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Abstract: Estimation of continuous motion of human joints using surface electromyography (sEMG)
signals has a critical part to play in intelligent rehabilitation. Traditional methods always use
sEMG signals as inputs to build regression or biomechanical models to estimate continuous joint
motion variables. However, it is challenging to accurately estimate continuous joint motion in new
subjects due to the non-stationarity and individual differences in sEMG signals, which greatly limits
the generalisability of the method. In this paper, a continuous motion estimation model for the
human knee joint with a parameter self-updating mechanism based on the fusion of particle swarm
optimization (PSO) and deep belief network (DBN) is proposed. According to the original sEMG
signals of different subjects, the method adaptively optimized the parameters of the DBN model
and completed the optimal reconstruction of signal feature structure in high-dimensional space to
achieve the optimal estimation of continuous joint motion. Extensive experiments were conducted
on knee joint motions. The results suggested that the average root mean square errors (RMSEs) of the
proposed method were 9.42◦ and 7.36◦, respectively, which was better than the results obtained by
common neural networks. This finding lays a foundation for the human–robot interaction (HRI) of
the exoskeleton robots based on the sEMG signals.

Keywords: continuous joint motion estimation; surface electromyography (sEMG); deep learning;
feature extraction; particle swarm optimization (PSO); deep belief network (DBN)

1. Introduction

As a rehabilitation robot, the lower limb exoskeleton is advantageous in helping
elders or disabled people to walk. Accurate estimation of the continuous motion of the
knee joint is one of the critical research components for high matching of human–robot
coordinated motion. Surface electromyography (sEMG) signals are potentials and signals
excited by neurons carrying human behavioural information when transmitted to the
relevant tissue/organ, directly reflecting human intention [1]. sEMG signals reflect the
neuromuscular activity level to a certain extent, and they are generally generated 30–150 ms
ahead of limb movement [2]. The sEMG-based continuous motion estimation methods for
the human knee joint are mainly classified into the biomechanical model method and the
regression model methods [2].

Biomechanical modelling is usually accomplished by modelling human muscle forces
based on the Hill-type muscle model and constructing a geometric model of the human
skeleton to achieve continuous joint motion estimation. This method can explain the mech-
anism of human motion generation, but the model contains many unknown physiological
parameters that must be effectively calculated [3–6]. In contrast to complex biomechanical
models, the regression model method usually establishes a direct mapping relationship
between the sEMG signals and the continuous motion of the joint, such as back-propagation
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neural network (BPNN) [7–9], multilayer perceptron (MLP) [10], artificial neural network
(ANN) [11–13], Elman network [14], general regression neural network (GRNN) [15], Ad-
aboost [16], and Gaussian process autoregression [17]. These regression models typically
involve the use of the time domain features as inputs. Then, the corresponding model
training or polynomial calculation is performed according to the obtained features for the
estimation of joint motion variables [2]. Neural-network-based continuous estimation of
joint angles (2D) is typically applied in exoskeleton control system applications [18].

However, traditional time domain features, such as absolute mean value (MAV) [9,10,13],
root mean square (RMS) [8,11,12,14–16], and other artificial selection of features are likely
to cause the loss of useful information in the original sEMG signals, which reduces the
accuracy and robustness of sEMG recognition. Accordingly, it is necessary to apply deep
learning models with high accuracy and robustness [19,20]. Deep learning networks,
including deep belief networks [21], long short-term memory (LSTM) [22–25], recurrent
neural networks (RNN) [26], and convolutional neural networks (CNN) [27], are used to
perform the self-learning and hierarchical feature representation of sEMG features, thereby
improving the accuracy of estimated results. Gautam [23] proposed a long-term recurrent
convolutional network (LRCN) based on transfer learning to estimate the knee joint angle,
using CNN to extract features directly from the raw sEMG signal and LSTM for sequence
prediction. Ma [24] proposed a high-level temporal feature (RMSTAF) incorporating RMS
features, and LSTM was used to estimate knee joint angle. Ma [25] proposed a method
for elbow joint angle estimation based on the short-connected autoencoder long short-
term memory (SCA-LSTM) model. This method adopted an autoencoder to extract the
common-mode features of the sEMG signals and combine the short connection to separate
the different-mode signals. Wang [27] proposed a CNN that could directly use the raw
sEMG signals as input to predict the continuous motion trajectory about the three degrees
of freedom (DOF) of the wrist.

Despite the satisfactory results of the current study, the conventional fixation model
does not allow better identification of new subjects. Since the sEMG signals are typically
non-linearity real-time signals with individual differences, they are closely related to the
physical signs of the subjects. Individual differences have gradually become one of the
main problems hindering the application of the sEMG interaction system. How to obtain
personalized models satisfying different subjects has become a key technology in this area.
To solve the above-mentioned issues and improve the estimation accuracy, we developed
a model of parameter self-updating mechanism to compensate for the impact of strong
non-linearity and individual differences in sEMG signals on estimation accuracy.

The main contributions of this study could be seen as follows:

1. A self-adaptive optimized DBN, depending on the original sEMG signals of different
subjects, was built to complete the reconstruction of sEMG sequences.

2. An adaptive regression model fused with BPNN was established to achieve the
optimal estimation of continuous joint angle.

3. A parameter self-updating mechanism was applied to update the model parameters
using a small amount of data from new subjects to satisfy personalized demand.

2. Materials and Methods

To obtain personalized models with parameter self-updating mechanisms for different
subjects, the methods of acquiring and processing the raw signals were first detailed in
this section. Then, the process of initial feature extraction and the feature reconstruction
methods were presented. Next, the adaptive regression model was built by integrating
BPNN. Finally, we introduced three evaluation indicators of results. The algorithm flow
can be found in Figure 1.
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Figure 1. Flow chart of the method. 

2.1. Data Acquisition and Pre-Processing 
For continuous estimation of the knee joint angle, two to five groups of muscles will 

normally be selected to obtain sEMG signals [14,17,23,26]. In this study, we selected the 
Rectus Femoris (RF), Vastus Medius (VM), Biceps Femoris (BF), and Semitendinosus (SE) 
based on previous research [23]. The RF and VM control knee joint extension [28]. BF and 
SE dominate the flexing and rotation of the knee joint [29]. Four wireless sEMG sensors 
(TrignoTM, Delsys Corporation, Natick, MA, USA) were used to acquire raw sEMG signals 
with a frequency of 1928 Hz. The layout scheme is shown in Figure 2. The optimal location 
for the sensors is on the midline of the muscular abdomen between the nearest innervated 
area and the tendon junction [30–33]. At this position, the sEMG signals with the greatest 
amplitude are obtained [33,34]. 

 
Figure 2. Wireless sEMG sensor electrode locations. 

We used a 6-camera optical motion capture system (VICON, UK, Oxford Measure-
ment Ltd.) to record the information on lower limb movements. This was a motion capture 
and analysis device that could use active infrared to obtain object motion information, 
with a sampling frequency of 100 Hz. 

We pasted the marking points for all subjects according to the Plug-in Gait model 
provided in the VICON system. The body dimensions of the subjects should be measured 
before pasting the marking point, including lower limb length, knee, and ankle breadth. 
The rotation centre B was determined to be placed on the lateral epicondyle of the right 
knee. We needed to ensure that marker B on each subject was located at the intersection 

Figure 1. Flow chart of the method.

2.1. Data Acquisition and Pre-Processing

For continuous estimation of the knee joint angle, two to five groups of muscles will
normally be selected to obtain sEMG signals [14,17,23,26]. In this study, we selected the
Rectus Femoris (RF), Vastus Medius (VM), Biceps Femoris (BF), and Semitendinosus (SE)
based on previous research [23]. The RF and VM control knee joint extension [28]. BF and
SE dominate the flexing and rotation of the knee joint [29]. Four wireless sEMG sensors
(TrignoTM, Delsys Corporation, Natick, MA, USA) were used to acquire raw sEMG signals
with a frequency of 1928 Hz. The layout scheme is shown in Figure 2. The optimal location
for the sensors is on the midline of the muscular abdomen between the nearest innervated
area and the tendon junction [30–33]. At this position, the sEMG signals with the greatest
amplitude are obtained [33,34].
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Figure 2. Wireless sEMG sensor electrode locations.

We used a 6-camera optical motion capture system (VICON, UK, Oxford Measurement
Ltd.) to record the information on lower limb movements. This was a motion capture and
analysis device that could use active infrared to obtain object motion information, with a
sampling frequency of 100 Hz.

We pasted the marking points for all subjects according to the Plug-in Gait model
provided in the VICON system. The body dimensions of the subjects should be measured
before pasting the marking point, including lower limb length, knee, and ankle breadth.
The rotation centre B was determined to be placed on the lateral epicondyle of the right
knee. We needed to ensure that marker B on each subject was located at the intersection of
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the midline of the thigh and shank. Markers A and C were located near the midline of the
thigh and shank, respectively [6,14]. To calculate the knee joint angle, we connected the
three luminous markers A, B, and C in a simplified 2-DOF linkage, as shown in Figure 3.
The coordinate positions of A, B, and C are defined as PA = [xA, yA, zA], PB = [xB, yB, zB],
PC = [xC, yC, zC]. Therefore, the formula for calculating the angle of the knee joint is:

θknee = 180◦ − arccos

 →
l1 ·
→
l2

|l1||l2|

 (1)

where θknee is the angle between the extension line of the thigh chain l1 and the shank chain
l2, l1 = [xA − xB, yA − yB, zA − zB], l2 = [xC − xB, yC − yB, zC − zB].
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We used the kinematic information extracted from the sEMG signals to estimate the
continuous knee joint angle, and the actual values calculated by the VICON system served
as data labels to verify the estimation.

sEMG signals are nonlinear, and their effective frequency is mainly distributed at
10–500 Hz. The raw sEMG signals are doped with many interference signals. The interfer-
ence signals mainly include the inherent noise in electronic instruments distributed from 0
to several kHz and power frequency interference with specific frequencies of 50 or 60 Hz
in power systems [35]. All interfering signals should be removed. As per the above charac-
teristics of the interfering signals, a 10–400 Hz bandpass filter and a 50 Hz trap filter (with
a bandwidth of 2 Hz) were applied to remove the interfering signals.

After eliminating the interference, the signals were full-wave rectified and segmented
using the overlapped window technique [36]. Overlapped windowing techniques use the
idle time of the processor to generate more classified outputs [35]. The window length
should generally be longer than 125 ms so that it does not lead to high variance and bias in
features [37,38]. In this study, the duration of the analysis window was 180 ms, and the
overlapping was 80 ms. Therefore, the root mean square (RMS) was adopted in this work
to extract the initial features:

RMS =

√√√√ 1
N

N

∑
i=1

sEMG(i)2 (2)

where N is the number of sampling points. sEMG(i) represents the ith sampling. At the
same time, we used the analysis window to process the angle value [8], as shown in
Equation (3):

A =
1
N

N

∑
i=1

Ai (3)

where A is the average angle, Ai is the angle value of the ith sampling, and N signifies the
number of sampling points, here N = 10.
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2.2. Feature Reconstruction by DBN

For autonomous learning of advanced structural contents from strong nonlinear
datasets to obtain the optimal features in high-dimensional space, we built a DBN to
reconstruct the initial features of different subjects. It was composed of multiple Restricted
Boltzmann Machines (RBM) stacks that could be applied to reconstruct the dimensionality
of the input vectors. For such a multilayer network, the output of each layer contained all
the information of the input data, which could reveal the hidden nonlinear structures in
high-dimensional data [39,40]. Figure 4 presents the RBM topology, including the visible
and hidden layers. v = (v1, v2, . . ., vm)T represents the normalized multi-dimensional vector
of the input layer. m is the number of neurons in the input layer. wij is the weight matrix.
h = (h1, h2, . . ., hn)T denotes the multi-dimensional vector of the hidden layer. n is the
number of neurons in the hidden layer. The concept and training process of RBM are
presented below.
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In the binary RBM, the neurons are all Boolean and can only take two states of “0” and
“1”, “0” represents the inhibitory state, and “1” represents the activation state. The model
parameters determine the energy function between the visible and hidden layers and the
energy function is expressed as:

E(v, h) = −
n

∑
i=1
·

m

∑
j=1

Wijhivj −
m

∑
j=1

bjvj −
n

∑
i=1

cihi (4)

where w is the weight matrix between the visible and hidden layer, b denotes the bias vector
of the visible layer, and c refers to the bias vector of the hidden layer.

Based on the energy function, we further obtained the joint probability distribution
function of (v, h):

P(v, h) =
e−E(v,h)

∑
v,h

e−E(v,h)
(5)

Each neuron in the same layer is independent of each other, so the activation function
of the neuron can be obtained by Equations (6) and (7):

P
(
hj=1|v

)
= σ

(
vTwi,j + bj

)
(6)

P(vi=1|h ) = σ
(
wi,jh + ci

)
(7)

The purpose of training the RBM was to find the optimal weight parameters to obtain
the optimal solution. The output of the hidden layer should generate training data accord-
ing to the maximum probability, which could more accurately reflect the characteristics
of the input data. The RBM model reached the ideal state when the energy function is the
smallest, so the training optimization objective function would be given as follows:

maxL(θ) = ∏
v

P(v; θ) (8)
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We selected the Contrastive Divergence (CD) algorithm to solve the model parameters
to achieve the fastest and most effective training effect. The updated formulas of weights
and biases could be observed as follows:

wij = wij + ε
(〈

vihj
〉
−
〈

v′ih
′
j

〉)
(9)

a′i = ai + ε
(
〈vi〉 −

〈
v′i
〉)

(10)

c′j = cj + ε
(〈

hj
〉
−
〈

h′j
〉)

(11)

The training process of DBN included two steps: pre-training and fine-tuning. Firstly,
a stack of RBMs was trained layer-wise. Each layer of RBM was trained separately and
unsupervised to ensure that feature information was preserved as much as possible when
mapping to different feature spaces. The high-level features were extracted from the
lower layers and moved forward layer by layer until the top layer. After pre-training, the
RBMs were expanded to obtain the DBN. Secondly, to minimize the error between the
expected output of the model and the actual output, the back-propagation algorithm (BP)
was adopted to fine-tune the model parameters and as a result, the optimal weight of the
structure could be obtained. The loss function could keep the predicted value close to the
true value. When the loss value was the lowest, the predicted value and the true value
were equal. The whole process is shown in Figure 5.
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In this paper, we constructed a self-adaptive optimized DBN, which had four layers to
build the optimal reconstruction of initial features. The network parameters were optimized
using the PSO algorithm. Then, the RMS features were encoded by PSO-DBN to obtain
the optimal reconstructed features. The number of neurons in the visible layer was 4, and
the initial feature vectors were used as input data. The higher dimensional outputs of the
top level served as the optimal reconstruction features of sEMG. It must be emphasized
that the dimension of the reconstructed feature vectors was determined by the number of
neurons for the top layer of PSO-DBN.

2.3. DBN Adaptive Optimization Fused with the PSO Algorithm

In this study, we investigated the reconstruction of sEMG features of different individ-
uals in high-dimensional space using DBN. Structural parameters of each layer in DBN
directly affected the estimation performance. However, in previous studies, these parame-
ters were manually set through experience, resulting in randomness in feature learning [21].
These fixed parameter models have limited adaptability and cannot satisfy the demands
of different subjects. The PSO algorithm has powerful and efficient search capabilities,
which can easily obtain the optimal solution in the design space. Therefore, according to
the original sEMG signals of different subjects, the parameters of the DBN were adaptively
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optimized by integrating the PSO algorithm to complete the optimal reconstruction of
signal feature structure. The basic idea of the PSO algorithm is to search for the global
optimal solution through cooperation and competition between particles. We took the
number of hidden layer nodes of the DBN as the optimization variable of the particles and
calculated the adaptive value of the objective function by constantly updating the speed
and position of the particles to achieve global optimization and obtain the optimal network
parameters. The update formulas of the PSO algorithm speed and position can be found in
Equations (12) and (13).

Vk+1
i = wVk

i + c1r
(

pbestk
i − Xk

i

)
+ c2r

(
gbestk

i − Xk
i

)
(12)

Xk+1
i = Xk

i + Vk
i (13)

where w signifies the weight, c1 and c2 denote learning factors, and r is a random number
between 0 and 1. Vi

k, Xi
k, pbesti

k, and gbesti
k are the velocity, position, local optimum, and

global optimum of particle i at the kth iteration, respectively. The linear decreasing weight
method was applied to ensure that the PSO algorithm had a good ability to balance search
and development.

w = (wmax − wmin)(kmax − k)/kmax + wmin (14)

where wmax and wmax refer to the maximum and minimum values of inertia weights, k is
the current number of iterations, and kmax is the maximum number of iterations.

The parameter self-updating mechanism based on the fusion of PSO and DBN is
as follows:

Step 1: Set the particle population size, learning factor, maximum speed, and maximum
number of iterations, and then randomly assign all particles an initial position and initial
speed within the corresponding search domain.

Step 2: Build a DBN framework for feature reconstruction of original sEMG signals.
The number of hidden layer neurons as model parameter variables needs to be determined
by optimization calculation within a set range. It will generate a population particle and
then set a parameter search range.

Step 3: Determine the parameters of the DBN through the iterative calculation to
obtain the optimal structure.

Step 4: Set fitness values of different particles to represent the global and local optimal
positions of the particles. They are then used as their historical optimal positions and
updated to the public and local optimal particle positions.

Step 5: Output the results of a set of optimal parameters to the DBN when the number
of iterations is reached. Otherwise, return to Step 4 to continue the iterative calculation.

2.4. Construction of the Adaptive Regression Model

To improve the generalization ability of the model, we introduced an updating mech-
anism to enable the model to recognize and remember the motion information of new
subjects. In this section, we built a three-layer BPNN connected to PSO-DBN to generate
the adaptive regression model. The optimal reconstructed features of sEMG were applied
as input. The number of input layer nodes in BPNN was equal to the number of top-level
nodes in DBN optimized by the PSO algorithm. The output layer had one node, which was
the output of an estimated angle. After extensive testing, the hidden layer neurons of BPNN
were set to 12 [21]. The nonlinear tansig function and the linear purelin function were,
respectively, selected as the transmission functions in the mid-layer and output layer [9].
Therefore, the output of the BP neural network can be calculated by Equation (15):

θ̂ = Wout

[
2

1 + e−2(Winy+bin)
− 1
]
+ bout (15)
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where Win represents the weight matrix of the hidden layer, the Wout denotes the weight
matrix of the hidden layer, and bin and bout are threshold vectors. We used the test sets to
verify the results when all the parameters were updated.

2.5. Result Evaluation Indicators

Based on the above method, the knee joint angle θknee could be estimated using the
sEMG signals. This paper specified three metrics to evaluate the quantitative difference
between actual and estimated values in all regression models: root mean square error
(RMSE), correlation coefficient (CC), and R2 score.

RMSE =

√√√√ 1
N

N

∑
i=1

(
θi −

∧
θ i

)
(16)

ρθi =

cov
(

θi,
∧
θ i

)
σθi ·σθ̂i

(17)

R2 = 1−

N
∑

i=1

(
θi −

∧
θ i

)2

N
∑

i=1

(
θi − θ

)2
(18)

where θi represents the actual values, θ̂ refers to the estimated values, N is the sample size,
σθi and σθ̂i

are the standard deviations, and θ signifies the mean value of estimations.
In addition, two commonly adopted regression models [9,21] were utilized and com-

pared with our method. One-way analysis of variance (ANOVA) was applied to evaluate
the statistical differences in the errors of estimation (RMSE) obtained by different mod-
els [41]. The statistical significance level was set to p < 0.05.

3. Experiments and Results
3.1. Subjects

Five healthy subjects (male, age: 27 ± 3 years, height: 168–180 cm, bodyweight:
65–85 kg) participated in this experimental study [3,4,7,8,42]. They gave their informed
consent before the experiments. The experimental protocol was reviewed and approved
by the Ethical Review Committee of the Hebei University of Technology. All subjects
had no disorder in range of motion and did not participate in strenuous exercise before
the experiment.

3.2. Experimental Procedure

In this study, we selected two typical continuous knee motions for this experiment:
squat and knee flexion–extension (flex/ext) [6,10,14,17,23]; these motions are commonly
used in lower limb rehabilitation training. Before applying the electrodes, the subject’s skin
surface was shaved, and the corresponding patch locations were wiped and cleaned with
alcohol. With the subject standing upright and arms raised horizontally, the sEMG sensors
and luminous markers were attached to the subject’s right leg.

During the preparation stage, the observer accurately recorded the physiological
information (age, height, and weight) of each subject and described the experimental
process to them. After all the equipment was functioning properly, the subjects performed
squatting and knee flexion–extension exercises in shorts as previously required, as shown
in Figure 6. During squatting, subjects were asked to stand up and squat at normal speed
with their feet shoulder-width apart and toes pointed outward by approximately 15◦. After
squatting, they kept their thighs parallel to the ground and returned to the preparatory
position. It was required that the vertical line from the knee to the floor not extend beyond
the toes [10]. Subjects were asked to sit and maintain the knee joint in a constant position at
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90◦ in the knee flex/ext. The amplitude of the movement was limited to the range of 0◦

(flexion) to 90◦ (extension) [6,14]. The two motions were limited to the sagittal plane.
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Each subject performed 20 repetitions continuously at the same speed for each of the
two motions. It resulted in a total data set of 5 subjects × 20 repetitions × 2 modes. A
metronome was adopted to guide the movement of the knee joint. The subjects completed
half a cycle per beat. The wireless sEMG sensors and vision system simultaneously acquired
raw sEMG signals and “true” angle values.

The interval between each trial was 5 min to avoid muscle fatigue [8,10,14]. During
each trial, if subjects felt muscle fatigue, they were told to stop the trial immediately.
Meanwhile, the recorder observed real-time changes in the median frequency (MF) of the
four muscles. The MF of spectrum analysis after fatigue would be reduced by more than
50%. This test ensured that all data were obtained in a state without fatigue. The duration
of each trial was approximately 80 s.

In this work, the experimental data of each subject were divided into two parts:
training set and testing set. The percentages of the training data for one subject were set
to 70%. The remaining 30% of one subject’s data was used as testing data. We calculated
the RMS features of the four sEMG channels. Finally, the RMS features were formed into
four-dimensional initial feature vectors.

3.3. Model Training

We built separate regression models for each subject and the model was trained with
the training set, including the sEMG initial feature vectors v = [v1, v2, v3, v4]T and the “real”
angle data θknee.

The parameters of the DBN were optimized as per the PSO algorithm, as required: the
number of particle populations N = 20, the total number of iterations imax = 10, the learning
factors C1 and C2 were 0.9 and 0.5, the random number was 1, wmax and wmin were 0.9 and
0.5, respectively. The number of hidden layer nodes in DBN had to be considered for the
performance and the computational cost of network training. The minimum error and the
lowest computational load parameters were chosen. We explored the impact of the range
of hidden layer nodes on the estimation results. Figure 7 shows the RMSEs under different
ranges of hidden layer nodes. The number of hidden layer nodes was between 1 and the
maximum number of hidden layer nodes (hmax). The best performance was achieved
when hmax was set to 50. However, when selecting other hmax values, relatively large
errors would present due to the network not achieving optimal performance.
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After the parameter optimization, we used the method mentioned in 2.4 to train the
DBN. The first step was to perform hierarchical pre-training on RBMs. The initial feature
vectors v were used as input data to train the RBM-1. After reaching the epoch number,
we fixed the weight of RBM-1 and used its output to train RBM-2. We then trained layer
by layer until the end. The learning rate of the RBM was 0.01. After one iteration, we
could update the weights over all the training data, but batching the training set would be
more efficient. After training the RBMs, we expanded the RBMs to the DBN with the same
model parameters. The BP algorithm could effectively fine-tune the parameters. Figure 8
shows the RMSEs of using different numbers of epochs. It was observed that when the
number of epochs reached 200, the accuracy was the highest. The results of the parameter
optimization and training time for all subjects are summarized in Table 1.
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Table 1. Parameter optimization and training time results of PSO-DBN for all subjects.

Subject
Squat Knee Flex/Ext

Number of Neurons
in Each Layer Time/s Number of Neurons

in Each Layer Time/s

S1 37 26 16 5 31.7 8 48 11 44 40.4
S2 34 32 29 35 43.4 34 41 14 17 29.3
S3 2 41 48 32 36.6 38 2 42 49 42.0
S4 5 40 25 34 39.0 18 14 40 19 34.1
S5 2 49 46 42 41.1 17 28 37 32 41.4
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After the DBN training was completed, the optimal features from the PSO-DBN
reconstruction were applied as the input of the BPNN. The “true value” θknee measured
using Vicon is used as the training output. The maximum number of iterations is 1000, and
the learning rate is 0.01.

We also built a DBN with fixed parameters and a normal feed-forward BPNN model
for performance comparison. To make the comparison results more convincing, we set
the numbers of nodes for each layer of DBN with fixed parameters as 18, 12, 6, and 3,
which were the same as [21]. The input of the DBN with fixed parameters was the four-
dimensional sEMG initial feature vectors and the actual angle values θknee were the output.
The number of BPNN input layer nodes was 3. Figure 9 illustrates the trained BPNN
structure. Y is the input sEMG feature vectors, θ signifies the output estimate angle, and
W, b represents the weight and bias, respectively. The numbers of neurons are 3, 12, and
1. Figure 10 shows the trained normal BPNN. The input of the normal BPNN is the RMS
features of four-channel sEMG signals and the actual angle values θknee denote the output.
The numbers of neurons are 4, 12, and 1.
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3.4. Comparison of Estimated Results

After three models were trained, we used the test set to evaluate the performance of
the models. Firstly, we performed knee angle estimation using the adaptive regression
model proposed in this paper. Secondly, to verify the improvement of our method, the
DBN-BP model was used to perform the estimation task. In addition, a plain BPNN was
used in the same work to provide additional comparisons.

Figure 11 reveals the estimation results of the three models of S1 using the test set
samples. The Vicon measurement was taken as the “true” value. It could be seen from
Figure 11c,d that the prediction result curves of DBN-BP could approximate the actual value
in general, but there were more significant errors than our method. Such as 10 s, 15 s in
Figure 11c and 5 s, 10 s, 15 s in Figure 11d. Compared with the DBN-BP model, our method
achieved two improvements in the estimated results: (1) The estimated result was closer
to the actual value. (2) The generated curve was smoother. These were more conducive
to improving the accuracy and stability of the exoskeleton control system. The same test
set was applied to the regular BPNN. As shown in Figure 11e,f, the BPNN model is also
capable of estimating continuous knee joint motion based on sEMG signals. However, it
is relatively difficult for this model to accurately estimate the joint angle, and DBN-BP
outperforms BPNN as it can learn the high-level features of the original sEMG signals, as
shown in Figure 12b.



Bioengineering 2023, 10, 1028 12 of 17

Bioengineering 2023, 10, x FOR PEER REVIEW 12 of 17 
 

Figure 11 reveals the estimation results of the three models of S1 using the test set 
samples. The Vicon measurement was taken as the “true” value. It could be seen from 
Figure 11c,d that the prediction result curves of DBN-BP could approximate the actual 
value in general, but there were more significant errors than our method. Such as 10 s, 15 
s in Figure 11c and 5 s, 10 s, 15 s in Figure 11d. Compared with the DBN-BP model, our 
method achieved two improvements in the estimated results: (1) The estimated result was 
closer to the actual value. (2) The generated curve was smoother. These were more con-
ducive to improving the accuracy and stability of the exoskeleton control system. The 
same test set was applied to the regular BPNN. As shown in Figure 11e,f, the BPNN model 
is also capable of estimating continuous knee joint motion based on sEMG signals. How-
ever, it is relatively difficult for this model to accurately estimate the joint angle, and DBN-
BP outperforms BPNN as it can learn the high-level features of the original sEMG signals, 
as shown in Figure 12b. 

 
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. (a,c,e) Estimated results of the squat based on PSO-DBN-BP, DBN-BP, and BPNN. (b,d,f) 
Estimated results of the knee flex/ext based on PSO-DBN-BP, DBN-BP, and BPNN. 

0 5 10 15 20 25
Time (s)

10

20

30

40

50

60

70

80
Measured
Estimated

0 5 10 15 20 25
Time (s)

10

20

30

40

50

60

70

80
Measured
Estimated

Figure 11. (a,c,e) Estimated results of the squat based on PSO-DBN-BP, DBN-BP, and BPNN.
(b,d,f) Estimated results of the knee flex/ext based on PSO-DBN-BP, DBN-BP, and BPNN.

In addition to the comparisons in Figure 11, we also quantitatively assessed the results.
The trained models were applied to evaluate the test set of all subjects and calculated all
the RMSEs, CCs, and R2 through (16), (17), and (18). Table 2 lists the means and standard
deviations computed by fifteen tests. As can be seen in Table 2, our method presented
significant advantages over the other two models. The most accurate results were obtained
for squatting in S1 and knee flexion/extension in S3, representing the optimal performance
achieved by our method under the same conditions. The average RMSEs of our method
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between the estimated results and the actual values were 9.42 ± 0.31◦ and 7.36 ± 0.25◦,
indicating that the error between the actual and estimated values was tiny. And the RMSEs
of our method were significantly lower than 10.54± 1.16◦ (p = 0.001), 8.64± 0.61◦ (p < 0.005)
of DBN-BP and 14.14 ± 1.56◦ (p < 10−4), 9.60 ± 0.86◦ (p < 10−7) of BPNN. In addition, the
average CCs of our method were 0.96 ± 0.01 and 0.94 ± 0.01, which were numerically
closer to 1. The average R2 scores are 0.92 ± 0.01 and 0.90 ± 0.01, indicating a good match
between the curves generated by the estimation results and the measured curves. However,
the CCs and R2 scores of the other two networks both indicated that their errors were much
larger than our method.
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Table 2. The average of the three evaluating indicators and standard deviations of all subjects.

Subject Model
Squat Knee Flex/Ext

RMSE CC R2 RMSE CC R2

1
PSO-DBN-BP 5.57 ± 0.44 0.99 ± 0.01 0.97 ± 0.01 8.71 ± 0.16 0.93 ± 0.01 0.88 ± 0.01

DBN-BP 6.37 ± 1.04 0.98 ± 0.01 0.96 ± 0.01 9.09 ± 0.36 0.92 ± 0.01 0.85 ± 0.01
BPNN 8.79 ± 2.71 0.94 ± 0.04 0.89 ± 0.07 9.84 ± 1.22 0.89 ± 0.03 0.79 ± 0.05

2
PSO-DBN-BP 9.96 ± 0.51 0.95 ± 0.01 0.90 ± 0.01 8.34 ± 0.17 0.93 ± 0.01 0.88 ± 0.01

DBN-BP 11.72 ± 1.28 0.93 ± 0.01 0.86 ± 0.02 12.06 ± 0.41 0.90 ± 0.01 0.84 ± 0.02
BPNN 12.90 ± 1.45 0.90 ± 0.01 0.81 ± 0.04 12.64 ± 0.47 0.88 ± 0.02 0.81 ± 0.02

3
PSO-DBN-BP 11.82 ± 0.10 0.95 ± 0.01 0.90 ± 0.01 6.09 ± 0.34 0.96 ± 0.01 0.93 ± 0.01

DBN-BP 13.53 ± 2.61 0.93 ± 0.03 0.85 ± 0.06 7.21 ± 1.18 0.95 ± 0.02 0.89 ± 0.04
BPNN 21.71 ± 1.40 0.81 ± 0.02 0.66 ± 0.03 8.77 ± 0.99 0.92 ± 0.02 0.85 ± 0.04

4
PSO-DBN-BP 10.49 ± 0.15 0.95 ± 0.01 0.90 ± 0.01 5.87 ± 0.34 0.97 ± 0.01 0.95 ± 0.01

DBN-BP 10.86 ± 0.24 0.94 ± 0.01 0.89 ± 0.01 6.75 ± 1.30 0.95 ± 0.02 0.91 ± 0.04
BPNN 12.32 ± 0.99 0.93 ± 0.01 0.87 ± 0.01 8.12 ± 0.86 0.93 ± 0.02 0.87 ± 0.03

5
PSO-DBN-BP 9.29 ± 0.33 0.96 ± 0.01 0.93 ± 0.01 7.77 ± 0.23 0.93 ± 0.01 0.86 ± 0.01

DBN-BP 10.22 ± 0.62 0.95 ± 0.01 0.91 ± 0.02 8.07 ± 0.39 0.91 ± 0.01 0.84 ± 0.01
BPNN 14.97 ± 1.24 0.88 ± 0.02 0.78 ± 0.04 8.64 ± 0.75 0.90 ± 0.02 0.82 ± 0.04

Overall
PSO-DBN-BP 9.42 ± 0.31 0.96 ± 0.01 0.92 ± 0.01 7.36 ± 0.25 0.94 ± 0.01 0.90 ± 0.01

DBN-BP 10.54 ± 1.16 0.95 ± 0.01 0.89 ± 0.02 8.64 ± 0.61 0.93 ± 0.01 0.87 ± 0.02
BPNN 14.14 ± 1.56 0.89 ± 0.02 0.80 ± 0.04 9.60 ± 0.86 0.90 ± 0.02 0.83 ± 0.04

4. Discussion

Accurate and real-time joint angle estimation is vital in human–robot interaction
technology, and it is more valuable in the study of smooth and stable control of intelli-
gent artificial limbs, exoskeletons, and rehabilitation robots than in motion classification.
Xi et al. used the state space model based on HMM. However, this model involved the
computation of many parameters, and the test time was only 10 s, so it should be tested
in practice for a longer period of time [6]. Li et al. used a regression model based on
MLP and a Savitzky–Golay filter to achieve a continuous motion estimation of knee and
ankle joints [10]. This method took traditional time domain features as the input of the
neural network. Traditional time domain features (MAV, RMS) present limited ability to
the representation learning of sEMG signals and as a result, the robustness of the model
is reduced. Due to the non-stationarity and individual differences of sEMG signals, the
traditional fixed recognition model usually aims at specific subjects, which limits the gen-
erality of models. In these contexts, a basic commonality model based on adaptive deep
belief network optimization was constructed in this paper. It satisfied the personalized
demand for new subjects from the commonality model through the parameter update
mechanism [1]. Compared with traditional methods, our method simultaneously consid-
ered and compensated for the impact of non-stationarity and individual differences in
sEMG signals on estimation accuracy. The statistical results suggested that our method
achieved consistent stability and high performance in different subjects.

In this study, the dimensionality of the optimal feature vectors reconstructed by
PSO-DBN was higher than the initial feature vectors. As shown in Table 1, taking the
squat of S1 as an example, the dimension of the features by the PSO-DBN was five. Our
method was based on the feature dimensionality increase strategy, as opposed to the
dimensionality reduction strategy used in [21]. Therefore, we compared the results of
the two methods and found that the results based on high-dimensional features were
better than dimensionality reduction features. However, the dimension reduction method
could also perform well in some cases, such as the squatting of S4 and the flex/ext of S5,
indicating that the dimension reduction method could also perform well at the higher
signal-to-noise ratio signals. As shown in Figure 12b, the dimensionality reduction brought
about information loss in the data, thus making it difficult to deal with complex data
and consequently increasing the resulting error. However, our method projected sEMG
sequences onto high-dimensional space and reconstructed sEMG features of different
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individuals in high-dimensional space. As shown in Figure 12a, the initial features were
reconstructed effectively in high-dimensional space, enhancing the representation of sEMG
features to learn more advanced information.

Moreover, increasing the dimension can lead to more optimized parameters, which
can improve the fitting capacity of the network. Stable and accurate results were obtained
among different subjects. In addition, increasing the feature dimension may help maintain
relatively high accuracy when electrode shedding or electrode displacement occurs during
the experiment so that the robustness of pattern recognition based on sEMG signals can be
enhanced. In future research, we will focus on how to compensate for the lost data to meet
the accuracy requirement when the electrode is accidentally detached.

Similarly, we have also selected a normal BPNN as another comparison method [9].
BPNN also requires stable voltage signals as input to achieve ideal results. However, since
the BPNN model directly uses the RMS feature as input, it is the most significant of the
three methods. As a result, satisfactory results cannot be obtained in most cases.

However, there are limitations to this study that require further elaboration before the
findings can be applied to exoskeleton robot control. First, this study only collected the
sEMG signals of a few healthy subjects. We are aware that there are differences between
the characteristics of sEMG signals of subjects with lower limb disabilities and those of
healthy subjects, which may affect the estimated results. Individual differences in subjects,
such as gender, age, and body fat content, should be considered. Secondly, we selected
only two motion modes related to knee joint motion, so additional motion modes should
be considered to verify the effectiveness of our method. Finally, when subjects wear
exoskeletons during the experiment, external loads and electrode displacement will also
affect the results. Therefore, our method requires additional measures to compensate for
the difficulties caused by the above limitations.

5. Conclusions

The non-stationarity and individual differences of sEMG signals greatly limit the
generality of the traditional recognition models on new subjects. This paper proposed
a knee joint continuous motion estimation method based on self-adaptive deep belief
network optimization. An adaptive updating mechanism of model parameters was built to
satisfy the personalized demand for new subjects. All the above methods were verified
by collecting a dataset of five healthy subjects. The results indicated that the method
proposed in this paper reduced the influence of non-linearity and individual differences
of sEMG signals as compared to the traditional methods. Future research will continue to
improve the model and highlight the continuous motion estimation of multi-joint angles in
the lower limb. Complex locomotion patterns such as walking up/down stairs, running,
and jumping will be considered. Human gait is coordinated and completed by multiple
joints and muscles, so it is vital to explore the synergy of multiple muscles to improve the
accuracy of the estimation results. At the same time, the estimated results will be adopted
as a control instruction to realize the human–robot interaction (HRI) of the lower limb
exoskeleton based on the sEMG signals.
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