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Abstract: Data scarcity poses a significant challenge in medical image segmentation, thereby highlight-
ing the importance of leveraging sparse annotation data. In addressing this issue, semi-supervised
learning has emerged as an effective approach for training neural networks using limited labeled
data. In this study, we introduced a curriculum consistency constraint within the context of semi-
supervised medical image segmentation, thus drawing inspiration from the human learning process.
By dynamically comparing patch features with full image features, we enhanced the network’s ability
to learn. Unlike existing methods, our approach adapted the patch size to simulate the human curricu-
lum process, thereby progressing from easy to hard tasks. This adjustment guided the model toward
improved convergence optima and generalization. Furthermore, we employed multi-scale contrast
learning to enhance the representation of features. Our method capitalizes on the features extracted
from multiple layers to explore additional semantic information and point-wise representations. To
evaluate the effectiveness of our proposed approach, we conducted experiments on the Kvasir-SEG
polyp dataset and the ISIC 2018 skin lesion dataset. The experimental results demonstrated that
our method surpassed state-of-the-art semi-supervised methods by achieving a 9.2% increase in the
mean intersection over union (mIoU) for the Kvasir-SEG dataset. This improvement substantiated
the efficacy of our proposed curriculum consistency constraint and multi-scale contrastive loss.

Keywords: medical image segmentation; semi-supervised learning; curriculum learning; consistency
loss; contrastive learning

1. Introduction

Accurate pixel-level labeling of medical images is essential for various applications
such as clinical evaluation, therapy, and surgical planning in the field of medical image
segmentation. However, the process of annotating precise labels for these images is both
time-consuming and expensive. Consequently, obtaining a substantial amount of high-
quality labeled data proves to be a challenging task. In contrast, there is a wealth of
un-labeled medical data that are readily available. Leveraging this vast pool of un-labeled
medical images holds great significance in addressing the scarcity of annotated data. To
overcome the challenges posed by limited labeled data, semi-supervised learning has
emerged as a promising approach. This technique effectively utilizes a combination of a
small amount of labeled data and a larger volume of un-labeled data for training neural
networks. By leveraging the vast amounts of un-labeled medical data, semi-supervised
learning provides a valuable means to alleviate the scarcity of annotated medical images.

Previous methods based on convolutional neural networks have achieved excellent
performance in medical image segmentation [1–3]. However, the hunger for high quality
and large amounts of annotated segmentation data limits these methods. Semi-supervised
learning aims to mix up a small number of annotated datasets and a large number of un-
labeled images to train a segmentation model [4–6]. Bai [7] applied a pseudo-label method
for cardiac image segmentation. Zhao [8] designed a cross-level contrastive learning
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method, which improved the representation capacity of local features. References [9–12]
achieved advancements in semi-supervised medical image analysis by utilizing uncertainty
measures. References [13,14] improved the models’ visual representations using contrastive
learning techniques. However, previous methods have focused on implementing a static
training scheme for semi-supervised medical segmentation, thereby causing the models to
focus on specific features and leaving them weak in robustness. Therefore, we explored the
dynamic learning process for medical image segmentation.

Curriculum learning is an algorithm inspired by human learning behavior patterns
that can be widely applied to various deep learning algorithms. Generally, the human
education process is organized from junior concepts and is gradually evolved into senior
concepts. Traditional algorithms train target models using disorder training data, thereby
ignoring the feature complexity of training samples and the convergence state of the current
model during training. Specifically, curriculum learning divides the original dataset into
sub-datasets of different difficulties, and the model starts to learn from easier sub-datasets.
As training progresses, harder sub-datasets are updated to the training set, and the difficulty
of the training task gradually increases to the final target task. In addition, curriculum
learning is a plug-in method and has demonstrated effective performance in computer
vision and natural language processing.

There have been numerous studies in the past that have applied curriculum learning
to medical image segmentation tasks. Hoel [15] designed a curriculum model based on
additive regression, which assisted in improving segmentation results by predicting label
attributes such as region size and the centroid position of the target as auxiliary tasks.
Wang [16] introduced a multi-task curriculum strategy, where the auxiliary decoder learned
image-level information to enhance the model’s pixel-level prediction. Liu [17] proposed
the use of a style transfer model to generate curriculum samples of varying difficulty,
thereby aiming to improve the model’s overall generalization ability. Nartey [18] applied
curriculum learning in 3D CT image segmentation. In contrast to previous methods, we
present a novel curriculum training strategy based on self-supervised learning for semi-
supervised medical image segmentation. Unlike utilizing an auxiliary regression model, our
approach incorporates a dynamic patch transformation technique that simulates the human
curriculum learning process, thus progressing from easy to hard examples. This dynamic
training strategy guides the model to learn diverse feature representations of the target, thus
resulting in improved segmentation outcomes. Additionally, we introduce a multi-scale
contrastive loss that enhances the representation capacity of cross-level semantic feature
relations, thereby further refining the segmentation results. The motivation of our method
is shown in Figure 1. For the convenience of the research community, we have made the
source codes available at https://github.com/hkjcpy/Curriculum-Consistency-Learning
accessed on 2 June 2023. Our contributions can be summarized as follows:

• Curriculum consistency constraint: We introduced a curriculum consistency constraint
in the field of semi-supervised medical segmentation. By leveraging the inherent
structure of the curriculum learning framework, our method optimized the model to
converge at a better optima with increased generalization. This constraint facilitated
the learning process and improved the model’s performance.

• Multi-scale contrastive loss: We applied a multi-scale contrastive loss that focused
on promoting the representation capacity of cross-level semantic feature relations.
This loss function enhanced the model’s ability to capture and leverage contextual
information, thereby resulting in more accurate and refined segmentation results.

• Experimental evaluation: We evaluated our proposed method on two widely used
datasets, namely, the polyp dataset Kvasir-SEG and the skin lesion dataset ISIC
2018. Through comprehensive experiments, we demonstrated that our approach
surpassed other existing semi-supervised methods in terms of segmentation accuracy
and performance. This highlights the efficiency and effectiveness of the proposed
algorithm in tackling the challenges of semi-supervised medical image segmentation.

https://github.com/hkjcpy/Curriculum-Consistency-Learning
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Overall, our work contributes to the advancement of semi-supervised medical image
segmentation by introducing a novel curriculum training strategy and a multi-scale con-
trastive loss. The superior results achieved on benchmark datasets underscore the potential
of our approach in improving the accuracy and reliability of medical image segmenta-
tion, thus benefiting clinical applications and supporting medical professionals in their
diagnostic and treatment planning processes.

Curriculum

Data

Model

Training Process

𝑄1 𝑄𝑡 𝑄𝑇 = 𝑃… …

… …Large Patch
Easy Subset

Medium Patch
Medium Subset
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Figure 1. The motivation and the core idea of this paper. We propose a curriculum consistency
learning scheme from the image and dynamically cropped patches, thus guiding the model coverage
to a better optima in semi-supervised medical image segmentation.

2. Materials and Methods
2.1. Materials

Polyp dataset Kvasir-SEG and skin lesion dataset ISIC 2018 were used for evaluating
our approach. We compared our model’s performance with existing state-of-the-art semi-
supervised methods such as UAMT [19], URPC [20], CCT [21], and CLCC [8].

Kvasir-SEG dataset [22]: A comprehensive dataset that includes a collection of gastro-
intestinal polyp images, which are accompanied by their corresponding segmentation
masks and bounding boxes. Gastro-intestinal polyps are abnormal tissue growths that
develop within the mucous membrane lining the gastro-intestinal tract. Detecting and
characterizing polyps is of paramount importance, as they can potentially be cancerous or
precursors to cancerous growths. Manual image segmentation poses challenges, including
the tedium, time consumption, and the potential for physician bias and inter-observer
variation. To ensure the highest quality annotations, a team consisting of an engineer and a
medical doctor meticulously outlined the margins of all polyps in the 1000 images. These
annotations were further reviewed and validated by an experienced gastro-enterologist,
thereby adding an extra layer of expertise to the process. Additionally, to leverage seg-
mentation masks, bounding boxes were labeled to accurately represent the polyp regions.
The enhanced dataset included polyp images, segmentation masks, and bounding boxes.
The regions of interest (ROIs) in these images represented the pixels depicting polyp tis-
sue, and they were depicted as a white foreground in the segmentation masks. The ROIs
were generated through meticulous manual annotations, which were carefully verified by
an experienced gastro-enterologist. Furthermore, the bounding boxes provided a set of
coordinates that accurately enclosed the polyp regions.
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ISIC 2018 dataset [23]: This is an extensive public repository of dermo-scopic images
of skin data. Skin cancer is a prevalent and costly disease in the United States, with
extremely expensive care expenditure. Timely detection plays a crucial role in improving
patient outcomes, particularly for melanoma, which is the most lethal form of skin cancer.
When detected early, the five-year survival rate for melanoma can reach an impressive
99% However, delayed diagnosis significantly reduces this rate. In an effort to combat
this issue, the International Skin Imaging Collaboration (ISIC) has organized the largest
skin image analysis challenge worldwide. Through this initiative, the ISIC has curated an
extensive public repository of dermoscopic images of skin, which comprise 2594 images
with corresponding ground truth segmentation masks. Dermoscopy involves examining
skin lesions using specialized magnification and lighting techniques, which aide in the
early detection and diagnosis of skin cancer.

2.2. Related Works

Several studies have explored the application of curriculum learning in the context of
medical image segmentation. This section reviews some notable works in this area.

Liu et al. proposed a novel framework called “Style Curriculum Learning for Robust
Medical Image Segmentation” [17]. The authors addressed the challenge of distribution
shifts in image intensities between the training and test datasets. They introduced a unique
style curriculum that trained segmentation models in an easy-to-hard mode, thus ensuring
robust segmentation, even in the presence of distribution shifts.

Kervadec conducted a study titled “Curriculum Semi-supervised Segmentation” [15],
where a curriculum-style strategy was investigated for semi-supervised CNN segmentation.
The authors developed a regression network that learned image-level information, such as the
size of the target region. This information effectively regularized the segmentation network,
thereby constraining the softmax predictions of un-labeled images to match inferred label
distributions.

In the paper “A Curriculum Domain Adaptation Approach to the Semantic Segmenta-
tion of Urban Scenes” [24], the authors proposed a curriculum-style domain adaptation
method for the semantic segmentation of urban scenes. They employed easy and useful
tasks, such as inferring label distributions for target images and landmark superpixels in
the curriculum. This approach aimed to gain necessary properties regarding the target
domain, thereby enhancing the segmentation performance.

Another relevant work is “Multi-Task Curriculum Learning for Semi-Supervised Med-
ical Image Segmentation” [16]. The authors introduced a novel multi-task semi-supervised
segmentation algorithm with a curriculum-style learning strategy. Their approach involved
a segmentation task and an auxiliary regression task. The auxiliary task focused on learning
image-level properties, including the size and centroid position of the target region. These
properties served as regularization cues, thereby ensuring that the pixel-level segmentation
results matched the distributions obtained from the regressions.

To improve the quality of pseudo-labeling in the context of semi-supervised seman-
tic segmentation, the paper “Pruning-Guided Curriculum Learning for Semi-Supervised
Semantic Segmentation” [25] proposed a novel method. The authors addressed the am-
biguity of confidence scores by leveraging network pruning. They refined the confidence
scores by considering the impact of pruning on prediction accuracy, thus enhancing the
generalization ability of the network.

Additionally, the work “FlexMatch: Boosting Semi-Supervised Learning with Cur-
riculum Pseudo Labeling” [26] introduced curriculum pseudo-labeling (CPL), which is a
curriculum learning approach for leveraging un-labeled data. CPL dynamically adjusted
thresholds for different classes based on the model’s learning status, thus allowing informa-
tive un-labeled data and their pseudo-labels to be utilized. This method did not introduce
additional parameters or computations, thus making it computationally efficient.

In “An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learn-
ing for Medical Image Segmentation” [27], the authors proposed a semi-supervised seg-
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mentation framework using multi-task curriculum learning. The authors integrated a main
segmentation task with two auxiliary tasks: feature regression and target detection. The
auxiliary tasks predicted simpler image-level attributes and bounding boxes, which served
as pseudo-labels for the main segmentation task. This approach ensured that the pixel-level
segmentation results aligned with the distributions of these pseudo-labels.

These studies mentioned above have explored various aspects of curriculum learning for
medical image segmentation, including robustness against distribution shifts, semi-supervised
scenarios, domain adaptation, network pruning, and multi-task learning. These works provide
valuable insights and techniques for advancing the field of medical image segmentation.

2.3. Methods

Given an annotated image set Dl = {(xi
l , yl

i)} and an un-labeled image set Du = {xi
u},

the goal of semi-supervised segmentation is to leverage both labeled and un-labeled data to
boost the model. The overview of the proposed framework is illustrated in Figure 2. More
details about the curriculum consistency learning scheme and multi-scale contrastive loss
are introduced in the following sections.
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Figure 2. The overview pipeline of the proposed method.

2.3.1. Curriculum Consistency Constraint

The core idea of the consistency-based approach is that the model should make similar
predictions of un-labeled images with data augmentations. Unlike previous consistency
methods, which implement static perturbations, we proposed a novel patch image consistency
loss that dynamically controlled the difficulty of consistency learning for facilitating model
convergence and boosting segmentation performance. Specifically, a complete image and
its corresponding dynamically cropped patches were sent into the model for global–local
prediction comparison. As the training epoch increased, the difficulty of the global–local
comparison gradually increased, thereby guiding the model to learn the representational
features from easy to harder levels. Notably, we used U-Net [28] as the segmentation backbone.
Given a medical image x ∈ RH×W×3, a global feature map Zg will be extracted by a U-net
extractor. Simultaneously, we decomposed the input image X into a set of non-overlapped

patches P = {xi ∈ R
H√mt
× W√mt

×3}, where mt is the patch number that is dynamically adjusted
by the curriculum scheme. Then, we input these patches P to the same backbone to extract local
feature maps {zi

d}. Finally, we sent both the global and local feature maps to segmentation
layers Fseg to calculate the consistency loss. In our experiments, we defined a curriculum
trigger set—{nt, n = 1, 2, 3, . . . } to dynamically control the decomposition size. For t-th epoch
training, the curriculum consistency loss Lcc is defined via Equation (1):

Lcc = ∑
m(t)
i=1 MSE(Fseg(Zg), Fseg(zi))

m(t) = ∑j I(tj < t < tj+1)× nt.
(1)

Specifically, in our experiment, we designed three phases for curriculum learning.
We set n1, n2, and n3 to be 4, 16, and 25, respectively. Correspondingly, m(t) represents
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the number of cropped patches during training process, which was set to 4, 16, and 25
in the first, second, and third phases of training, respectively. When m(t) is small, each
patch contains more visual information, thus resulting in lower difficulty in achieving
consistency in segmentation predictions. The model can learn to infer basic properties
under low-difficulty tasks. As m(t) increases, the difficulty of achieving consistency in
segmentation predictions increases with less visual information remaining in each patch.
Therefore, the model is forced to facilitate more accurate segmentation prediction under
the high-difficulty tasks.

2.3.2. Multi-Scale Contrastive Loss

The curriculum consistency loss can enhance the similarity of the image patch predic-
tion. In addition, in order to improve the representation capacity of the semantic features
among different levels, we applied an un-supervised multi-scale contrastive loss. Particu-
larly, for a full image X and the corresponding patch set {xi}, we extracted the correspond-
ing global feature set {Zk

g, k = 1, 2, 3, . . . } and patch feature sets {{zi
m}k, k = 1, 2, 3, . . . }

from layers of different depths. By projecting them into a representation space, the repre-
sentive features of patches are forced to be similar to the represent features of the whole
image. The multi-scale contrastive loss Lmsc is formulated as follows:

Lmsc = ∑k Lcontrast(k)

Lcontrast(k) = −∑i log
exp[(Fproj(Zk

g))i×Fproj(zi
m)]

exp[(Fproj(Zk
g))i×Fproj(zi

m)]+∑j ̸=i exp[(Fproj(Zk
g))i×(Fproj(Zk

g))j ]
,

(2)

where Fproj is the corresponding projection head for the k-th feature layer; (Fproj(Zk
g))i is the

corresponding i-th position of Fproj(Zk
g); Fproj(zi

m) is treated as a positive pair of (Fproj(Zk
g))j,

where j ̸= i are treated as negative pairs for contrastive learning. Then, we summed the
contrastive loss through all the positions and took the average. For more details, we used
one projection head to project original features from one decoder layer of a certain depth.
Since we applied multi-scale features of different layers, we used different projection heads
to gain the projected features from different depths. Then, we calculated the respective
contrastive losses and added them together to obtain the Lmsc.

2.3.3. Loss Function

The overall algorithm is illustrated in Algorithm 1. And the overall loss function
L is illustrated in Equation (3), which contains three parts: un-supervised curriculum
consistency loss Lcc , multi-scale contrastive loss Lmsc, and a combined supervised loss Lsup:

L = αLcc + βLmsc + Lsup
Lsup = 1

2 (CE(Fp(Z), Y) + Dice(Fp(Z), Y)),
(3)

where α and β control the two-stage training process. In the first stage, α and β are set to be
0 and 1, respectively, and the multi-scale contrastive loss and supervised loss are activated
to enhance the representation capacity. In the next stage, α and β are set to be 1 and 0,
respectively. The curriculum consistency loss is utilized to strengthen the model to capture
details and converge to a better optima. The total training epochs were 300, with 70 epochs
for the first stage and the rest of theepochs for the second stage. In the second stage, we set
curriculum set N = [4,16,25] and [t1, t2, t3] to [80,160,300], respectively.
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Algorithm 1: Medical image segmentation via curriculum consistency
learning and multi-scale contrastive constraint.

Notation: Curriculum Feature Extractor Ecur; Global Feature Extractor Eglob;
Multi-scale Feature Extractor Ems; Projection Layer Fproj; Segmentation Layer Fseg;

Input: Labeled Images Dl = {(xi
l , yl

i)}; Unlabeled Images Du = {xi
u}

Output: Segmentation Prediction Ŷ

1 //Training Phase
2 For training epoch t = 0,1,...,n do
3 //Supervised Training
4 For (xi, yi) in Dl

5 Zg ←− Eglob(xi)

6 Minimize Loss Lsup = 1
2 (CE(Fseg(Zg), yi) + Dice(Fseg(Zg), yi))

7 //Unsupervised Training
8 For xi in Du

9 Zd ←− Ecur(xi, t)
10 Zm ←− Ems(xi, t)
11 Zg ←− Eglob(xi)

12 Minimize Loss αLcc(Fseg(Zg), Fseg(Zd)) + βLmsc(Fproj(Zg), Fproj(Zm))

13 End

14 //Inference Phase
15 Ŷ ←− Fseg(Eglob(X))

3. Results
3.1. Experiments Details

Our implementation of the proposed method was based on the PyTorch [29] frame-
work. All models were trained for a total of 300 epochs using the AdamW optimizer [30]
with a learning rate of 10−3 and a default weight decay. The training process was conducted
on an Nvidia A100 GPU. To ensure a balanced representation of the labeled and un-labeled
data during training, we maintained a 1:1 sampling probability for both types of data.
However, the actual data size for labeled and un-labeled data differs. In the Kvasir-SEG
dataset, the ratio of labeled to un-labeled data is 1:4, while in the ISIC 2018 dataset, the
ratio is 1:9. To form each training batch, we set a batch size of eight, which consisted
of four labeled images and four un-labeled images. To ensure consistency across all the
methods, we used the same dataset, backbone model, supervised loss function, and number
of training epochs. Before training, all images were resized to a resolution of 320× 320
pixels. This consistent pre-processing step helps to maintain uniformity and ensures fair
comparisons between different methods. To evaluate the performance of each method,
we randomly selected labeled images three times for training and recorded the mean and
standard deviation of the metrics. The metrics used for evaluation included the mean
absolute error (MAE), Dice coefficient, and mean intersection over union (mIoU). These
metrics provided valuable insights into the accuracy and quality of the segmentation results
produced by each method. By utilizing these evaluation metrics and conducting multiple
trials, we could robustly assess the performance of our proposed method and compare it to
other existing methods in the field of semi-supervised medical image segmentation.

3.2. Measure Metrics

We used the mean square error (MSE), mean intersection over union (mIoU), and the
Dice coefficient in Equation (4) to evaluate our performance. We applied the proposed
approach through comparison experiments with other SOTA semi-supervised methods.
The experiment results demonstrated the better performance of our approach.
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The mean square error (MSE) is a commonly used metric for quantifying the average
squared difference between the predicted pixel-wise label and ground truth across an
image.The MSE is expressed as the mean of these squared differences, thus providing a
single numerical value that represents the average squared error. A lower value indicates a
lower degree of difference.

The Dice coefficient is a widely accepted metric that is used to assess the correspon-
dence between predicted segmentation and the ground truth on a pixel-wise level. It serves
as a standard measure for comparing the results of segmentation algorithms. In this eval-
uation, Pred represents the predicted set of pixels, while GT represents the ground truth
delineation of the object within the image.The Dice coefficient provides a similarity measure
ranging between 0 and 1. It quantifies the level of agreement between the predicted and
ground truth segmentations. A value closer to one indicates a higher degree of similarity,
thereby suggesting a stronger alignment between the two sets.

The mean intersection over union (mIoU) is another standard metric that is used
to evaluate a segmentation method. The mIoU calculates the Jaccard index similarity
between Pred and its corresponding ground truth GT. The mIoU also provides a similarity
measure ranging between 0 and 1. A higher value closer to one indicates a higher degree
of similarity.

3.3. Metric Results Analysis

Table 1 presents the results of the semi-supervised segmentation on the Kvasir-SEG
dataset, which demonstrate the superior performance of our method compared to the
previous state-of-the-art (SOTA) approach. Our method exhibited a significant improve-
ment, with a 1.93% decrease in the mean absolute error (MAE), a 9.2% increase in the mean
intersection over union (mIoU), and a 7.8% increase in the Dice coefficient. These results
indicate the effectiveness of our proposed approach in achieving superior segmentation
performance.

To further evaluate the contributions of each component within our approach, we
conducted an ablation study, whose results are shown in Table 1. The ablation study allowed
us to assess the impact of each component by selectively removing them. Specifically, ‘Our
w/o Lcc’ refers to the ablation study without the curriculum consistency loss, while ‘Our
w/o Lmsc’ refers to the ablation study without the multi-scale contrastive loss. The metric
degradation observed in the ablation experiments served as empirical evidence of the
effectiveness of each proposed component.

In addition, Table 2 presents the segmentation results for the ISIC 2018 dataset. Similar to
the results for the Kvasir-SEG dataset, our method outperformed previous semi-supervised
methods, thus further highlighting the superiority of the curriculum consistency learning
and multi-scale contrastive constraint. To measure the effectiveness of each proposed compo-
nent, we conducted a similar ablation study, thereby allowing us to assess their individual
contributions.

MAE =
1
n

n

∑
i=1
|Pred− GT|, mIoU =

1
n

n

∑
i=1

|Pred ∩ GT|
|Pred ∪ GT| , Dice =

2|Pred ∩ GT|
|Pred|+ |GT| . (4)
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Table 1. Comparison of our approach with SOTA semi-supervised medical image segmentation
methods on Kvasir-SEG dataset with 120 labeled images and 480 un-labeled images. Bold values
represent the best performance.

Method MAE mIoU Dice

U-net 8.16 57.08 ± 0.64 67.03 ± 0.87
UPRC 7.10 61.50 ± 0.71 70.83 ± 0.24
UAMT 7.40 59.43 ± 1.11 69.87 ± 0.61

CCT 6.77 64.33 ± 0.41 72.60 ± 0.44
CLCC 6.63 63.50 ± 0.16 73.63 ± 0.25

Ours (all) 4.70 72.73 ± 0.08 81.47 ± 0.61
Ours (w/o Lcc) 6.90 64.6 ± 0.66 73.46 ± 1.50

Ours (w/o Lmsc) 5.33 70.33 ± 0.75 79.50 ± 0.90

Table 2. Comparison of our approach with SOTA methods for the ISIC 2018 dataset with 156 labeled
images and 1400 un-labeled images. Bold values represent the best performance.

Method MAE mIoU Dice

U-net 8.03 70.77 ± 1.16 79.2 ± 0.93
UPRC 7.23 71.83 ± 2.19 80.13 ± 2.21
UAMT 7.13 72.16 ± 2.10 80.70 ± 1.87

CCT 7.50 72.20 ± 0.16 81.40 ± 0.07
CLCC 6.90 74.00 ± 0.57 82.47 ± 0.73

Ours (all) 6.53 74.50 ± 0.49 83.23 ± 0.59
Ours (w/o Lcc) 7.37 71.20 ± 1.00 80.3 ± 1.56

Ours (w/o Lmsc) 7.97 70.87 ± 0.74 79.6 ± 1.47

4. Discussion

Figure 3 showcases the qualitative outcomes of our method for the Kvasir-SEG test
dataset, thereby highlighting the notable contrast between our approach and the previous
state-of-the-art (SOTA) method, the CLCC. In comparison to the CLCC, which struggled to
accurately differentiate between lesion regions and normal tissues, our method leveraged the
curriculum learning strategy to enhance the feature representation capacity. This improvement
enabled better perception of the target shape and texture, thereby resulting in the production
of accurate segmentation masks and effective discrimination between the lesion regions and
normal tissues.

Our method demonstrated significant advancements in semi-supervised medical im-
age segmentation tasks, particularly in cases involving large-scale targets with low image
clarity. These performance improvements have practical implications in the field of clinical
medical-assisted diagnosis, wherein they can aide doctors in identifying lesion areas. By
providing precise segmentation results, our method facilitates subsequent medical plan-
ning and treatment options, thereby leading to improved patient care. Nevertheless, it is
crucial to acknowledge the limitations of our approach in certain scenarios. For instance, in
high-resolution medical images or tasks involving small targets such as pulmonary nodules
and micro-calcifications, our self-learning approach, which relies on inter-patch informa-
tion, may not effectively enhance the model’s feature representation. These challenges
need to be addressed to optimize the performance in such cases. Moreover, many medical
video segmentation tasks that require semi-supervised methods pose additional challenges.
Currently, our approach lacks effective utilization of the temporal context information
between consecutive frames, which limits its applicability in these scenarios. Further re-
search and development are required to incorporate temporal information and improve the
performance in medical video segmentation. Another consideration is the training speed
on large-volume datasets, which can be time-consuming and computationally expensive.
Efforts should be directed toward optimizing the training efficiency without compromising
the quality of the segmentation results. Furthermore, the extension of our patch grouping
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approach to 3D medical image tasks represents a significant challenge. Exploring innova-
tive methodologies and techniques will be crucial to address this limitation and advance
the field of 3D medical image segmentation.

Image

Ours

CLCC

GT

Unet

Figure 3. Qualitative comparison between our approach and CLCC method for the Kvasir-SEG test
dataset.

While our method demonstrates remarkable performance improvements in semi-
supervised medical image segmentation tasks, there are still challenges to overcome. By
addressing the limitations mentioned above, we can further enhance the applicability
and effectiveness of our approach in various medical imaging scenarios, thus ultimately
benefiting both clinicians and patients.

5. Conclusions

In this study, our primary focus was to tackle the challenge of the limited availability of
labeled medical image data in semi-supervised medical image segmentation. The scarcity of
labeled data poses a significant hurdle, and, thus, we proposed a novel curriculum learning
method that leverages patch-image-level contrastive learning. Our objective was to guide
the segmentation model in learning pixel-level target features by progressively transitioning
from easy to hard examples. This approach enhanced the model’s generalization ability
and ultimately improved the quality of the segmentation results.

To achieve this, we introduced a curriculum consistency learning scheme that allowed
the model to learn diverse feature representations, thereby enhancing its overall perfor-
mance. Additionally, we incorporated a multi-scale contrastive constraint that facilitated
model convergence during the training process. By effectively utilizing both the abundant
un-labeled data and the limited labeled data, our framework dynamically explored the
intrinsic relationships present across patches and images.

To validate the effectiveness of our proposed method, we conducted extensive ex-
periments on two well-known datasets: the Kvasir-SEG polyp dataset and the ISIC 2018
skin lesion dataset. Through comprehensive metric evaluations and qualitative visualiza-
tions, we provided compelling evidence showcasing the superiority and efficacy of our
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approach compared to previous semi-supervised medical image segmentation methods.
Furthermore, we performed meticulous ablation studies on both datasets to quantitatively
measure the individual performance improvements contributed by each of the proposed
modules within our method.

While there is still room for improvement and further development, particularly in
handling large-scale medical data involving small targets and 3D medical image segmen-
tation, our current method already offers invaluable assistance to medical professionals.
It aids in target annotation and analysis tasks related to skin lesions, polyps, and similar
scenarios, thereby facilitating more accurate diagnosis and the design of optimized medical
treatment plans. The impact of our method on these practical applications is significant
and has the potential to contribute to advancements in the field of medical imaging.
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