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Abstract: Clinicians routinely perform pelvic examinations to assess the progress of labor. Clinical
guidelines to interpret these examinations, using time-based models of cervical dilation, are not
always followed and have not contributed to reducing cesarean-section rates. We present a novel
Gaussian process model of labor progress, suitable for real-time use, that predicts cervical dilation and
fetal station based on clinically relevant predictors available from the pelvic exam and cardiotocogra-
phy. We show that the model is more accurate than a statistical approach using a mixed-effects model.
In addition, it provides confidence estimates on the prediction, calibrated to the specific delivery.
Finally, we show that predicting both dilation and station with a single Gaussian process model is
more accurate than two separate models with single predictions.

Keywords: labor; obstetrics; cardiotocography; electronic fetal monitoring; biomedical signals; signal
processing; gaussian processes

1. Introduction

The progression of labor is a critical aspect of childbirth and is a central focus in obstet-
ric research and clinical practice. Labor progression disorders (arrest of cervical dilation or
fetal descent) are the leading indications for intrapartum cesarean delivery [1]. Models of
normal cervical dilation over time have served as references for expected progress. Clinical
guidelines that define arrest of cervical dilation are based on deviations from these curves
or their related statistics regarding the time to advance one centimeter in dilation [2,3].

The natural advance of labor toward delivery involves a sequence of physiological
changes and developments that are assessed in standard clinical practice by periodic pelvic
examinations. These assessments involve documentation of various parameters including
cervical dilation, cervical effacement, fetal station, and the examination time. The fact
that the timing of these exams is not fixed, coupled with the diversity in lengths of labor,
presents significant challenges to developing a labor model based on these observations.

Traditional approaches to monitoring labor progression have revolved around the
passage of time only, which, although beneficial, have limitations in adaptability and
precision. The Friedman curve [4] was the first of these and it had a profound influence
on clinical decision making. The more recent polynomial model of Zhang et al. [5] was
more data-driven and provided improved estimates of cervical dilation. However, the
compliance of clinicians with the guidelines based on this model is low [6] and has not
been associated with a reduction in cesarean-section rates. This suggests that clinicians
consider other factors that affect dilation and descent, beyond time alone, which can lead
to overriding the guidelines. Moreover, these methods often fail to capture the non-linear,
multifaceted nature of maternal and fetal indicators that influence the progression of labor.
In contemporary biomedical research, there is an increasing inclination towards employing
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machine learning models that can learn from the data, accommodating inter- and intra-
subject variability—such as those that exist across and within deliveries–to provide a
personalized healthcare approach.

Within this context, Gaussian Process (GP) models emerge as a promising tool. Origi-
nating from the Bayesian non-parametric family of models, GP models provide a flexible
and robust approach to modeling relationships between input and output variables, accom-
modating uncertainty and noise within individual data. The literature is rapidly expanding
with applications of GPs in various domains, reflecting its flexibility and robustness in
handling various kinds of data [7–9]. In particular in healthcare care, GP models have
been noted for their ability to provide probabilistic predictions and naturally adapt to
uncertainty and noise within individual data [10–14]. GPs have been effectively used
for probabilistic predictions in Alzheimer’s disease [13], modelling intrapartum uterine
pressure and fetal heart rate [14], and critical care monitoring, where they have been shown
to predict clinical interventions [11]. Furthermore, GP models have also shown promise in
the field of epidemiology, particularly in the predictive modeling of infectious diseases [15].
This wide array of applications in healthcare underscores the adaptability of GP models to
various medical data challenges. In a clinical context, model predictions and their uncer-
tainty estimates are crucial for the decision-making process because they provide clinicians
with an informed rationale for using or disregarding the model prediction. However, one
significant limitation that hinders the widespread application of standard GP models is
their computational complexity, which scales cubically with the size of the dataset, thereby
posing challenges in scenarios where real-time decision-making is crucial.

Sparse Gaussian Process Regression (SGPR) models, an evolution of standard GP
models, are engineered to tackle such computational challenges [16–19]. By introducing
inducing points or a set of virtual observations, these models enable a significant reduction
in computational cost, which is particularly beneficial for large-scale problems. The sparse
methods approximate the full GP model, maintaining a balance between computational
efficiency and model performance.

In this paper, we develop a new model to predict dilation and station using a Gaussian
processes approach, and use SGPR to apply it to a large database of labor progress. Because
GPs model the probability distributions of the input and output variables, they have the
desirable attribute of including an estimate of the uncertainty associated with each predic-
tion, based on the observed delivery data. Inspired by [20] and documented determinants
of cervical dilation, we formulate this as a regression problem to predict, as outputs, the
dilation and station of the current exam, using as inputs the observations of the dilation,
effacement, and station of the previous exam. We also include as an input predictor the
cumulative contraction count derived from automated analysis of the uterine pressure (UP)
signal. Finally, we include other clinical information about induction and administration
of epidural as input predictors. Importantly, unlike the Friedman and Zhang curves, the
model is causal, using only past information for prediction, and is therefore more suitable
for real-time clinical use during labor.

2. Methods
2.1. Data

Data came from 49,694 births between 2017 and 2021 in 10 US hospitals in Ohio. We
first selected deliveries with a gestational age of at least 35 weeks and having a live singleton
fetus in vertex presentation. Further inclusion criteria included nulliparity, vaginal delivery,
and an Apgar score at 5 min of 7 or more. In addition, deliveries were required to have
more than one cervical exam in the first stage of labor and to have recorded UP from
cardiotocography, also known as electronic fetal monitoring (EFM). We excluded records
with shoulder dystocia or with admission to the maternal or newborn ICU using data from
the electronic medical record (EMR, Epic™, Verona, WI, USA). Applying these criteria
resulted in 8022 births with 47,714 associated pelvic exams, which we used for constructing
the models.
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A second independent dataset from a different U.S. region was used for validation.
These data came from consecutive deliveries in 2021 from 6 hospitals in Oregon and
Washington. Of the 5528 total deliveries in this set, 527 births with 2378 associated pelvic
exams satisfied the criteria for inclusion in the validation set.

The data for each pelvic exam included the cervical dilation, cervical effacement,
fetal station, and examination time. For each delivery, we had access to the EFM record
(PeriWatch Cues™, PeriGen, Cary, NC, USA). We also used other EMR data including
the use of induction, the time of epidural administration, and the time of rupture of
membranes. The full clinical characteristics of the data are described in a more clinically
focused description of this work in [21].

From a myriad of potential variables that affect cervical dilation, our experimentation
was based on key variables with documented evidence of their relationship to cervical
dilation. Professional guidelines list three essential elements to consider when assessing
the adequacy of cervical dilation in the first stage of labor: the duration of unchanged
dilation, the nature of uterine contractions, and the degree of cervical dilation attained [1–3].
Cervical effacement and fetal descent also affect cervical dilation [22–24]. We also studied
the effect of three interventions that can affect labor progression: use of labor induction,
presence of epidural anesthesia, or rupture of the amniotic membrane. At this time, we
did not examine the role of maternal race/ethnicity or maternal factors such as BMI. The
amount of data needed for modeling grows steeply with the number of predictors under
study in order to find sufficient examples of all factor combinations.

2.2. Preprocessing

We restricted the analysis to the last 20 h of labor before delivery. After matching
corresponding UP and EMR records, we deidentified the data while transforming all times
to be relative to the time of the first pelvic exam in the 20-h window, which we denote
t0. We removed exams that had descending dilation, or occurred within 5 min after the
previous exam. We linearly interpolated any missing observation of dilation, effacement, or
station for exams that had both previous and successive exams with valid corresponding
observations. Otherwise, these exams were also removed. Contractions were detected
using automated analysis of the EFM records to determine their time extent (PeriWatch
Cues™, PeriGen, Cary, NC, USA). From this detection, we calculated the cumulative
number of contractions since t0 at the time of each pelvic exam. Finally, based on the timing
of membrane rupture and epidural administration, each pelvic exam was given categorical
attributes for the presence of each of these two conditions.

2.3. Gaussian Processes

A Gaussian process is the appropriate extension of a multivariate Gaussian distribution
to a Gaussian distribution over a particular family of functions. In the same way that a
sample from an n-dimensional Gaussian distribution is an n-dimensional vector, a sample
from a Gaussian process is a random function. Gaussian distributions are specified by their
mean vector and covariance matrix; similarly, a Gaussian process is completely specified
by a mean function and a covariance function (sometimes referred to as a kernel), which
can be evaluated at any point, according to the following formal definition.

Definition 1. A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Mathematically, a Gaussian process is defined as follows,

f ∼ GP(µϕ(x), kθ(x, x′))

µϕ(x) = E[ f (x)]

kθ(x, x′) = E[( f (x)− µϕ(x))( f (x′)− µϕ(x′))]



Bioengineering 2024, 11, 73 4 of 15

where ϕ and θ represent the parameters of the mean and covariance functions, respectively,
for the Gaussian process f . Assume that we have given input vectors X = {x1, x2, . . . , xn}
and observations y = {y1, y2, . . . , yn} with Gaussian noise variance σ2, and that y(x)| f (x) ∼
N (y(x); f (x), σ2). Then, by the definition of the Gaussian processes, the function values
f (X) have a joint Gaussian distribution,

f (X) = [ f (x1), f (x2), . . . , f (xn)]
⊤ ∼ N (µµµϕ(X), KXX

θ )

with a mean vector, (µµµϕ(X))i = µϕ(xi), and covariance matrix (KXX
θ )ij = kθ(xi, xj). As a

result, the posterior predictive distribution Gaussian process on test data X∗ is given by

f (X∗
∣∣X∗, X, y, σ2) ∼ N (µµµ∗, ΣΣΣ∗)

µµµ∗ = µµµϕ(X∗) + KX∗X
θ (KXX

θ + σ2I)−1(y −µµµϕ(X))

ΣΣΣ∗ = σ2I + KX∗X∗
θ − KX∗X

θ (KXX
θ + σ2I)−1KXX∗

θ .

It is worth noting that (KX∗X
θ )⊤ = KXX∗

θ and it represents the covariance matrix evaluated
for each xi, x∗j pair.

In numerous modeling scenarios, the selection of an appropriate mean and covari-
ance (kernel) function is pivotal. The mean function, often chosen as a linear function of
inputs, represents the expected value of the process and serves as a baseline around which
variations are modeled. It is crucial to provide a sensible starting point for the model,
especially when prior knowledge about the expected behavior of the underlying process is
available. A well-chosen mean function can significantly enhance the predictive accuracy
of the model and reduce the amount of data required for reliable predictions.

Additionally, much focus is placed on the selection of an appropriate covariance
function, denoted kθ(·, ·). This function is responsible for transforming pairs of input
values, xi, xj, into a constant, kθ(xi, xj), which delineates the covariances between pairs of
random variables, f (xi), f (xj). The covariance function is paramount because it encodes
our prior beliefs about the function we are modeling, reflecting assumptions about the
smoothness, periodicity, and other properties of the function. It acts as a statistical surrogate
model of the function, determining the degree of influence one observation can have on
another, thereby shaping the overall behavior of the Gaussian Process model.

To qualify as a covariance function, any chosen function must produce a positive,
semi-definite covariance matrix, ensuring the resulting Gaussian Processes are well-defined.
Several commonly employed covariance functions are Gaussian (also known as squared
exponential or radial basis function), rational quadratic, periodic, polynomial, and the
Matérn class of covariance functions. The choice of the specific form of the kernel function
is not arbitrary; it is a critical decision that conveys our prior beliefs and assumptions about
the statistical characteristics of the function being modeled.

2.4. GP Model Description and Kernel Selection

The objective of this research was to estimate cervical dilation and fetal station, two
key indicators of labor progression, based on delivery data that are routinely recorded.
One of the challenges of modelling with our large dataset of delivery records was the
computational burden. We chose a Sparse Gaussian Process Regression (SGPR) [19] model
because it is well suited to large datasets with complex relationships between variables.
It uses a sparse approximation of the covariance matrix, which reduces computational
complexity without unduly sacrificing accuracy.

Despite the large number of deliveries in the overall dataset, the data available per de-
livery are relatively sparse. This scarcity of individual delivery data led us to conceptualize
each delivery as a distinct meta-task, according to the methodologies and insights of the
article [25]. This method is crucial as it allows the model to integrate prior knowledge from
each unique delivery meta-task, thereby improving its adaptability and predictive accuracy



Bioengineering 2024, 11, 73 5 of 15

across a wide range of delivery data. This, in turn, enables a more nuanced characterization
of the progression of individual delivery.

We chose to use a neural network to express the mean function of our model. This
approach, inspired and validated by [25], empowers the model to unravel the complex
inherent patterns and relationships within the data. Consequently, this facilitates more
nuanced and precise predictions. Our selection of kernels was a strategic amalgamation of
Gaussian, Matérn, and linear kernels, each chosen for its unique attributes and relevance
to our dataset. The Gaussian kernel helps smooth out the function, which is important
because our data points on cervical dilation and fetal station are continuous. This kernel
is particularly relevant to our dataset as it allows for the modeling of smooth transitions
and progressions, which are plausibly related to clinical observations of dilation and sta-
tion. On the other hand, the Matérn kernel provides the much-needed flexibility to model
non-differentiable functions and it is adept at accommodating the inherent variability
and irregularities within the labor progression data, reflecting the diverse and unpre-
dictable nature of individual labor progressions. Furthermore, the inclusion of the linear
kernel promotes long-term non-decreasing behavior, which is critical in modeling labor
progression. In the long run, cervical dilation and fetal station follow a non-decreasing
trajectory, and the linear kernel contributes to the ability of the model to maintain this
physiological phenomenon.

To achieve our objective of concurrently predicting dilation and station, it was essential
to multiply the selected kernels by a coregionalization kernel [26]. This approach facilitated
the effective modeling of the correlation between the two critical outcomes, dilation, and
station, ensuring coherent and mutually informed predictions, which is crucial for an
understanding of labor progression.

2.5. Model Implementation

We implemented our Gaussian Process model using the GPFlow library [27], a Python-
based framework for GP modeling. The integration of GPFlow with TensorFlow enabled
efficient computations and was important when using advanced optimization algorithms.
We defined our SGPR model with a deep mean function and a composite kernel consisting
of Gaussian, Matérn, and linear kernels.

In our study, the set of meta-tasks MMM consists of datasets corresponding to each
delivery, MMM = {DDDi}m

i=1, with each dataset DDDi containing observations {xxxi, yyyi}. In this
setting, all meta-tasks share the same input and output dimensionalities, but they can have
different numbers of observations. The meta-learning framework then aims to learn a GP
prior from these meta-tasks, which can be adapted quickly to data from a new delivery not
seen during training.

The mean function of our SGPR was parameterized using deep neural networks, as
described in the previous section. The training of this model involves optimizing the
SGPR hyperparameters, including those of the mean function, to maximize the marginal
likelihood of the meta-tasks.

During testing, for a new delivery (or meta-task), the learned SGPR prior was fine-
tuned using the data for that delivery. This involved updating the SGPR hyperparameters
using the test delivery data, resulting in a posterior distribution that was used for the
predictions. This approach ensured that the model is informed by the broader patterns
learned across multiple deliveries and the specific nuances of the individual delivery data.

We used a hybrid optimization strategy to optimize the model parameters, combining
the strengths of two optimization algorithms: (1) Adam and (2) limited memory Broyden
Fletcher Goldfarb Shanno with simple bounds (L-BFGS-B). Adam is an extension of stochas-
tic gradient descent that is effective in handling non-convex optimization landscapes.
L-BFGS-B is a quasi-Newton method that is well-suited to optimizing smooth functions
in high-dimensional spaces. This hybrid approach facilitated efficient convergence to the
optimal solutions in the high-dimensional parameter space of our SGPR model. After
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optimization, we evaluated the performance metrics of the model on the test data from the
cross-validation.

2.6. Sparse Gaussian Process Regression Model Input Variables

In the strategic construction of our Sparse Gaussian Process Regression (SGPR) model,
a selection of key variables has been integrated to effectively predict labor progression.
The input variables for our SGPR model were chosen from the selection process described
in Section 3.2. They included previous dilation, previous station, previous effacement,
cumulative contraction counts, presence of epidural anesthesia, and an indicator that
denotes whether labor was induced or occurred spontaneously.

One of the primary variables is the previous cervical dilation, derived from historical
data, which serves as a fundamental indicator of how labor has progressed over time.
Complementing this, the model also considers the previous fetal station, which provides
insight into the baby’s position in the birth canal, a crucial factor in determining the
progress of labor. Another critical element is the previous cervical effacement. The previous
effacement adds a significant layer of detail to the model, enhancing its ability to understand
the dynamics and rate of progression of labor [22–24].

The accuracy of the model is significantly enhanced by the inclusion of three key
variables, determined through multiple simulations and statistical comparisons. First,
cumulative contraction counts are incorporated, acknowledging the pivotal role of uterine
contractions in childbirth. This variable, which includes the frequency of contractions
and effectively quantifies a primary driver of labor. Moreover, the model incorporates
information on whether labor was induced or occurred spontaneously and presence of
epidural anesthesia. The inclusion of these three variables has been statistically shown to
improve the accuracy and robustness of the model, providing a more comprehensive and
reliable tool for understanding labor progression.

2.7. Mixed-Effects Model

Mixed-effects (ME) models are a statistical approach to analyzing hierarchical data,
which is data that are nested or structured at multiple levels. In the obstetrics research area,
mixed-effects models can be used to account for the variability in birth outcomes that is
due to both individual and group-level factors. We chose this statistical model to provide a
comparison to the GP models we developed in this study.

Accordingly, we used mixed-effects models based on [20] to analyze data from mul-
tiple births recorded across various hospitals over different periods. Our ME model,
implemented using the statsmodels Python package [28], is designed to handle complex
statistical computations and define both fixed and random parameters explicitly, addressing
the nested nature of our data. The model equation is formulated as follows:

Dilation =β0 + β1 × (previous dilation) + β2 × (previous station)

+ β3 × (previous effacement) + β4 × (cumulative contraction count)

+ β5 × (epidural) + D(Delivery ID) + ϵ

In this equation, β0, β1, . . . , β5 represent the coefficients of the fixed effects: previous
dilation, previous station, previous effacement, cumulative contraction count, and epidural
usage. The term DDelivery ID denotes the random effect associated with each delivery. The
error term ϵ is assumed to follow a normal distribution with mean zero and variance σ2,
i.e., ϵ ∼ N (0, σ2).

The fixed effects included the variables chosen from the selection process described in
Section 3.2. Conversely, the random effects in our model capture the unexplained variability
in birth outcomes, potentially stemming from individual factors like the mother’s health
or the baby’s position during birth. These random effects are crucial to understanding the
unique characteristics of each birth and to capture broader patterns in the data.
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The model summary, Table 1, indicated significant results with all fixed effects show-
ing strong associations with the dilation outcome. The model converged successfully,
suggesting a good fit to the data.

Table 1. Parameter estimation of the fixed effect coefficients and the random effect covariance for the
mixed-effects (ME) model.

Name Coefficient Standard Error p-Value

Fixed Effects (β)

Previous Dilation (β1) 0.734 0.004 <0.001
Previous Station ( β2) 0.077 0.007 <0.001
Previous Effacement ( β3) 0.026 0.000 <0.001
Cumulative Contraction Count (β4) 0.001 0.000 <0.001
Epidural (β5) 0.613 0.015 <0.001

Random Effects (D)

Group Variance (Delivery ID) 0.140 0.011 –

Model variance (σ2) 2.035 – –

2.8. Performance Evaluation

For each ME and GP model, we evaluated performance using a 10-fold cross-validation
approach. In each iteration, the model was trained on 80% of the data, validated on 10%
of the data, and tested on the remaining 10% of the data. We ensured that for each fold,
every data point was used in exactly one of the training, validation, and testing partitions
and that each data point was tested in exactly one of the folds, providing a comprehensive
assessment of the model’s capabilities across diverse data scenarios. We considered one
model superior to another if it had a lower average root mean square error (RMSE) in
predicting the test set of each fold.

3. Results
3.1. Observed Labor Progression Trajectories

In this section, we present observed trajectories of normal labor progression, focusing
on two factors. Figure 1a,b showcase examples of dilation and station trajectories, respec-
tively. To facilitate comparison in the presentation of these and subsequent figures, we
transform the horizontal time axis to be relative to the time of delivery. A close examination
of these figures reveals the various paths that labor can take, from consistent and smooth
progression to instances of abrupt change in dilation or fetal station. The variability in these
trajectories underscores the unpredictable nature of childbirth.
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Figure 1. Variability of (a) dilation and (b) station trajectories over the course of labor. Each colored
contour corresponds to an individual delivery.



Bioengineering 2024, 11, 73 8 of 15

3.2. Predictor Selection

Based on serial 10-fold cross-validation experiments, the SGPR model of dilation
that had the lowest mean RMSE included the following variables: cumulative contraction
count since t0, dilation, effacement, and station in the previous exam, presence of epidural
anesthesia, and use of induction. We used these predictors to obtain the results for the GP
and ME multivariate models described below.

3.3. Sample Predicted Labor Progression

In Figure 2, we compare model performance graphically in two individual clinical
examples—one with normal labor progression ending in vaginal delivery and the other
with very abnormal labor progression ending with cesarean delivery for arrest of dilation.
Figure 2a,c show the SGPR time-alone and multivariate models, respectively, applied to
the normal labor example. Figure 2b,d show the same two models applied to the abnormal
labor example. The SGPR model with multiple predictors of dilation stands out in its ability
to adapt and precisely capture variations across a spectrum of labor trajectories. Whether
dilation follows a steady course, exhibits fast transitions, or is interrupted with periods of
arrest, the model consistently demonstrates its robustness and adaptability.
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(a) SGPR time-alone predictor, normal labor.
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(b) SGPR time-alone predictor, abnormal labor.
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(c) SGPR multivariate predictor, normal labor.
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(d) SGPR multivariate predictor, abnormal labor.

Figure 2. Examples of normal (left, a,c) and abnormal labor (right, b,d) from the dataset using a
time-alone (top, a,b) and a multivariate SGPR predictor (bottom, c,d). The black crosses (x) are the
observed dilation measurements. The pink line is the SGPR (standard) mean prediction; the black
line is the SGPR (meta-trained with test set adaptation) mean prediction; the pink band is the SGPR
(standard) 90% prediction interval; the blue band is the SGPR (meta-trained with test set adaptation)
90% prediction interval.

3.4. Population-Level Analysis of Labor Progression Prediction

This section transitions from individual case studies to a population analysis, syn-
thesizing the predictive power of our SGPR model on a population scale. Central to our
discussion is Figure 3, which depicts the mean predictions for dilation and station over
time, enveloped by a 90% confidence interval, and the corresponding prediction errors,
respectively. Figure 3a represents the expected progression of dilation, and Figure 3b repre-



Bioengineering 2024, 11, 73 9 of 15

sents the expected progression of fetal descent (station) at the population level, as predicted
by the multivariate GP model. The graphical representation is comprehensive, with the
plotted mean values providing a clear indication of the most probable trajectories of the
progression of the labor. Complementing this, the 90% interval encapsulates the variability
and uncertainty inherent in labor progression, acknowledging that while patterns can be
discerned, the individual experiences can diverge significantly from the mean.

On the contrary, Figure 3c,d provide a critical evaluation tool that illustrates the
prediction error over time. These highlight instances where the model’s predictions align
closely or deviate from the recorded observations.
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(a) Dilation average prediction over time.
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(b) Station average prediction over time.
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(c) Dilation prediction error over time.
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(d) Station prediction error over time.

Figure 3. Population-based predictive analysis of the SGPR model using multiple predictors. These
figures collectively illustrate the predictive power of our model at a population level, encapsulating
both the expected progression and the corresponding prediction errors for dilation and station. The
mean predictions, enveloped by a 90% confidence interval, underscore the most probable predicted
labor trajectories, while the error plots critically assess the model’s alignment with actual recorded
data, highlighting its accuracy and reliability in diverse labor scenarios.

3.5. Evaluative Comparison of Predictive Models

This section represents the performance and comparison of various labor progression
prediction models. Table 2 compares the RMSE values of different models, assessed over
10-fold cross-validation on the Ohio dataset. The models include MEdil , a mixed-effects
dilation predictor, and four GP models. The first GP model is a basic time-based model
GP(t)dil predicting dilation. The others were multivariate including GPdil which forecasts
dilation, GPstat which forecasts station, and GPdil+stat which predicts both dilation and
station concurrently. For MEdil and the multivariate GPs, we use the predictors selected in
Section 3.2.

Both multivariate models MEdil and GPdil outperformed GP(t)dil , highlighting the
value of incorporating various fixed and random effects. Model GPdil+stat, which predicted
both dilation and station simultaneously, outperformed all other dilation models. In particu-
lar, while station prediction for GPdil+stat compared to GPstat was not significantly different,
the superior dilation prediction of GPdil+stat was statistically significant, highlighting the
synergistic advantage of a simultaneous predictive approach.

Table 3 compares the RMSE values of the 10 cross-validation models on the second
independent test set, in the same format as Table 2. The performance of the GP model was
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consistent across both datasets, affirming its robustness and generalizability. In this case,
GPdil+stat prediction was superior, with statistical significance, to both GPdil for dilation
and GPstat for station. For GPdil+stat, we show both Model 5p, the standard prediction of
SGPR, and Model 5b, the prediction of SGPR with adaptation to the test set.

Because the GP model with test adaptation 5b had some RMSE errors that were
inferior to 5p, which had no adaptation, we were motivated to further understand their
error characteristics. The absolute error distributions for a single cross-validation fold are
shown for the Ohio dataset (Figure 4b) and the independent test set (Figure 4b). We found
that these distributions were representative of those in all the other folds as well. Model 5b
had a stronger peak at lower errors, compared to model 5p. However, model 5b also had
some relatively infrequent, but large errors that approached the right limit of the horizontal
axes (∼5 cm and 12 cm, respectively).

Table 4 compares the mean absolute error (MAE) for models 5p and 5b for the Ohio
and independent datasets. For both datasets, model 5b had a lower prediction error, with
statistical significance, compared to 5p for both dilation and station prediction. This was a
striking contrast to the same comparison with RMSE in Tables 2 and 3, indicating that the
infrequent but large 5b prediction errors weighted the RMSE, which masked the generally
lower 5b errors demonstrated by the distributions of Figure 4.

Table 2. Comparison of model prediction RMSE errors on cross-validation test sets for the Ohio data.
The name subscript indicates the prediction output(s). For GP(t), time was the sole model predictor.

Model Name Dilation RMSE (cm) vs. Model p-Value Station RMSE (cm) vs. Model p-Value

1 GP(t)dil 2.504 ± 2.382 × 10−2 - - - - -
2 MEdil 1.176 ± 1.252 × 10−2 1 <1 × 10−4 * - - -
3 GPdil 1.168 ± 1.163 × 10−2 2 0.141 - - -
4 GPstat - - - 0.6625 ± 1.535 × 10−3 - -

5p GPdil+stat 1.126 ± 1.057 × 10−2 3 <1 × 10−4 * 0.6601 ± 7.518 × 10−3 4 0.7474
5b GPdil+stat 1.093 ± 3.51 × 10−2 5p 1.3 × 10−2 * 0.7276 ± 1.05 × 10−2 5p <1 × 10−4 *

* null hypothesis (model performances were not different) rejected at the p < 0.05 level.

Table 3. Comparison of model prediction root-mean squared (RMS) errors on the second
independent data.

Model Name Dilation RMSE (cm) vs. Model p-Value Station RMSE (cm) vs. Model p-Value

1 GP(t)dil 2.661 ± 8.120 × 10−4 - - - - -
2 MEdil 1.382 ± 1.015 × 10−3 1 <1 × 10−4 * - - -
3 GPdil 1.424 ± 1.699 × 10−3 2 <1 × 10−4 * - - -
4 GPstat - - - 0.8687 ± 4.70 × 10−4 - -

5p GPdil+stat 1.354 ± 1.469 × 10−2 3 <1 × 10−4 * 0.8499 ± 4.46 × 10−4 4 <1 × 10−4 *
5b GPdil+stat 1.400 ± 1.310 × 10−2 5p <1 × 10−4 * 0.9004 ± 4.50 × 10−3 5p <1 × 10−4 *

* null hypothesis (model performances were not different) rejected at the p < 0.05 level.

Table 4. Comparison of GP model prediction mean-absolute (MA) errors on the Ohio (O) and
independent (I) datasets, without (Model 5p) and with (Model 5b) test adaptation.

Data Model Name Dilation MAE (cm) vs. Model p-Value Station MAE (cm) vs. Model p-Value

O 5p GPdil+stat 0.826 ± 8.68 × 10−3 - - 0.512 ± 4.55 × 10−3 - -
O 5b GPdil+stat 0.602 ± 1.83 × 10−2 5p <1 × 10−4 * 0.446 ± 7.70 × 10−3 5p <1 × 10−4 *

I 5p GPdil+stat 0.947 ± 3.77 × 10−4 3 <1 × 10−4 * 0.627 ± 4.96 × 10−4 - -
I 5b GPdil+stat 0.729 ± 5.70 × 10−3 5p <1 × 10−4 * 0.544 ± 6.40 × 10−3 5p <1 × 10−4 *

* null hypothesis (model performances were not different) rejected at the p < 0.05 level.
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Figure 4. Comparison of the distribution of GPdil+stat prediction errors for models 5p and 5b for
(a) one fold of the Ohio data and (b) the independent test dataset.

In the comparative analysis presented in Figure 5, we observed distinct differences in
the values of the RMSE values of the cross-validation test dilation RMSE values between
models GP(t)dil and GPdil+stat as a function of the elapsed hours since the previous exam.
The errors were the lowest for the predictions that considered less than 3 h of elapsed time,
which represents approximately 90% of the test data. GP(t)dil exhibits an RMSE range
from 2.3 to 4.5, with gradually increasing error as the elapsed hours increase. In contrast,
GPdil+stat presents a more compressed RMSE range, fluctuating between 0.9 and 1.65. This
model also displays a consistent upward trend in RMSE mean and range as hours increase,
but the progression is subtler than GP(t)dil . The tighter RMSE range in GPdil+stat at each
hour indicates that its better predictive accuracy is more stable across folds.
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(b)
Figure 5. Visualization of box plot of dilation RMSE as a function of time since previous exam
categories for the (a) GP(t)dil and (b) GPdil+stat models. Each box represents the RMSE interquartile
range, with the white dot indicating the mean RMSE for each category, aggregated over 10 folds on
the Ohio data.

In the comparison shown in Figure 6, we observe the predictive capacities of different
models in estimating cervical dilation during labor. In particular, Model 5p, as shown in
Figure 6b, demonstrates consistency in its predictions across deliveries in the test dataset.
Its predictions show a tightly clustered range of standard deviations, narrowly ranging
from approximately 0.652 to 0.656.

In Figure 6a, we can see MEdil , which has a narrow range of standard deviations from
1.116 to 1.128. On the other hand, Figure 6c shows Model 5b, which exhibits more variability
than MEdil . Model 5b shows a gradual increase in standard deviation over time, moving
from about 0.48 to 0.58 as the time from the previous exam extends from 1 to 8 h.

Both models 5p and 5b show trends of increasing mean standard deviation as the time
interval between exams increases. However, it should be noted that model 5b demonstrates
a more rapid increase in standard deviation compared to Model 5p. This suggests that
unpredictability escalates more quickly over time in Model 5b than in Model 5p.
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3.6. Computational Load

Finally, we measured the computational load of training and inference with the GP
models 5b and 5p. Training times to generate the 5p and 5b models in each fold were
14.0 ± 4.5 h (mean ± std) on a machine with an NVidia Tesla T4 GPU with 16 GB of
memory. Inference times were estimated on a standard laptop with CPU computation,
using 100 deliveries (370 exams total) from one fold of cross-validation for the Ohio dataset.
The average inference times per exam for 5p and 5b were 114 ms and 115 ms, respectively.
The corresponding times per delivery were 423 ms and 427 ms, respectively.

1 2 3 4 5 6 7 8
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st
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(a) Model MEdil .
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(b) Model 5p.

1 2 3 4 5 6 7 8
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0.50
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0.56
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st
d

(c) Model 5b.
Figure 6. Box-plot representation illustrating the variation in the standard deviation of dilation
predictions concerning elapsed time since the last pelvic examination, for models (a) MEdil , (b) 5p,
and (c) 5b. Each box represents the interquartile range of the credible interval, the white dot indicating
the mean credible interval for each category, aggregated over 10 folds.

4. Discussion

As discussed in the Section 1, the two main models of labor progress in clinical use
are based on the univariate time models of Friedman and Kroll [4] and Zhang et al. [5]. In
this study, we used a univariate GP model GP(t)dil as a baseline time-based model. In fact,
given the restricted information content of a time-based univariate regression framework,
in experimentation with our data, we found that all the models we tested had similar
prediction errors, whether they were GP, or an eighth-order polynomial model similar
to that used by Zhang et al. [5]. However, it should be reiterated that the Zhang et al. [5]
model was estimated using relative time to delivery, while we used t0-based time to
generate causal models; see Hamilton et al. [21] for this detailed comparison. This finding
underscores the limitations inherent in univariate models when applied to the multifaceted
nature of labor progression.

However, with the selection of clinically relevant predictors in a multivariate model
that we have specified in this study, each of which is available in data from the EMR, and
from labor data in routine pelvic examinations and the EFM, the prediction error was
significantly reduced compared to the univariate approach when using the MEdil model.
Furthermore, while the single-prediction model GPdil performed equivalently to MEdil , it
was superior, with statistical significance, for the independent test set, i.e., for data from a
different geographical and clinical setting, and not used during the training of the model.
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The multivariate model GPdil+stat had a prediction horizon that was remarkably steady
even for up to 6 h intervals between exams (see Figure 5). Importantly, however, the pre-
dictor set did not include time, as it did not provide a significant improvement on the
RMSE error performance metric. One desirable aspect of GP modeling is that it inherently
provides estimates of predictor importance on a per-kernel basis. In Hamilton et al. [21]
we provide full quantitative details; we summarize these results here to better interpret this
study. The cumulative contraction count was the most predictive regressor in conjunction
with the Gaussian kernel, which models the smooth continuity of the prediction. Thus, we
may consider contraction count as a surrogate for time that better captures the degree of
contraction-related stimuli that impinge on the cervix. Therefore, under normal physio-
logical conditions and within reasonable limits, more contraction should promote labor
progression. On the other hand, the previous dilation was the most predictive regressor for
the Matérn kernel, which allows for abrupt prediction changes. This is consistent with a
distinctive non-linear profile that is commonly observed in the cervical dilation progression,
especially towards the end of labor.

The superiority of the dual prediction of dilation and station in the GPdil+stat model
compared to the single prediction models GPdil and GPstat showed that our use of the
coregionalization kernel successfully incorporated output correlations to better predict
each output. This is especially relevant to our problem, where cervical dilation and fetal
station are such interacting factors. The ability to improve the respective predictions is
a confirmation of the results in Bonilla et al. [26], which considered tasks outside the
biomedical domain, and speaks to the broad applicability of this approach to other similar
biomedical problems that require multiple related forecasts.

The final step in the modeling of test set adaptation, shown in the black lines and
surrounding blue bands of our figures, improved prediction accuracy for all of our dataset
outputs. But equally importantly, they provided confidence bounds on our estimates that
were tailored to the particular delivery trajectory. This is in contrast to the fixed confidence
bounds of a parametric model like ME. The variation of the standard deviation of models
5p and 5b with increasing time between exams show that the model uncertainty adapts
to the data. This trend is characteristic of most time series models, reflecting an increase
in uncertainty with longer gaps between observations. It is also clinically reasonable that
such uncertainty about predicted dilation increases with these longer gaps. In the real-time
setting, where the potential for alarm fatigue among clinical staff is great, this gives the
clinician better grounds for heeding or ignoring the model prediction.

Finally, we reiterate that we frame this problem as single-step prediction of the current
exam using input data from the immediate past. However, with small adjustments to
the model, it is also possible to perform multi-step predictions into the future. But such
forecasting is fraught with other uncertainties that may be unrelated to the inherent model
uncertainty; it may also open possibilities for misuse and unnecessary interventions. Fur-
thermore, our prediction model matches clinical behavior, where the expected progress
based on previous information is compared to the latest data available at each exam, in
order to make decisions concerning intervention.

A limitation of this study, and all other studies that produce a labor curve, is related to
initial data selection. All labor curve studies are based on data from women with a vaginal
birth, that is, women who did not have a cesarean delivery. Cesarean rates can vary several
fold from region to region such that the residual vaginal delivery group may represent a
very different proportion of parturients. Medical and anthropometric characteristics can
also be very different across regions affecting the applicability of these models. In addition,
it must not be assumed that a certain deviation from expectation, for example below the 5th

percentile is necessarily abnormal. By definition, 5% of examinations from normal labors
exhibited such results at times. Determining intervention thresholds requires careful study
of both normal and clearly abnormal labors to define optimal criteria.



Bioengineering 2024, 11, 73 14 of 15

5. Conclusions

We have presented a novel Gaussian process model of labor progress, and have
demonstrated this it is suitable for prediction inference in real-time, which is an important
requirement for clinical utility. The model predicts cervical dilation and fetal station
based on clinically relevant predictors available from the electronic medical record, the
pelvic exam, and cardiotocography. We show that the model is more accurate than a
commonly used statistical approach, but additionally, it provides confidence estimates on
the prediction that are calibrated to the specific delivery. Finally, we show that predicting
both dilation and station with a single Gaussian process model was often more accurate
than two separate models with single predictions.
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