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Abstract: The end of 2019 could be mounted in a rudimentary framing of a new medical problem,
which globally introduces into the discussion a fulminant outbreak of coronavirus, consequently
spreading COVID-19 that conducted long-lived and persistent repercussions. Hence, the theme
proposed to be solved arises from the field of medical imaging, where a pulmonary CT-based
standardized reporting system could be addressed as a solution. The core of it focuses on certain
impediments such as the overworking of doctors, aiming essentially to solve a classification problem
using deep learning techniques, namely, if a patient suffers from COVID-19, viral pneumonia, or
is healthy from a pulmonary point of view. The methodology’s approach was a meticulous one,
denoting an empirical character in which the initial stage, given using data processing, performs
an extraction of the lung cavity from the CT scans, which is a less explored approach, followed by
data augmentation. The next step is comprehended by developing a CNN in two scenarios, one
in which there is a binary classification (COVID and non-COVID patients), and the other one is
represented by a three-class classification. Moreover, viral pneumonia is addressed. To obtain an
efficient version, architectural changes were gradually made, involving four databases during this
process. Furthermore, given the availability of pre-trained models, the transfer learning technique
was employed by incorporating the linear classifier from our own convolutional network into an
existing model, with the result being much more promising. The experimentation encompassed
several models including MobileNetV1, ResNet50, DenseNet201, VGG16, and VGG19. Through
a more in-depth analysis, using the CAM technique, MobilneNetV1 differentiated itself via the
detection accuracy of possible pulmonary anomalies. Interestingly, this model stood out as not being
among the most used in the literature. As a result, the following values of evaluation metrics were
reached: loss (0.0751), accuracy (0.9744), precision (0.9758), recall (0.9742), AUC (0.9902), and F1 score
(0.9750), from 1161 samples allocated for each of the three individual classes.

Keywords: CT scans; COVID-19; convolutional neural network; MobileNetV1

1. Introduction

The untimely inception of the theme under discussion derives from the existence
of a class of viruses that follows a diversity principle and, as a result, it could be found
both in humans and various animal species, termed coronavirus. Particularly, the SARS
(Severe Acute Respiratory Syndrome) class emanated a pandemic that led to a rudimentary
increased number of infected people, where about approximately 8000 Chinese patients [1]
were subjected to the disease during the same period. Since 2004, no more such cases
have been reported, until 2012, when a new coronavirus made its presence felt, developing
the MERS (Middle East Respiratory Syndrome) class in this way. By 2019, approximately
2500 such cases have been announced with a fatality rate of 30% [2]. At the end of 2019,
China reported a continued increase in such pneumonia cases in the city of Wuhan, Hubei
Province, with such a nature that it could be determined as a new betacoronavirus in
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2020, named SARS-CoV-2 by the International Committee for Taxonomy of Viruses, due
to genetic analysis, rapidly spreading COVID-19 disease [3]. This novel disease, namely
COVID-19, is cataloged as a major factor of an infectious pandemic by the World Health
Organization (WHO). Concretely, the total global cases of over 30.6 million, claiming
950,000 lives, have made COVID-19 as prevailing, whereas nations have been looking for
ways to contain its spread [4]. All these reports define the seriousness of the situation from
the very beginning and derive the need for intervention in this context.

Frequently, lung infections caused by various viruses reveal common symptoms in the
early stages of the disease, which can vary from one patient to another. The most common
clinical manifestations of the infectious diseases of COVID-19 and influenza pneumonia
are fever, dry cough, and fatigue [5,6], which denotes gravity in the possible states of the
patients. Ideally, the mitigation of this severity comes from an early identification. At
the current stage, different methods work on this mechanism, as confirmed by diagnosis.
Although various PCR methods, such as RT, are the most specific methods for the diagnosis
of viral pneumonia (their sensitivity is not optimal for all viruses). Nevertheless, the most
recent studies are showing us continuity in the need for other additional methods, besides
those previously specified [7].

From a strictly medical perspective, the idea of the seriousness of the patient’s con-
dition is emphasized once the patient comes into contact with the current illness. More
specifically, the main CT features are bilateral multifocal ground-glass pulmonary opacities
overlapping consolidation, bronchiolar wall thickening, rounded opacities, and interlob-
ular septal thickening [8]. In a specific case (Figure 1), the axial-computed tomography
of the chest shows bilateral multifocal ground-glass opacities represented by red arrows,
peribronchial interstitial thickening (arrow B), and reticular opacities (curved arrows; B).
Pulmonary opacities with ground-glass appearance are most common and are mainly
seen as bilateral and multifocal opacities with peripheral and posterior distribution. Pure
consolidations are less common and may be seen later in the course of the disease or at
older ages.

Figure 1. Chest radiographsof a 46-year-old female patient with fever and dry cough [9]. Axial
chest computed tomography shows bilateral multifocal ground glass opacities (arrows; (A,B)),
peribronchial interstitial thickening (arrowhead; (B)) and reticular opacities (curved arrows; (B)),
consistent with coronavirus disease 2019 pneumonia.

The stage immediately following the one of identifying the problem is constituted by
a proposal of the solution. In this particular case, the root of the solution is the medical
analysis. Recent studies have shown that chest CT has a high sensitivity for early detection
of pneumonia [10–13]. Combining RT-PCR and chest CT may improve the sensitivity
and specificity for diagnosing clinically suspected cases, such as COVID-19 [14,15]. This
assortment, alongside the other diagnostic methods [16] for COVID-19 detection, is a
common and effective approach. RT-PCR is widely used for detecting the presence of viral
RNA, including that of the SARS-CoV-2 virus responsible for COVID-19. In other words,
integrating multiple diagnostic techniques can enhance the overall accuracy, sensitivity,
and reliability of COVID-19 testing.

Furthermore, the starting point, which, more precisely, ensures the pronouncement of
a solution, is represented by the field of medical imaging [17]. This possesses an essential
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role in the diagnosis processes of patients, helping doctors to make decisions in this context.
On the side of parallelism, as machines become more and more advanced and healthcare
careers are in ongoing development, more and more data in the form of medical images
are generated, among which computer tomographies are distinguished. Analyzing these
huge amounts of medical data requires quite a long time for medical professionals. From a
deeper perspective, this analysis mechanism can produce erroneous or biased results due
to different degrees of experience, knowledge, and other factors that the experts themselves
possess. In other words, the solution to the proposed problem can be extended to a higher
level where state-of-the-art techniques are present, making a mapping from the medical
area to the AI zone [18].

Therefore, a strategic approach is constituted by corroborating the problem raised
with other domains. Deep learning (DL) techniques are often integrated into this field with
promising results in various medical applications such as segmentation and registration of
information from patient data [19]. DL is broadly used in various domains, such as finding
abnormalities, object detection, and cataloging in the biomedical area using pre-trained
or personalized models [20]. Considerable interest in the medical field has been given,
especially to CNNs, proposing to solve problems associated with the segmentation part of
medical imaging [21].

This paper proposes a model that can assist medical professionals in the rapid and
accurate identification of consequences of lung diseases, namely COVID-19 and viral
pneumonia, commencing from a perspective based on [22]. Simultaneously, it is desired
to present a different approach to this topic via the meticulous technique of research,
implementation, and analysis of the results. More precisely, this work includes several
general current approaches, achieving a correlation between them in such a way as to arrive
at valid and relevant results and to reflect a rich methodology. Moreover, besides the goal
of proposing a solution to the addressed problem scrupulously, a didactic illustration at the
approach level will be shown.

The emphasis is on a beginning that derives from the origin of the clinical data, which
represents the foundation of the proposed solution. In the medical setting, computed
tomography (CT) has proven to have a degree of effectiveness quite high compared to
other clinical data of the patients, taking an accurate diagnosis as the point of view [23].
Accordingly, there is a desire to develop and conceive diverse methods to combat these
negative effects. Among the many existing methods, artificial intelligence applications
based on deep learning stand out. Thus, integrating DL techniques in the medical imaging
field can solve many shortcomings.

From an architectural point of view, regarding the current piece of work, the structure
of the paper is divided into four important points. The chapter associated with the introduc-
tion involves, in the first instance, a short history that shows how the beginning of the topic
under consideration appeared, wanting to emphasize the need for continuous involvement
in this subject. This new emerging problem is correlated with medical benchmarks such as
diagnostic methods and pulmonary diseases, thus showing the slight shortcomings and
methods of improving diagnostic systems, a fact that justifies the possible corroboration
of the medical field with that of artificial intelligence. The quintessence of this topic is a
medical synthesis that reveals the degree of involvement that must be granted. The second
chapter has a more descriptive role regarding the foundation of the developed model that
is materialized by the medical data. It focuses first on how the data were prepared for
building the model. Once we have the necessary data, the next stage described is that given
using the generic architecture approach for binary and multi-class classification. It also
introduces the work methodology that denotes different changes to the construction of
the model or certain informative decisions such as the number of epochs used. The last
chapter refers exclusively to the results obtained, attributing to the related methodology,
as well as the obtained conclusions, corroborating our personal opinions regarding them,
are presented.
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2. Materials and Methods
2.1. Data Collection and Pre-Processing

The dataset could be equated as an essential component in the use of artificial intel-
ligence techniques for various infectious disease detection and diagnosis. It consists of
data collection that includes relevant information about patients, presenting a clinical or
epidemiological character, as in the current research, aiming, particularly, at identifying
patterns associated with various infectious conditions using their size and diversity.

Throughout the current research, four datasets were integrated into the development
process of the models. The desire was to validate the results obtained in a larger area. It is
important to mention that not all samples from each were used, considering the limited
computational sources and their vast size. As a general approach, during the development
of the models, different quantities of samples were used, with these being added gradually
for the training. In other words, the size of the databases was varied and they were used to
analyze the results of the obtained models step-by-step in the specified context. Broadly,
a very relevant aspect is the quality of the database. The number of classes for each is
presented in Table 1. The essential characteristic of these is authenticity, to which validity
could be also added, which is the most fundamental thing when it comes to such models.
Retrieved from other scientific works, the databases are presented as follows:

• CT-COV19 [22]—via IRB approval, CT-COV19 is a dataset of approximately 13,000 non-
contrast lung CT scans in which chest cavity volume reconstructions are set at a slice
thickness between 0.3 and 1 mm;

• COVID-19-CT [24]—all CT scans are classified into novel coronavirus pneumonia
(NCP) due to the SARS-CoV-2 virus, common pneumonia, and normal controls being
available globally to help clinicians and researchers fight the pandemic, where COVID-
19 is making its presence felt;

• COVID-CT [25]—contains 349 CT samples belonging to 216 patients diagnosed posi-
tive for the COVID-19 virus and 397 CT images, with a negative diagnosis for COVID-
19 having origins in bioRxiv and medRxiv servers;

• SARS-CoV-2 Ct-Scan-Dataset [26]—contains 1252 positive CT scans for SARS-CoV-2
(COVID-19) infection and 1230 CT scans for patients not infected with SARS-CoV-2,
totaling 2482 samples collected from real patients in hospitals in Sao Paulo, Brazil.

Table 1. The number of classes for datasets.

Dataset Nr. Category Class

Name Classes COVID Non-COVID Pneumonia Normal

CT-COV19 3 ✓ x ✓ ✓

COVID-19-CT 3 ✓ x ✓ ✓

COVID-CT 2 ✓ ✓ x x

SARS-CoV-2 Ct-Scan 2 ✓ ✓ x x

It should be noted that within the datasets presented above, the data are stored in
the form of PNG format. In other words, they had already gone through certain stages of
processing until the moment they were proposed for research. More precisely, their origin
is from a 3D volumetric module, where there is a variety of slices. The most significant ones
were chosen and proposed, hence their presentation mode, namely 2D. Thus, the algorithm
will focus only on a 2D approach. A more advanced approach in the sense of designing a
system that starts from the patient’s original data, checking the most relevant slices for the
patient’s diagnosis, would be interesting [27]. Thus, the input of the algorithm would be
volumetric data, at which point there is a selection criterion of the most significant slices
to achieve a correct diagnosis. This is where 3D neural networks for training come into
play. Broadly, using 3D CT scans for COVID-19 detection can be beneficial in certain cases,
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but it also comes with its own set of challenges and considerations. Three-dimensional
CT scans provide a wider spatial information about the entire volume of the organ being
scanned. This can be especially important in medical imaging tasks where understanding
the three-dimensional structure of the affected area can contribute to better diagnosis. At
the same time, the sensitivity could be improved. Three-dimensional CNNs can potentially
capture more subtle patterns and features that might be missed in a 2D CNN, leading to
improved sensitivity in disease detection. On the other hand, there are several challenges in
this approach. Processing 3D volumes is computationally more demanding than working
with individual 2D slices. Training and inference times may increase, requiring more
powerful hardware. Obtaining labeled 3D datasets for training and validation might be
more challenging than 2D datasets. Annotating 3D volumes is also more time consuming.
Proper preprocessing of 3D CT scans is essential. This includes resampling, normalization,
and handling class imbalance in 3D space. In summary, using 3D CT scans for COVID-19
detection can offer benefits, but it requires careful consideration of the challenges and
the specific nature of the dataset. Experimenting with both 2D and 3D approaches, and
understanding the tradeoffs involved, would be a reasonable strategy.

The rudimentary stage involved in the development of a CNN model associated with
solving a classification problem in the field of medical imaging, especially database analysis,
is a fundamental step for obtaining a high-performance neural network. After rigorous
indispensable scrutiny of the original data, one can proceed to the next step, namely the
preparation of a dataset for training and testing the defined model. Correspondingly, it has
opted for image processing which deals with the investigation and manipulation of images
to extract useful information and improve visual quality or interpretation for the training
process of the model.

In the first instance, the resolution of the image was the starting point in this context.
Data made available at a higher resolution may require more computing power and memory
to process, which may affect the time and performance of the training process. In this work,
it was decided to reset it to 224 × 224 px, a value used often in the literature for this kind
of problem.

In the context of ML, splitting the data into training, validation, and test sets is a
common practice to evaluate a model’s performance while also preventing overfitting.
The most frequent training–testing ratio is the percentage split (80-20)% [28]. However, in
many cases, a separate validation set is also used to fine tune the model’s hyperparameters.
In this paper, the training-testing validation ratio is based on the following distribution:
(60-20-20)%. In machine learning, particularly in the context of supervised learning where
the data are labeled, the stratified split strategy is used to ensure that the distribution of
the target classes remains consistent across different subsets of the data, thus eliminating
the possible appearance of data leakage. In this way, the mechanism of dividing the data
into the categories specified is feasible via the split-folders function in which the data are
distributed automatically into train, validation, and test samples to each corresponding
folder. The test set has an important role in checking the performance of the model, thus
testing it on data that it has not encountered before.

Given the limited number of tomographies, a number given using the medical ap-
proach of not constantly exposing patients to such radiation, a technique can be used to
increase the size and variability of the samples, namely data augmentation. The purpose
of augmentation is to make the model more robust and better generalized by exposing
it to more variations and scenarios that it may encounter in real situations. By way of
explanation, the object of interest in the image, in this case, the lung cavity, can be placed in
different positions so that the algorithm can understand, to some extent, the meaning of
the image, as can be seen in Figure 2. In this way, the pixels in the image undergo different
changes via specific operations, such as rotation at different angles, translation on the
horizontal and vertical axes, shifting, shear range, zoom, and horizontal flip. This approach
used an instance of the “ImageDataGenerator” class from the Keras library, which can be
used to perform data augmentation on images while training a neural network model.
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Thus, the scaling factor was assigned a value of 1/255, so that each pixel is divided by
255 to obtain values in the real range [0, 1], a process also called normalization. For the rest
of the augmentation parameters, depending on the dataset, several values were tested so
as not to degrade the integrity of the data.

Figure 2. A batch of 20 samples from the resized and augmented SARS-CoV-2 Ct Scan Dataset.

A useful approach to enable the convolutional neural model to better identify the
specific features of a class is to extract the region of interest from the hypothesis; in the
present case, it is the CT scans of the lung cavity. At the current literature stage, it is
observed that this approach is less used, preferring to work directly on the entire CT. By
this, the pulmonary cavity is extracted from the entire CT with the area outside it being
removed. Through this approach, the algorithm can focus strictly on the lung surface, thus
increasing the efficiency of the learning process. In a recent study [29], this approach is
detailed in an interesting way, applicable via a segmentation process based on a U-Net
type network. In comparison with this, within the current work, a segmentation function
implemented in Python, without the need to use a neural model, was developed, which
gives speed in image processing. The background in such a sample represents the level of
absorption of X-rays that do not originate from the anatomical structures in the patient’s
body that are being examined. The background appears on the CT image as shades of
gray and can vary depending on multiple factors such as machine settings, noise level,
accuracy of detection, and image processing technology. Thus, this mechanism to segment
the lung area from CT scans to detect areas affected by certain infectious diseases such as
COVID-19, using deep learning, presents a variety of advantages. Firstly, the model could
allow us to focus on relevant and fine-grained features. This can improve the accuracy of
the model and reduce the impact of irrelevant features that can have the effect of hampering
the learning process and, by default, incite confusion in future predictions. From another
perspective, CT scans usually contain a large amount of information, which can make
processing the entire image computationally expensive. By strictly extracting the surface of
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the lung, the amount of data to be processed is significantly reduced, which can improve
the speed and efficiency of the model.

The implementation of this technique was a gradual one. As a first step in the prepara-
tion for extracting the desired area, a Gaussian filter (frequently used as a preprocessing
step in image segmentation, edge detection, and feature extraction [30]) is applied to reduce
noise in the grayscale image, with a mask kernel size of 5 × 5 and a σ parameter equal to
zero, which expresses the standard deviation as shown in Figure 3.

Gaussian filters are often used extensively in various fields, including medical imaging,
artificial vision, and signal processing. In particular, they are frequently used as a pre-
processing step in image segmentation, edge detection, and feature extraction.

(a) (b) (c)

Figure 3. Applying the Gaussian filter to a sample from the COVID-19-CT dataset. (a) Original CT.
(b) Dataset after applying the filter. (c) Probability distribution with zero standard deviation.

After removing the noise and smoothing the image, the next step is to integrate a
threshold value on the images to obtain a binary one. The optimal separation threshold
between background pixels and object pixels was obtained by using the Otsu algorithm [31]
such that the wavelength is determined automatically. By using this method, the need
to set the threshold manually is eliminated. Next, the contours in the binary image are
identified. In this way, all the contours are returned in the binary image and the hierarchy
between them. Since only the largest contour represents the lung cavities, it is selected
by comparing all contours according to their area. To obtain an image showing only the
lung cavities, an initially empty mask is created and the largest contour is drawn on this.
This will fill the inner area of the outline with white pixels and the rest of the mask will
remain black. Finally, a mask is applied to the original image, which will give an image
where all pixels outside the lung cavities are black. A result of such an operation at the
level of available data is visible in Figure 4. The sequence of steps for preparing this data
involves two main operations: extraction and augmentation. The data are extracted and
then augmentation takes place.

From a summary perspective, highlighting the area of interest in the image, and at
the same time transposing it in different scenarios, can lead to highly accurate results.
It is mentioned that all these pre-processing techniques were gradually integrated into
the research, taking into account the desire to improve the models. Using this approach,
namely centralization and concentration of the algorithm strictly on the area of interest
brought improvements to the performance level.

2.2. Convolutional Neural Network Conception Methodology
2.2.1. Binary Classification Approach

From a perspective of the categorization of patients, the conception of an architecture in
the form of a convolutional neural model, concentrated on solving the problem addressed,
gradually starts from the consideration of two classes; the one in which patients suffer from
the infectious disease, COVID-19, who will be included in the “COVID” class, and the one
in which this condition does not make its presence felt on the patients that will constitute
the “Normal” class. Thus, regardless of whether pulmonary characteristics caused by other
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respiratory insufficiency are noticed in a CT scan, the algorithm shall place the patient in the
Normal class. This helps the model to detect unequivocal features of the lung areas affected
by COVID-19. To propose a certain architecture with satisfactory performance, several
versions of the proposed primitive model were passed. Within them, distinct changes were
made at the constructive level of the neural network, videlicet, convolution, MaxPooling,
and fully connected layers. Thus, another type of modification was defined by the value
changes in the layers, either the number of neurons or the percent of dropouts.

Figure 4. A batch of 20 samples from the resized and augmented COVID-19-CT dataset.

In the first instance, we desire to obtain out own model, without using pre-trained
models to gain several important remarks. Appropriately, different structural changes at
the architecture level and their impact on performance could be analyzed. In this manner,
the first elect dataset, more precisely the SARS-CoV-2 CT-scan dataset, is a balanced one
in the number of copies by having 1252 CT scans belonging to the COVID class and
1229 for the Normal class. An equitable dataset is particularly important given the desire to
recognize the differences between the classes. In this case, being an early stage, a simplistic
architecture was proposed, expecting the number of convolutional layers (32 and 64 neurons
convolutional layers) interspersed with those of Max Pooling, dropout (50/75%), and
classification ones (512 and 1 neurons dense layers). In general, an appropriate optimization
algorithm must be specified for the model compilation stage. In this research, we opted for
Adam’s learning rate parameter, which is widely used for its efficiency in various tasks [32].
The by-default value of this learning rate is 0.001 and we decided to not change it during
this theme.

In pursuance of generalizing the model and preventing overfitting, a dropout layer,
following immediately after the convolutional ones, was adopted, with different percent-
ages, namely 50% and 75%, respectively. The two convolutional layers present 32 and
64 neurons in this order, respectively, of which 512 layers were allocated for the linear
classifier. Also, the number of epochs, namely 10, was kept constant during the training
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performed, and the number of steps was not explicitly set; thus, we let the algorithm choose
the best decision concerning the number of samples. After two versions, other techniques
were introduced to help in a more in-depth learning of the model, videlicet, and data
augmentation via various operations at the pixel level in the images and model checkpoint.
These methods were introduced by observing a tendency of the model to reach a possible
state of overfitting. This possibility arises from the achievement of performance units
that are not exactly feasible. In addition, there is also a mechanism by which the model
could not be forced to learn for a rather long period, termed early stopping. During the
version change process, a fine-tuning mechanism was chosen for obtaining a better model.
Therefore, the saved and loaded model was trained on other datasets, namely CT-COV19
and COVID-CT. This procedure is a common technique used in ML to adapt a model,
which has acquired prior knowledge, to a new task or dataset. The basic idea behind this
concept, which translates as fine tuning, is to start with a model that has already been
trained on a large dataset, then continue training on a smaller dataset that is related to the
original but contains some differences, having images as the point of interest that are specific
to the new task. The reason fine tuning is effective is that pre-trained models have already
learned useful features and representations that are transferable to other tasks or domains.
Thus, transferable knowledge can be leveraged to achieve better performance than training a
new model from scratch. Particularly, the best-performed achieved architecture was tested on
the other datasets to analyze the behavior (Figure 5).

Figure 5. The final neural architecture of the binary CNN model.

2.2.2. Multi-Class Classification Approach

Since there are many lung diseases in the medical area, as a result, in this project, a new
class called “Pneumonia” was added to the existing categories (“COVID”, “Normal”), thus
starting from the initial point. This refers to people affected by a normal or viral pneumatic
infection and not that caused by COVID-19. By introducing a new class and bearing in
mind the existence of some similarities between the negative results caused by pneumonia
and COVID-19, a more concrete diagnosis of the patient can be made. In other words,
these three distinct classes enable the development of DL models to classify images of a
pulmonary factor, whether X-rays or CTs, accurately. The previously presented architecture
represents the starting point, towards the construction of other neural models, constituting
a structure that presents a higher degree of generalization. To make this transition to the
classification type level (from binary to multi-class), certain parametric changes must be
taken into account. As a result, at the architecture level, the activation function on the last
classification layer will be Softmax, which reveals an important role [33], and the number of
output neurons shall necessarily increase to three because it is desired to solve a multi-class
classification problem. The best-performed achieved model is presented in Figure 6.
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Figure 6. The neural architecture of the three-class classification CNN model.

2.2.3. Transfer Learning Approach

Predefined models, within convolutional neural networks, are deep learning models
that have already undergone a training process on a large set of data and are available for
use in different tasks that can come from several fields, among which medical imaging
emerges. In other words, these models are often trained on large datasets and are taught
to recognize various features in images such as edges, corners, and various other patterns
that can be used for image recognition and classification requirements.

Several approaches pertain to their use. Surrounded by this theme, the primary step
in using certain pre-trained models was to download the synaptic weights specific to
image and architecture classification problems from the online environment. It should
be noted that only the convolutional part has been preserved, and the linear classifier of
the initial stage has been updated. In more detail, following the development of models
that have achieved satisfactory performance, on a scale that can be proposed as solutions,
architectures have been obtained that possess a high-performance linear classifier. This was
added to the predefined networks, and by comparison, much more satisfactory results were
obtained. More precisely, the most efficient classifier of the initially proposed networks
was chosen and integrated into an existing pre-trained model, revealing another way to
approach the subject.

According to the literature, there is a wide range of such models, some of which have
been specifically used for research purposes on this topic. Throughout the development of
the theme, five of these were used to analyze which model achieves the best performance,
constituted by various evaluation metrics. All tests were performed on the COVID-19-CT
dataset, and the best model was extended to the second available one. Also, the convolution
layers were not trained, only the added classifier. Thus, they were tested in the manner
specified above the following: DenseNet201, MobileNetV1, ResNet50, VGG16, and VGG19.

The goal is actually to generalize the architecture given the limited datasets. During
this stage, in which different pre-trained architectures were used, it was also desired to
integrate a technique through which the locations in the image, where the algorithm learns
the model of the lung cavity affected by the studied diseases, can be visualized more
precisely. This is called class activation maps. Technically, it creates a vector of the same
size as the activation map produced by the last convolution layer of the model. Further, a
traversal of all synaptic weight values associated with the prediction class in the final layer
is required. For each activation map, the contribution in the active class is calculated: a
contribution is added to the initialized vector that is resized to the size of the image, and
a process of normalization of values between 0 and 1 is applied. In the last instance, a
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pigment distribution is administered to the normalized vector so that the detections can
be visualized. Associated with this distribution is the original image, with these being
superimposed. An example of the application of this technique is illustrated in Figure 7.
The red areas are those that the algorithm considers to belong to a certain class. Thus, we
can analyze the coherence of the result provided by the algorithm and the performance
achieved in addition to the numerical or graphic evaluation metrics.

Figure 7. CAM applied to preprocessed COVID-19 CT using VGG16 model.

3. Results and Discussion

In general, the rigorous analysis of the obtained results is of particular importance
because it attests to the validity, in this case, of the proposed model. The first method of
analysis is the verification of the values of the evaluation metrics of the obtained model.
In the current context, this analysis is performed on the test dataset. It derives from the
initial dataset as a result of the division into training, validation, and testing data. The
test data (on which the decisive analysis is performed) are taken from the initial set with a
percentage value of 20%. Given that the algorithm has not encountered this new data before,
its effectiveness is highlighted by comparing the achieved performance and relevance with
other models as well. This way of distribution is interesting, considering that the algorithm
can be put into a new context even though the data are from the same category. Thus, the
good results on the test data give us confidence in the model.

3.1. Binary CNN Model Outcomes

It should be specified that the approach also has an empirical side. Thus, from
the beginning, the methodology was not established in a well-defined way, but several
tests were attempted in order to reflect certain useful conclusions. The inception of the
model design denotes a condensed character because of the non-involvement of some
augmentation operations applied to the original samples so that the pixels do not undergo
certain context changes in the first phase, except for the standard resizing to a resolution of
224 × 224 px.

From a structural point of view, the dropout layer was added, between the convolu-
tional and the classifying part of all models in this background. This layer is particularly
relevant in generalizing the model, being an indispensable component of architecture. In
this case, two percentages usually used were tested on the first two models obtained to
analyze their impact. As a result, a higher percentage of it contributes to a decrease in
performance, as can be seen from Table 2.
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Table 2. The metric values using unaugmented data.

Version and Metrics’ Values

Dropout Loss acc. prec. Recall AUC F1 Score

1.0 (50%) 1.1437 0.7530 0.7183 0.8259 0.8257 0.7683

1.0 (75%) 1.7888 0.6165 0.6111 0.6235 0.6953 0.6172

1.1 (50%) 0.0234 0.9954 0.9952 0.9936 0.9975 0.9943

1.1 (75%) 0.0611 0.9882 0.9751 0.9968 0.9949 0.9858

The outset point is represented by version 1.0, which is built on the SARS-CoV-2
CT-Scan-Datase and whose outcomes are presented in Table 2. Considering the multitude
of changes at the level of the model and the transition from one dataset to another, with
the desire to appreciate their impact, Table 2 contains only relevant ones from which the
essential conclusions can be drawn. The metrics’ values of version 1.0 are reached from
498 samples (251 samples for the COVID class and 247 for Normal). It is followed by
an attempted modification via adding a new 32-neuron convolution layer (version 1.1).
The consequences of the adjustment were verified in terms of metrics and their impact.
This addition led to better results and the number of trainable parameters decreased from
95,571,905 to 22,180,833. Therefore, having fewer training parameters, the performance
of the model is higher (from an accuracy of 75.30% to an 86.14% accuracy). Furthermore,
this new architectural version, namely 1.1, was trained on the other two available datasets,
where the best values for the metrics were obtained on CT-COV19, as can be seen in
Table 2, on the last two rows. Further, the CT-COV19 dataset was transformed into a
binary classification setting, entailing the compression of the initial three classes which
encompassed healthy patients and those diagnosed with pneumonia. Thus, these two
classes are comprehended as one, namely normal patients. In the current stage, the results
are really impressive, but the 99.54% accuracy points to the possible idea of overfitting. So,
the values are notable because they are surprisingly high. Within the COVID-CT dataset,
the results do not reach the ones related to the SARS-CoV-2 CT-scan dataset and CT-COV19
(72.12% accuracy, 76.41% F1 score), but, in this context, the number of samples is really
low. So, the model could have not had time to learn, having a rather limited number
available. On the other hand, a generic idea is concretized and consolidated. In all cases,
the effect of the dropout layer with a higher percentage is to decrease the performance
but increase the generalization of the model as it resulted, also, from the later version 1.2.
Here, two special techniques were integrated via which the model could be saved in an
h5 file (model checkpoint) and the overfitting could be avoided (early stopping). Now,
the data were augmented using specific pixel operations and all metrics have decreased
by about 0.2%. This decrease could be determined, at the same time, by either adding a
new 128 convolutional layer, or adding a new 25% dropout and changing the old one into
25%. Within the third variant, by adding more neurons on the fourth layer, from 128 to
256 neurons, the performance increased. As a result, the number of trainable parameters
has increased surprisingly by 10 times. Also, all the performances improved. In a last
attempt to determine the best model, in addition to the types of structural changes, the
fine-tuning technique was used, passing the saved model through the other two sets of
data available, leading to the performances surprisingly increasing. Otherwise, it is no
longer necessary to build the model sequentially but only to load it. It was noticed that
the CNN network should contain layers with more neurons on the last convolutional ones
and the inception to be with fewer neurons. As a consequence of all these modifications
approached, it achieves the following metrics: 95.15% accuracy, 95.86% precision, 92.20%
recall, 98.82% AUC, and 93.99% F1 score. Taking into account a more meticulous approach
that is accumulated from passing through several datasets, architectural changes, and the
integration of techniques that denote a higher degree of robustness for the model, these
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evaluation metrics seem satisfactory. These tend to reach current evaluation metrics in the
literature [34]

Further, more detailed research on the level of performance is desired. In this way, the
study of the confusion matrix can be chosen. Bearing in mind that the prediction is, in fact,
a subunit number, it is necessary to establish a threshold value for separating the classes.
A method of choosing the optimal threshold value comes from an ROC chart. This is a
graphical representation of the performance of a binary classification model. Moreover, it
could be defined as a plot of the true positive rate versus the false positive rate for different
classification thresholds. To create an ROC plot, the output probabilities of the model
are sorted from highest to lowest and a threshold is set to decide which class an instance
belongs to. By varying the threshold, the true positive rate and false positive rate can be
calculated for each threshold. In general, a standard value can be used, namely 0.5, for the
threshold, but it has been observed that it is much more efficient to use a similar method of
automatically establishing this value, given the results at the level of the confusion matrix.
In Figure 8, the value obtained from the ROC (around 0.0001735) is the best threshold to
predict the classes, resulting in the confusion matrix having the highest values for true
positive and false positive cases.

(a) (b)

Figure 8. The results of the binary model proposed on the COVID-19-CT dataset. (a) ROC plot.
(b) Confusion matrix.

3.2. Multi-Class CNN Model Outcomes

The immediate transition of an architectural nature only implies certain parametric
changes and, at the same time, the revision regarding the use of databases, bearing in
mind the fact that a three-class classification problem must be solved which arises from
the gravity of the problem. Therefore, at the level of the CT-COV19 dataset, the original
division of classes was returned, separating, in this way, pneumonia and healthy patient
samples. In general, within this approach, it was decided to keep the same methodology as
in the previous version. Certainly, there are some differences. For compiling the model, the
loss is now categorical, not binary cross-entropy anymore. After adopting all the necessary
changes, synthetically, at an approach level, the first model obtained here on the CT-COV19
set, which achieved a performance of a 92.26% accuracy on testing from the 1252 samples,
was transferred further to the COVID-19-CT, where the entire architecture with synaptic
weights was discarded. Within this dataset, there are 2700 copies equally distributed for
each class, therefore possessing 900. The metrics’ values are good for such a quantity of data,
reaching a 96.78% accuracy, 96.74% recall, and 96.83% F1 score. Once the initial architecture
was tested on the new dataset, the idea of the architectural modification directly on the
h5 file was followed. In other words, it opted to add a dropout layer between the linear
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classifier and the convolutional sequence straight into the discarded file. This technical
idea is very useful for increasing the training speed and consolidating the knowledge
of the model. The generalization of the model can be improved via a repeated training
process, as our brain is used to. Once the model is saved in such a file, it is possible to opt
for adding new layers and resuming the training process so that new knowledge can be
acquired and old ones can be deepened, and by adding techniques such as early stopping,
overfitting does not become an integral factor for the model. So, the percentage of the
dropout layer is 50%, and a decrease in performance was observed by approximately 0.02%,
which is expected considering the increase in generalization. Last but not least, based
on the accumulated experiences, a new architecture was built, wanting to obtain higher
performances because the dataset is wider. The latter proved to be the most efficient and
the best from the point of view of all the evaluation methods of the model, namely 1.4.2.1,
which can be seen in Table 3.

Table 3. The metric values of multi-class models

Model Metrics’ Values

Version Loss acc. prec. Recall AUC F1 Score

1.4.1.0 0.02139 0.9226 0.9267 0.9207 0.9861 0.9263

1.4.1.1 0.0923 0.9678 0.9692 0.9674 0.9963 0.9683

1.4.2.0 0.3257 0.9300 0.9324 0.9293 0.9792 0.9308

1.4.2.1 0.1324 0.9533 0.9596 0.9511 0.9939 0.9554

Thus, after a multitude of experiments and various attempts, this architecture was
obtained, namely version 1.4.2.1. The way of conceiving such convolutional structures is
interesting, opting for the sequential approach. This method is very beneficial due to the
control over the entire model. The method of adding layer by layer can lead to a beneficial
gain of experience by analyzing the results step by step.

In Figure 9, all the layers of the previously specified model are presented. The first
part is represented by the sequence of 2D convolutional layers with those of MaxPooling. It
can be noted that the most training parameters for this section of the network are on the last
layer, due to the fact that it also has the most neurons. Then follows the dropout layer so
that the algorithm forgets part of what it learned to achieve classification within the dense
type layers, where there is another such layer for dropping knowledge. This structure for
an image classification problem can be extended to several other partial study cases, due to
the flexibility of CNN models.

The final model from this stage must be meticulously analyzed considering the results
provided, which is visible in Figure 10. The training curve and the loss curve give the linear
change along the 10 epochs in the training and validation stages. What is essential here is
the convergence of the algorithm which seems to be almost reached. Also, the confusion
matrix thus involves a new label associated with a patient suffering from pneumonia. On
the main diagonal, all the correctly detected cases can be found.

3.3. Transfer Learning Model Outcomes

For this stage, we chose to change the convolutional part using a predefined net-
work. So, the transferable character refers to the fact that a combination is made between
what already exists in the literature and what has been developed so far.
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Figure 9. Best performing sequential multi-class model.

(a) (b)

(c)

Figure 10. The results of the multi-class model conceived on the COVID-19-CT dataset. (a) Training
curve. (b) Loss curve. (c) Confusion matrix.
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The initial stage starts with a sample of 15,000 copies that the COVID-19-CT database
possesses by using DenseNet201. In this case, via the architectural changes, it was observed
that reducing the number of neurons leads to better performance, with the model achieving
an accuracy of 94.67%, a precision of 94.69%, and an F1 score of 94.65% from 3000 samples,
which represent the test data. Next, more samples were introduced, reaching 17,397. So,
the 20% test data become 3483. In this way, several networks were introduced for analysis:
ResNet50, VGG16, VGG19, and MobileNet.

An interesting approach in the case of using such models is the fact that data pre-
processing methods can be used. These models contain specific functions that perform
different operations at the pixel level. An example of samples processed by such network
operations can be found in Figure 11. In the attached figure, once the extraction technique is
performed, the processing stage corresponding to the VGG19 network is also applied. This
led to an increase in performance, from an accuracy of 96.76% to 97.70% out of 3483 samples.

Figure 11. Pre-processed data using VGG19 pre-trained model.

During this stage in which the transfer learning technique was used, different existing
models were tested, wanting to highlight the one that achieves the best performances. The
results of the evaluation metrics for each model are presented in Table 4. These metrics
are obtained from the test data specified above, so the number of samples reaches up to
3483 for each class.
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Table 4. The metric values for pre-defined models

Model Metrics’ Values

Version Loss acc. prec. Recall AUC F1 Score

DenseNet201 0.2193 0.9467 0.9469 0.9460 0.9870 0.9465

MobileNetV1 0.1007 0.9615 0.9635 0.9612 0.9970 0.9623

ResNet50 0.0826 0.9701 0.9707 0.9699 0.9975 0.9750

VGG16 0.0831 0.9676 0.9686 0.9653 0.9978 0.9669

VGG19 0.0855 0.9758 0.9713 0.9710 0.9970 0.9707

All the architectures present satisfactory values and thus, a justified differentiation is
desired via an analysis at the detection precision level feasible by using the CAM technique.
In the literature, one can observe the tendency to skip this step, leaving the evaluation of
the model in principle to the numerical metrics. Using this mechanism, the algorithm’s
learning mode can be accurately visualized. Struggling with a problem based on medical
imaging, it must be visualized if the algorithm tends to learn the exact locations of the lung
anomalies caused. Thus, we desire to identify a network that possesses precise detection.
Surprisingly, such a network is not so used in the context of the current theme. Among
all the models designed, the one based on the MobileNet network stood out, due to the
precise detection of the features in the image, as can be seen in Figure 12, compared, for
example to ResNet50 and VGG19. It can be observed that this model is the only one that
focuses strictly on the pulmonary cavity, which is also the object of the study. Instead, the
other networks tend to focus on the entire area of the cavity, but not in as much detail as
the MobileNet model.

Having chosen the MobileNet network, the last step in obtaining an efficient and
applicable model is ensuring convergence. Throughout the training, a tendency of the
model to a longer training to reach convergence was seen. So, at the level of the training
process, 20 epochs were chosen with the aim of reaching the convergence of the algorithm
compared to the models presented previously, where the possibility of continued learning
by the algorithm is observed. From a structural point of view, the classifier contains two
layers of 512 neurons each, and also the last output possesses three. This choice was made
on the basis of some experiments in which we attempted to add more dense-type starts
with 1024, respectively 512 neurons, starting from the initial proposed model related to the
previous chapter (the multi-class model). It was observed that the results are better based
on fewer neurons divided into two layers. The dataset is made up of COVID-19-CT, with
3483 samples available for analysis. The performances are quite impressive considering
the number of test samples, namely 0.0751 loss, 97.44% accuracy, 97.58% precision, 97.42%
recall, 99.70% AUC, 97.50% F1 score. By comparison with the most recent studies [35], the
proposed model is a little lower in terms of the values of the evaluation metrics, but it can be
distinguished by the performances achieved at the level of a multitude of other evaluation
methods and by the impressive detection precision rendered using the CAM technique.
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(a)

(b)

(c)

Figure 12. Applying CAM over samples. (a) MobileNetv1, (b) ResNet50, and (c) VGG19.

Also, the analysis of the final result cannot be missing to demonstrate the effectiveness
of the model. The training curve and the loss curve ensure the convergence of the algorithm,
and the confusion matrix shows us the high number of correctly detected samples, as could
be seen in Figure 13.
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(a) (b)

(c)

Figure 13. The results of the final proposed CNN model for detecting and diagnosing patients.
(a) Training curve, (b) loss curve, and (c) confusion matrix.

4. Conclusions

The main contribution of this paper is to develop a new CNN model as a diagnostic
tool for medical staff in the context of a clinical problem associated with the consequences
of lung diseases, among which COVID-19 and viral pneumonia could be mentioned.
On the other hand, it is also desired to present a different approach by integrating a
combination of several current techniques in the literature, to illustrate a more complete
approach to obtain relevant and reliable results. Encompassed by the many existing
methods for such an issue, artificial intelligence applications based on deep learning stand
out. Thus, integrating DL techniques in medical imaging can solve many shortcomings.
Methodologically, starting from a simple architecture via the layers, a model based on the
pre-trained MobileNet network was developed, which achieves a superior performance
given by an accuracy of 97.44%, which is a satisfactory value along with other evaluation
metrics. High sample numbers significantly improve the algorithms’ ability to learn
patterns, especially in identifying lung anomalies during model development. This is
supported by data augmentation, which provides the algorithm with different contexts
for the objects of interest in the image, which, for this theme, is the pulmonary cavity. The
model’s effectiveness relies on maintaining the integrity of the image, ensuring that useful
information is not lost. The design involves rigorous analyses to ensure its application. A
lung cavity extraction technique allows for focused learning on the area of interest, leading
to increased evaluation metrics and faster learning. The model’s results can also be analyzed
using the CAM technique, enhancing its efficiency. This approach is crucial for achieving
better results in medical imaging. More precisely, the areas based on which the algorithm
performs classification can be found outside the area of interest. From an architectural
perspective at the level of the neural network, it is better to insert more neurons on a
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certain layer, thus achieving their condensation which allows for the number of training
parameters to increase and the values of the metrics as well. A special role is played by
the dropout layer, which decreases performance but increases generalization. Another
relevant finding is based on the effectiveness of pre-trained networks. Among all the
networks used for the study (ResNet50, DenseNet201, VGG16, VGG19, and MobileNetV1),
the most performing from the point of view of all evaluation methods, including CAM, is
MobileNetV1, which has an impressive CT detection accuracy despite the fact that it is not
often used. The identification process demonstrated a valuable skill in detection precision,
posing potential for further research in the current theme.
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