-
main, such as limited data availability, interpretability of DL models, and integration into
clinical practice.

4.1. Evaluating DL Reconstruction

The most commonly used performance metrics are Signal-to-Noise Ratio (SNR) [195,196],
Contrast-to-Noise Ratio (CNR) [197], Structural Similarity Index (SSIM) [198], Peak Signal-to-
Noise Ratio (PSNR) [199,200], Root Mean Square Error (RMSE) [201–203], Normalized Root
Mean Square Error (NRMSE) [200], and Edge Preservation Index (EPI) [204]. These metrics are
commonly used to evaluate the quality, accuracy, and fidelity of MRI reconstruction models.
In Table 10, each row corresponds to a specific metric. The “Definitions” column provides
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a concise description of each metric. The “Formula” column showcases the mathematical
formula used to compute the corresponding metric. The “Range” column specifies the valid
range of values for each metric, such as a specific interval. The “Desirability” column indicates
whether higher or lower values are preferable for each metric.

Metrics like SNR and CNR evaluate MRI quality, while SSIM assesses similarity to
a reference image. PSNR quantifies reconstruction quality, RMSE quantifies accuracy,
and NRMSE normalizes the RMSE. EPI evaluates edge preservation degree. Understand-
ing these metrics helps researchers and practitioners assess and compare different MRI
reconstruction models based on their quantitative performance.

Table 10. Performance Metrics for MRI Reconstruction Models.

Metric Definitions Formula Range Desirability

SNR Quantifies the ratio of the average signal intensity to the stan-
dard deviation of noise in the reconstructed MRI. SNR = 20 log10

(
as
σn

)
≥0 Higher

CNR
Measures the difference in intensity between two signals or
regions of interest in the reconstructed MRI relative to the stan-
dard deviation of noise.

CNR = S1−S2
σn

≥0 Higher

SSIM
Measures the similarity between the reconstructed and refer-
ence images in terms of their luminance, contrast, and struc-
tural information.

SSIM =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
[−1, 1] Higher

PSNR
Quantifies the ratio of the maximum possible pixel value to the
RMSE, i.e.,

√
MSE between the reconstructed and reference images.

PSNR = 20 log10

(
MAXi√

MSE

)
≥0 Higher

RMSE
Calculates the average difference between the pixel intensities
in the reconstructed MRI and the corresponding intensities in
the original/reference image.

RMSE =
√

1
N ∑ (RI − GI)

2 ≥0 Lower

NRMSE Normalizes the RMSE by the range of pixel values in the image. NRMSE = RMSE
Maxv−Minv

[0, 1] Lower

EPI Quantifies the preservation of sharp edges in the reconstructed
MRI compared to the original/reference image. EPI = 1− Teb

Meb
[0, 1] Higher

Here, as shows the average intensity of the signal in the reconstructed MRI (RI). σn
represents the standard deviation of noise in RI . Signal1 (S1) and Signal2 (S1) are the
intensities of the first and second signal or region of interest in RI , respectively. µx and µy
represent the average intensity of RI and ground truth image (GI). σxy denotes covariance
between RI and GI . c1 and c2 are the constants for stability. σx and σy are variances of RI
and GI . MAXi shows maximum possible pixel value. N represents the total number of
pixels. Maxv and Minv represent the maximum and minimum pixel values in the image.
Teb is the total edge blur in RI and Meb is maximum edge blur.

4.2. Publication Trends

Figure 10 provides an insightful overview of the publication analysis conducted for
an SLR that specifically focuses on the utilization of DL models in combination with CS for
MRI reconstruction. The data covers the period from Jan. 2018 to June 2023 and presents
the annual publication trends in three distinct categories: CS-only, CS combined with DL,
and DL-only.

The results of the analysis reveal a clear indication of the growing interest in DL-
based MRI reconstruction. Over the years, there has been an increasing number of papers
dedicated to DL-only approaches. The number of CS papers exhibits some variation but
remains relatively stable. However, the combination of CS and DL consistently demon-
strates an upward trend, showcasing the synergistic potential of these two techniques in
MRI reconstruction.

The significant rise in DL-only papers highlights a notable shift in the field toward
harnessing the power of DL models for MRI reconstruction. This trend signifies the
recognition of DL as a valuable tool in advancing the field of MRI reconstruction.

Figure 11 illustrates the analysis of published papers on DL reconstruction archi-
tectures, focusing on Residual Learning (RL), Image representation using encoders and
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decoders (IR-ED), Data-consistency layers and unrolled networks (DC-UN), Learned ac-
tivations and attention modules (LA-AM), and Plug-and-play priors, diffusion models,
and Bayesian methods (PDBM). However, some of these papers utilize more than two
approaches at a time. So, for better trend analysis, we have counted them in every category.
The number of papers focusing on RL has consistently increased, reaching its peak in
2022 with 36 papers. IR-ED has also shown steady growth, with the highest number of
publications in 2022 (14 papers). Similarly, DC-UN and LA-AM have gained attention,
reaching their peak in 2022 with 14 papers each. PDBM experienced significant growth
from 2018 to 2022, with the highest number of papers (14) in 2022. Overall, these trends
indicate the increasing prominence of DL architectures in MRI reconstruction research,
with 2022 being the most active year. This suggests a growing interest in the potential of
DL architectures to advance MRI reconstruction methodologies.
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Figure 10. Publication Analysis of DL-based MRI Reconstruction including Compressive Sensing
(CS) only, CS combined with Deep Learning (DL), and DL-only (2018–2023).
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Figure 11. Number of Published Papers on DL Reconstruction Architectures focusing on Residual
Learning (RL), Image Representation using Encoders and Decoders (IR-ED), Data-consistency Layers
and Unrolled Networks (DC-UN), Learned Activations and Attention Modules (LA-AM), and Plug-
and-play Priors, Diffusion Models, and Bayesian Methods (PDBM).
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Figure 12 illustrates the publication trends on deep MRI reconstruction applications,
including Non-Cartesian Reconstruction (NCR), Super-Resolution (SR), Joint Learning
for Coil Sensitivity and Reconstruction (JL-Coil), Joint Learning for Sampling and Recon-
struction (JL-Samp), Quantitative Mapping (QM), MR Fingerprinting (MRF), and Dynamic
MRI (DMRI). From 2018 to 2023, NCR exhibits a continuous increase in the number of
publications, with the highest number in 2022. SR, JL-Coil, and JL-Samp are prominent
research areas, consistently garnering attention and experiencing a rise in publications
each year. QM and MRF have shown substantial growth, witnessing a notable increase in
publications every year. DMRI also maintains steady interest, with a moderate number of
publications over the years. Overall, these trends indicate a growing interest and emphasis
on advancements in MRI reconstruction applications.
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Figure 12. Trends on Improving Reconstruction-Related MRI Applications including Non-Cartesian
Reconstruction (NCR), Super-resolution (SR), Joint learning: Coil-sensitivity and Reconstruction
(JL-Coil), Joint learning: Sampling and Reconstruction (JL-Samp), Quantitative Mapping (QM), MR
Fingerprinting (MRF), and Dynamic MRI (DMRI).

4.3. Challenges and Future Outlook

Table 11 highlights the key shortcomings of DL-based MRI reconstruction models and
suggests corresponding mitigation strategies. The identified shortcomings include data
dependency, limited generalization, black box nature and limited explainability, computa-
tional resource requirements, susceptibility to adversarial attacks, challenges in handling
artifacts, and the need for effective hyperparameter tuning. To address these limitations,
various strategies can be employed, such as data augmentation, transfer learning, domain
adaptation, explainable AI techniques, model compression, efficient network architectures,
training with adversarial network, data-specific loss functions, and automated hyperpa-
rameter tuning techniques. By implementing these mitigation strategies, the performance,
robustness, generalization, interpretability, and practicality of DL-based MRI reconstruc-
tion models can be improved, thereby advancing their applicability in clinical settings and
enhancing their utility in medical imaging.
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Table 11. Shortcomings and Mitigation Strategies of DL-based MRI Reconstruction Models.

Shortcoming Description Mitigation Strategies

Data Dependency
[205,206]

DL models require large labeled training datasets,
which may be challenging to obtain, limiting
model generalization.

Data augmentation, transfer learning, and domain
adaptation techniques can address data scarcity
and improve generalization.

Limited Generalization
[205,207,208]

Models trained on specific datasets may not per-
form well on data from different scanners or pro-
tocols due to variations in imaging characteristics.

Domain adaptation, model ensemble techniques, and
domain-specific regularization methods can enhance
generalization across different imaging settings.

Black Box Nature and
Limited Explainability
[209,210]

DL models lack transparency, interpretability, and
the ability to provide detailed explanations for
their predictions or reconstruction outputs.

Explainable AI techniques, such as attention mech-
anisms, interpretability methods, and integration
with clinical knowledge or rule-based models,
can enhance interpretability and provide explain-
able outputs.

Computational Resource
Requirements [211–213]

Training and deploying DL models for MRI re-
construction can be computationally demanding,
limiting accessibility in clinical settings.

Model compression techniques, efficient network
architectures, and hardware acceleration can help
alleviate computational resource requirements.

Susceptibility to Adver-
sarial Attacks [214,215]

DL models can be vulnerable to adversarial attacks,
raising concerns about their robustness and reliability.

Adversarial training, input preprocessing (e.g., de-
noising, smoothing), and defensive mechanisms
(e.g., detection, certification) can enhance model
robustness against adversarial attacks.

Handling Artifacts and
Novel Cases [119,216]

DL models may struggle with complex artifacts that
differ significantly from the training data distribution.

Augmenting training data with diverse artifacts,
using data-specific loss functions, and incorporat-
ing domain knowledge can improve model perfor-
mance on artifacts.

Hyperparameter Tuning
[217,218]

The performance of DL models is sensitive to hy-
perparameter settings, requiring careful tuning.

Automated hyperparameter tuning techniques
(e.g., grid search, Bayesian optimization) and
model-specific optimization strategies including
metaheuristics can enhance model performance
through effective hyperparameter tuning.

4.4. Responses to Research Questions

The section presents detailed responses to the research questions (refer Section 1.4) that
were formulated for this SLR. By addressing the following research questions, this review
aims to provide comprehensive insights and understanding into the current landscape of
fast MRI reconstruction using DL.

(a) Response to RQ1: Section 2.2 explores the significance of advanced network archi-
tectures in fast MRI reconstruction. These architectures, including residual learning,
image representation using encoders and decoders, data-consistency layers, unrolled
networks, learned activations, attention modules, plug-and-play priors, diffusion
models, and Bayesian methods, play a crucial role in improving the efficiency and
accuracy of image reconstruction from undersampled k-space data. These advanced
architectures contribute to better preservation of small anatomical features in the
reconstructed images, making them valuable tools in the development of fast MRI
reconstruction techniques.

(b) Response to RQ2: In recent times, significant progress has been made in loss func-
tions and training with adversarial networks for MRI reconstruction, as discussed
in Section 2.3. Tailored loss functions designed for specific imaging objectives have
improved reconstruction performance and preserved clinically relevant features more
effectively. Training with adversarial networks has further contributed to generat-
ing realistic and visually pleasing images, mitigating image artifacts and noise in
reconstructed MRI scans.

(c) Response to RQ3: In Section 3, we explore recent advancements in MRI reconstruc-
tion applications, which have brought about exciting possibilities in the field. Non-
Cartesian reconstruction techniques have enabled more flexible sampling patterns,
leading to reduced scan times and improved image quality. Super-resolution tech-
niques have achieved higher-resolution imaging, allowing for detailed visualization
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of anatomical structures. Joint learning for coil-sensitivity and sampling has improved
the sensitivity and efficiency of multi-coil MRI data acquisition. Additionally, quanti-
tative mapping and MR fingerprinting techniques have provided valuable insights
into tissue properties and physiological processes. These applications hold great
potential for advancing clinical diagnostics and research in MRI imaging.

(d) Response to RQ4: Section 4.3 identifies key research directions and unresolved chal-
lenges that need to be addressed to advance the field of fast MRI using DL-based
reconstruction networks. It highlights the importance of model interpretability to
ensure trust and reliability in clinical applications. Furthermore, the review examines
the challenges associated with deploying DL models in clinical settings, such as data
privacy, regulatory considerations, and integration into existing workflows. By ad-
dressing these challenges, future research can drive the field of MRI reconstruction
using DL toward practical and impactful clinical applications.

By addressing these research questions, this SLR provides valuable insights into the
current state-of-the-art, advancements, and challenges in the field of MRI reconstruction
using DL. The findings contribute to a better understanding of existing techniques, their
strengths, limitations, and pave the way for future research directions in this rapidly
evolving field.

5. Conclusions

This SLR comprehensively analyzed the advancements and limitations of DL-based
methods in fast MRI, following PRISMA guidelines. The review encompassed both CS and
DL methods, providing valuable insights into their respective strengths and weaknesses
for revolutionizing fast MRI and improving imaging efficiency.

Throughout the review, various techniques employed in deep MRI reconstruction were
highlighted, including residual learning, image representation using encoders and decoders,
data-consistency layers, unrolled networks, learned activations, attention modules, plug-
and-play priors, diffusion models, and Bayesian methods. Additionally, the use of loss
functions and training with adversarial networks was explored to enhance the performance
of DL-based MRI reconstruction methods.

The review also explored various applications of deep MRI reconstruction, ranging
from non-Cartesian reconstruction to super-resolution, joint learning for coil-sensitivity and
sampling, quantitative mapping, and MR fingerprinting. These applications demonstrated
the versatility and potential of DL models in addressing different challenges in MRI.

Furthermore, SLR addressed research questions concerning network architectures,
input domains, and performance evaluation metrics, offering valuable insights for selecting
appropriate techniques and guiding future research directions. It underscored the impor-
tance of robust generalization, artifact handling, and the development of explainable AI
techniques in the context of fast MRI. Ultimately, the paper contributed to the understand-
ing of DL-based models in fast MRI, serving as a valuable resource for researchers and
practitioners seeking to improve MRI quality, accelerate acquisition times, and advance the
field of fast MRI.
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Abbreviations
Following table provides a group of abbreviations along with their corresponding full forms uti-

lized within this SLR. These abbreviations include a variety of ideas, methods, and terms commonly
used in the field of fast MRI reconstruction.

ADC Analog-to-Digital Converter
AE Autoencoder
AI Artificial Intelligence
CNN Convolutional Neural Network
CS Compressed Sensing
CPU Central Processing Unit
DL Deep Learning
FDA Food and Drug Administration
FFT Fast Fourier Transform
FID Fréchet Inception Distance
FOV Field of View
GAN Generative Adversarial Network
GPU Graphics Processing Unit
GUI Graphical User Interface
HCI Human-Computer Interaction
k-space Frequency Domain Data
LSTM Long Short-Term Memory
MRA Magnetic Resonance Angiography
MRI Magnetic Resonance Imaging
NCS Non-Cartesian Sampling
NMR Nuclear Magnetic Resonance
PDF Probability Density Function
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSNR Peak Signal-to-Noise Ratio
QA Quality Assurance
RAM Random Access Memory
RF Radio Frequency
ROI Region of Interest
RMSE Root Mean Squared Error
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
SSIM Structural Similarity Index
UNet U-Net Architecture

References
1. Liang, D.; Cheng, J.; Ke, Z.; Ying, L. Deep magnetic resonance image reconstruction: Inverse problems meet neural networks.

IEEE Signal Process. Mag. 2020, 37, 141–151. [CrossRef] [PubMed]
2. Chen, Y.; Schönlieb, C.B.; Lio, P.; Leiner, T.; Dragotti, P.L.; Wang, G.; Rueckert, D.; Firmin, D.; Yang, G. AI-based reconstruction for

fast MRI—A systematic review and meta-analysis. Proc. IEEE 2022, 110, 224–245. [CrossRef]
3. Fessler, J.A. Model-based image reconstruction for MRI. IEEE Signal Process. Mag. 2010, 27, 81–89. [CrossRef]
4. Zhou, B.; Zhou, S.K. DuDoRNet: Learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 4273–4282.

5. Pal, A.; Rathi, Y. A review and experimental evaluation of deep learning methods for MRI reconstruction. J. Mach. Learn. Biomed.
Imaging 2022, 1, 1. [CrossRef]

6. Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. Off. J.
Int. Soc. Magn. Reson. Med. 1999, 42, 952–962. [CrossRef]

7. Griswold, M.A.; Jakob, P.M.; Heidemann, R.M.; Nittka, M.; Jellus, V.; Wang, J.; Kiefer, B.; Haase, A. Generalized autocalibrating
partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2002, 47, 1202–1210. [CrossRef]
[PubMed]

8. Lustig, M.; Pauly, J.M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med.
2010, 64, 457–471. [CrossRef]

http://doi.org/10.1109/MSP.2019.2950557
http://www.ncbi.nlm.nih.gov/pubmed/33746470
http://dx.doi.org/10.1109/JPROC.2022.3141367
http://dx.doi.org/10.1109/MSP.2010.936726
http://dx.doi.org/10.59275/j.melba.2022-3g12
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
http://dx.doi.org/10.1002/mrm.10171
http://www.ncbi.nlm.nih.gov/pubmed/12111967
http://dx.doi.org/10.1002/mrm.22428


Bioengineering 2023, 10, 1012 36 of 44
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105. Güngör, A.; Dar, S.U.; Öztürk, Ş.; Korkmaz, Y.; Bedel, H.A.; Elmas, G.; Ozbey, M.; Çukur, T. Adaptive diffusion priors for

accelerated MRI reconstruction. Med. Image Anal. 2023, 88, 102872. [CrossRef] [PubMed]
106. Luo, G.; Zhao, N.; Jiang, W.; Hui, E.S.; Cao, P. MRI reconstruction using deep Bayesian estimation. Magn. Reson. Med. 2020,

84, 2246–2261. [CrossRef] [PubMed]
107. Tezcan, K.C.; Baumgartner, C.F.; Luechinger, R.; Pruessmann, K.P.; Konukoglu, E. MR image reconstruction using deep density

priors. IEEE Trans. Med. Imaging 2018, 38, 1633–1642. [CrossRef]
108. Liu, Q.; Yang, Q.; Cheng, H.; Wang, S.; Zhang, M.; Liang, D. Highly undersampled magnetic resonance imaging reconstruction

using autoencoding priors. Magn. Reson. Med. 2020, 83, 322–336. [CrossRef]
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