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Abstract: Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both
surgeons and patients. However, concerning complications include dural tears and neural tissue
injuries. In this study, we aimed to develop a deep learning model for neural tissue segmentation to
enhance the safety and efficacy of endoscopic spinal surgery. We used frames extracted from videos
of 28 endoscopic spine surgeries, comprising 2307 images for training and 635 images for validation.
A U-Net-like architecture is employed for neural tissue segmentation. Quantitative assessments
include the Dice-Sorensen coefficient, Jaccard index, precision, recall, average precision, and image-
processing time. Our findings revealed that the best-performing model achieved a Dice-Sorensen
coefficient of 0.824 and a Jaccard index of 0.701. The precision and recall values were 0.810 and 0.839,
respectively, with an average precision of 0.890. The model processed images at 43 ms per frame,
equating to 23.3 frames per second. Qualitative evaluations indicated the effective identification
of neural tissue features. Our U-Net-based model robustly performed neural tissue segmentation,
indicating its potential to support spine surgeons, especially those with less experience, and improve
surgical outcomes in endoscopic procedures. Therefore, further advancements may enhance the
clinical applicability of this technique.

Keywords: endoscopic spine surgery; neural tissue; image segmentation; computer vision; deep
learning

1. Introduction

In spinal surgery, biportal endoscopic spine surgery (BESS) is a significant advance-
ment over conventional open surgery owing to its advantages [1-3], which include smaller
incisions, reduced muscle and bone damage, less postoperative pain, and shorter recovery
times [4]. High-quality endoscopic equipment markedly enhances image clarity and pro-
vides significant assistance to surgeons during procedures. The increased magnification in
modern endoscopy allows for the more detailed visualization of critical structures, further
enhancing surgical precision. However, despite these advancements, complications, such
as dural tears and neural tissue injuries, persist and pose significant challenges during
surgery [5,6]. These complications are particularly common among younger surgeons who
have not yet reached the learning curve. Among these, dural tears remain the most common
and significant complication of endoscopic spinal surgery [5]. The rate of dural tears is
reported to be approximately 2.7% [5]. These tears are often managed during surgery by
suturing or sealing with specialized products. However, if unnoticed, patients may experi-
ence postoperative headaches, nausea, prolonged bed rest, and increased hospitalization
and, in severe cases, may require revision surgery. The steep learning curve associated with
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these complications further limits their widespread clinical adoption, necessitating more
experience and skills from surgeons.

Recently, the incorporation of artificial intelligence (Al) into healthcare has been
promising, particularly in medical imaging analysis. Deep learning, a subset of Al, has
demonstrated remarkable performance in clinical diagnosis and treatment owing to its
self-learning capabilities and the ability to extract key features from large datasets [7-9].
Semantic segmentation, which is one of the most actively studied fields in computer vision,
classifies each pixel of an image into a predefined class. Architectures such as fully convolu-
tional networks (FCN), DeepLab, and Mask R-CNN have been developed and have shown
promising results for image datasets comprising common objects [10-12]. Studies have
demonstrated the effectiveness of deep learning-based segmentation in various medical
imaging domains, such as retinal vessel segmentation, tumor detection [13], and instrument
tip recognition in spinal surgery [14]. These studies established the foundation for our
approach by illustrating the potential of U-Net and similar models for precise segmentation
in challenging imaging scenarios [9,13,15].

Despite these advancements, research on the application of deep learning in spinal
endoscopy remains limited. Given the critical need to minimize complications, such as
dural tears and neural tissue injuries, it is necessary to develop and implement deep
learning algorithms for neural tissue recognition in spinal endoscopy. In particular, U-
Net and its variants have been widely adopted in biomedical imaging, particularly for
small datasets [16,17]. FCN have laid the foundation for pixel-wise segmentation, whereas
DeepLab and Mask R-CNN have shown robust performance in handling complex images
and multi-object segmentation [15,17-19]. We chose U-Net owing to its effectiveness with
small biomedical datasets and its capability to capture fine details, thereby making it
suitable for neural tissue segmentation in spinal endoscopy [17,20,21].

The use of deep learning in spinal endoscopy is relatively new. Studies such as
that of Cho et al. [14] focused on the automatic detection of surgical instrument tips
to achieve high precision. However, challenges such as differentiating between neural
tissues and surrounding structures have not been addressed. Studies on other biomedical
images [16,17] have demonstrated the efficacy of U-Net architectures for segmentation,
which motivated our choice of model. This study aimed to explore the feasibility of
deep learning for neural tissue recognition during spinal endoscopy. By establishing a
foundational understanding of how effectively deep learning can identify neural tissues,
we hope to pave the way for advancements in real-time tissue recognition, ultimately
enhancing the safety and efficacy of endoscopic spinal surgery.

2. Materials and Methods
2.1. Dataset

The patient cohort comprised 28 patients, including 21 with lumbar interlaminar
decompressions, 5 with lumbar foraminal decompressions, and 3 with cervical foramino-
tomies. The procedures involved levels 1-2, with six cases involving 2-level surgeries. This
dataset is diverse and encompasses a range of demographic profiles, including sex and
age. Frames were extracted from each video at 10 s intervals, resulting in approximately
4000 frames. Among these, 2942 frames contained neural tissues that could be detected at
the human level. Segmentation labeling was performed using LabelMe by a spinal surgeon
(HL.R.L., one of the authors.) with >4 years of experience in spinal endoscopic surgery.
The dataset was then divided into training, validation, and test sets, with 2307 images
(78%) from 22 patients (79%) and 635 images (22%) from 6 patients (21%). We performed
a threefold cross-validation on the training/validation set, with each fold comprising
1538 images (52%) for training and 769 images (26%) for internal validation.

The patient demographics for each set are listed in Table 1. The training/validation
and test sets did not have overlapping patients, ensuring appropriate validation and
preventing the overestimation of performance measures. This study was approved by the
Public Institutional Review Board (IRB) of the National Bioethics Policy Institute through
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the public e-IRB system. The IRB approval number and approval date for this study is
“2024-1010-001"” and 16 August 2024. The requirement for informed consent was waived
by the IRB because of the retrospective nature of this study.

Table 1. Patient demographics for training/validation and test sets.

Training/Validation Set Test Set
Number of images 2307 (78%) 635 (22%)
Number of patients 22 (79%) 6 (21%)
Age (years) 65.4 +10.7 63.8 +14.1
Sex
Male 9 3
Female 13 3

2.2. The U-Net Architecture

In this study, we trained a deep neural network resembling the U-Net architec-
ture, which has been reported to perform well on the segmentation tasks of small image
datasets [16,17]. We selected a U-Net-like architecture based on its demonstrated effec-
tiveness in medical image segmentation, particularly with small datasets [16,17]. U-Net
variants can effectively handle limited labeled data, making them suitable for application
in spinal endoscopy. As shown in Figure 1, the model had an input shape of (256, 256,
and 3) and an output shape of (256, 256, and 1). An input image first undergoes a down-
sampling process, also known as the left branch, to extract the features. The bottommost
layer or bridge of the network contains the most compressed images with the thickest
layers. Subsequently, an upsampling step, or right branch, was performed to recover the
original resolution and provide a set of segmentation masks. Skip connections at each level
allow for the faster convergence and stability of the deep learning models.
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Figure 1. Architecture of the deep learning model. The model accepts an input of shape (256, 256,

3) and produces an output of shape (256, 256, 1). The number of channels is indicated above each
block. This architecture is a modified version of the original U-Net, designed to reduce the number of
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parameters and enable faster learning.
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2.3. Model Training

No preprocessing methods other than resizing or rescaling were applied. We aimed
to evaluate the performance of the model under raw conditions to provide more gener-
alized applicability across diverse clinical settings. Data augmentation, which consists
of random rotation from —180 degrees to +180 degrees, random flip, and random zoom
from 1.0 times to 1.2 times, was applied only during the training of each fold. No augmen-
tation was applied during the internal validation and testing. Unlike common practice,
where the training set is expanded by fivefold to tenfold, we did not expand the train-
ing set but instead applied random image transforms for each epoch, as illustrated in
Figure 2, allowing the model to experience multiple random variations of the original
training sample.

Training/validation set Test set
(2,307 images, 22 patients) (635 images, 6 patients)
| A | B | C | | Test |
Model training Internal validation Holdout validation

Fold 1 | A B > C = Test |
Fod2| B | Cc [ A | Test |
Fod3| ¢ | A |T>| B |mp] Test |

Training Random Random Random
sample rotation flip zoom

Train epoch #1

Train epoch #2

Figure 2. Threefold cross-validation and data augmentation processes with random transform
are illustrated.

The convolutional layers are randomly initialized with a uniform Glorot distribution,
with batch normalization applied before nonlinear activation [22,23]. The full neural net-
work aimed to minimize dice loss, defined as Equation (1), where indices i and j refer
to the indices of the rows and columns of pixels, and it was trained for a maximum of
100 epochs (the maximum number of epochs was determined empirically because most
trials were terminated before completing 100 epochs owing to early stopping mecha-
nisms) [24]. To prevent overfitting and promote adequate convergence, we incorporated
early stopping and learning rate reduction mechanisms. Hyperparameter optimization was



Bioengineering 2024, 11, 1082

50f13

performed through a random search of 25 trials, and the search space summarized in Table 2
was determined based on initial experimentation and commonly accepted practices [25].

2 XY YijYij

Dice Loss =1 — —
Y, jYij + i

(1)

Table 2. The search space for a random search of hyperparameters is summarized.

Hyperparameter Search Space
Batch size {4,8,12, 16}
Initial learning rate loguniform (0.001, 0.1)
Optimizer {Adam, SGD}
Patience for learning rate reduction {3,4,5,6,7}
Reducing factor for learning rate reduction uniform (0.05, 0.15)

After training the models for each fold in the threefold cross-validation process, we
generated an ensemble model that averaged the outputs of the models and measured their
final performance. All training and testing were performed with TensorFlow 2.14 and
Python 3.11, running on a PC with an Intel(R) Core(TM) i9-14900KF CPU, an NVIDIA RTX
4090 24GB graphics card, and 64GB of DDR5 RAM.

2.4. Performance Assessment

The performance of the trained model was evaluated using various methods, each of
which is described in the following subsections. In this context, a true positive (TP) refers
to the intersecting area of the ground truth and predicted masks, a false positive (FP) is
defined as the region inside the predicted mask but outside the ground truth mask, and a
false negative is the region inside the ground truth mask but outside the predicted mask.
In this study, the Dice-Sorensen coefficient (DSC), Jaccard index (IoU), precision, and recall
were evaluated for the test set. The image-processing time was also measured to assess the
feasibility of the model for analyzing real-time video frames.

2.4.1. Dice-Sorensen Coefficient

The DSC is defined in Equation (2) and is equivalent to the F1-score of a typical two-
by-two contingency table. The DSC ranged between 0 and 1, with higher values indicating
better performance as the TP increased. Notably, the dice loss is a continuous analog of the
negative DSC, and the Dice Loss decreases as the model performance increases.

2x TP
DSC*ZXTP—l—FP—i—FN @

2.4.2. Jaccard Index

The intersection over union (IoU), defined in Equation (3), is the ratio of the intersecting
area of the ground truth and prediction masks to their union. Similar to the DSC, its value
is always between 0 and 1, and a higher score indicates better performance.

TP

U= — -
U= T P T EN

©)

2.4.3. Precision and Recall

Precision and recall are defined in Equations (4) and (5) and are widely adopted to
measure a model’s performance. Given that their values are dependent on the decision
boundaries, the precision-recall curve and the area underneath were also assessed. The
area under the precision-recall curve (AUPRC) is also known as average precision (AP).
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2.4.4. Qualitative Assessment

The model performance was qualitatively assessed by exploring the prediction masks
obtained from the test set images. This analysis aimed to identify the strengths and weaknesses
of our model and discuss strategies for improving its performance in the future.

3. Results
3.1. Quantitative Results

Table 3 lists the sets of hyperparameters that resulted in the top-10 DSC during the
holdout validation with their respective ensemble models. The model that performed the
best was trained with a batch size of 12 on an Adam optimizer, with an initial learning rate
of 0.00136. The learning rate was reduced by a factor of 0.079 when the loss did not decrease
after 7 epochs, and the entire process was terminated when the loss did not decrease after
21 epochs. This set of hyperparameters is in line with commonly accepted practices in
medical image segmentation tasks.

Table 3. Sets of hyperparameters that resulted in top-10 DSC in the holdout validation of the ensemble
model are shown. Boldfaced numbers indicate the best performance among all trials.

Hyperparameters Performance Measures (Holdout Validation)
Trial Batch Size  Initial LR  Optimizer Patience 1}::1:1:: DSC IoU Precision  Recall mAP
1 12 0.00136 Adam 7 0.079 0.824 0.701 0.810 0.839 0.890
2 16 0.00868 Adam 7 0.123 0.817 0.690 0.790 0.845 0.844
3 16 0.00108 Adam 7 0.079 0.815 0.687 0.814 0.815 0.894
4 4 0.01101 SGD 7 0.107 0.814 0.687 0.786 0.845 0.864
5 12 0.00183 Adam 6 0.083 0.809 0.679 0.779 0.842 0.877
6 8 0.09321 SGD 5 0.090 0.809 0.679 0.766 0.857 0.846
7 8 0.03990 SGD 5 0.105 0.803 0.670 0.756 0.856 0.839
8 12 0.00711 Adam 6 0.149 0.798 0.664 0.759 0.842 0.820
9 12 0.01099 Adam 7 0.122 0.797 0.663 0.756 0.845 0.855
10 4 0.00103 Adam 3 0.146 0.794 0.659 0.746 0.849 0.865

Table 4 lists the performance measures evaluated from internal and holdout validation,
including the performance of all three folds, as well as the ensemble model. The holdout val-
idation performance of each fold did not significantly differ from that of internal validation,
and we confirmed that the ensemble model, which is defined by averaging the outputs of
models from each fold, generally outperforms each model. The ensemble model exhibited
a test DSC and test IoU of 0.824 and 0.701, respectively, and a test precision and test recall
of 0.810 and 0.839, respectively. Figure 3 depicts the plotting of the precision—recall curve
and AUPRC of the ensemble model and models obtained from each fold.
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Table 4. Internal validation and holdout validation results of the trial with the best DSC are shown.
Results of models trained from each fold as well as the ensemble model are provided.

Internal Validation DSC IoU Precision Recall AUPRC
Fold 1 0.818 0.692 0.808 0.828 0.849
Fold 2 0.815 0.688 0.821 0.809 0.868
Fold 3 0.810 0.680 0.805 0.814 0.870
Holdout validation DSC ToU Precision Recall mAP
Fold 1 0.827 0.705 0.813 0.841 0.865
Fold 2 0.820 0.694 0.810 0.829 0.871
Fold 3 0.792 0.656 0.806 0.780 0.841
Ensemble 0.824 0.701 0.810 0.839 0.890
1.0
0.8
c 0.6
o
0
O
Q
a
0.4
0.2 A
—— Fold 1 (AUPRC = 0.865)
Fold 2 (AUPRC = 0.871)
—— Fold 3 (AUPRC = 0.841)
— Ensemble (AUPRC = 0.890)
0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 3. Precision—recall curve obtained from the best-performing trial is shown. Narrow lines
indicate the performance of the models trained from each fold on the test set, and the thick line
indicates that of the ensemble model.

3.2. Qualitative Results
3.2.1. Well-Performing Samples

Figure 4 shows a few well-performing test samples. In contrast to the rigid and
relatively crude polygon-shaped ground truth masks generated manually using LabelMe,
the prediction masks tended to be smoother and more descriptive. Moreover, Figure 4a—
show that the deep learning model effectively learned to exclude perineural fat, which
often overlaps with neural tissue. Additionally, the model performed well on challenging
samples, where only a small portion of the neural tissue was observed, as depicted in
Figure 4d,e. Therefore, it can be concluded that the model successfully learned the distinct
features of the neural tissues during spinal endoscopic surgery.
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Figure 4. Well-performing test samples. For each sample, the input raw image, ground truth mask,
overlapped image of the ground truth mask, prediction mask, and overlapped image of the prediction
mask are shown from left to right (a—c). The deep learning model demonstrated superior accuracy and
precision compared to manual annotations. The boundaries predicted by the model are significantly
smoother and more precise. Notably, the model accurately identifies epidural fat tissue as non-neural
tissue, a distinction that manual annotations often fail to make. This accuracy is evident in the
predicted masks (d,e). Despite the neural tissue being only partially visible in the endoscopic images,
the deep learning model accurately detects and represents these small segments of neural tissue. This
highlights the model’s impressive performance in recognizing neural tissue in challenging scenarios.

3.2.2. Poorly Performing Samples

To illustrate the limitations of the deep learning model, we present a few poorly
performing samples in Figure 5. As shown in Figure 5a,b, the model mistakenly classified
some parts of the surgical instruments as neural tissue. Interestingly, the FP regions
often correspond to reflections of the neural tissue, suggesting that the model struggled
to distinguish between the true neural tissue and its reflections, as both display similar
positive features. Similar issues were observed in Figure 5c, where areas with similar
morphology and texture to the neural tissue were incorrectly identified. Additionally, as
shown in Figure 5d, certain surgical instruments with smooth and tubular shapes, which are
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Input raw image  Ground truth mask

typical characteristics of neural tissue, were also misidentified by the model. Furthermore,
the model exhibited reduced effectiveness in scenarios with excessive bleeding, as shown
in Figure 5e, which affected its overall accuracy in these exceptional cases.

Overlapped image - Overlapped image
(Ground truth) Prediction mask (Prediction)

DSC 0.7867  Precision 0.7406
loU 0.6484 Recall 0.8389

- -

DSC 0.7095  Precision 0.6378
lo 5498  Recall  0.7993

DSC 0.69 Precision 0.5316
loU ecall  0.9873

DSC 0.4103  Precision 0.2652
loU 02581  Recall 0.9059

DSC 0.0000  Precision 0.0000
loU 0.0000 Recall 0.0000

Figure 5. Poorly performing test samples. For each sample, the sequence of images is presented from
left to right: the input raw image, ground truth mask, overlapped image of the ground truth mask,
prediction mask, and overlapped image of the prediction mask (a,b). The model misclassified metallic
surgical instruments as neural tissue owing to reflections of neural tissue on the metal surfaces (c).
The model incorrectly identified bloody cancellous bone as neural tissue (d). A white instrument
used for ablation was also misclassified as neural tissue (e). In a highly bloody surgical field, the
model failed to detect neural tissue.

4. Discussion
4.1. Comparison with Related Studies

Our study highlights the potential of U-Net-based deep learning models for segment-
ing neural tissues in endoscopic spinal images. With a test DSC of 0.824 and IoU of 0.701,
our model demonstrated competitive performance, particularly given the complexity of
neural tissue recognition. In comparison to the previous study by Bu et al. [26], which
employed Mask R-CNN for tissue segmentation, our U-Net-based approach achieved a
higher DSC, which indicates superior neural tissue detection capabilities in endoscopic
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images. Despite the more challenging context of neural tissue segmentation, the higher AP
in our model underscores the efficacy of our methodology. In contrast to the aforemen-
tioned study, our deep learning model identified neural tissue, which was more challenging
owing to overlapping features with other tissues; therefore, we consider our results notable.
Additionally, in clinical settings, accurately distinguishing neural tissue from other soft
tissues, such as ligaments and fat, is crucial because they can be confused during surgery.
Given the complexity of this task and the clinical necessity of accurately differentiating
neural tissue from the surrounding tissues, our study is highly significant as a pilot study,
highlighting the feasibility and importance of neural tissue recognition for improving
surgical precision and patient outcomes.

Another study utilized Solov2 and Mask R-CNN for tissue and instrument segmen-
tation in spinal endoscopic images, with the best mean AP of 0.735 at approximately
28 frames per second. Our model achieved a better AP with a comparable computational
burden, although it may not be a fair comparison considering the differences in task ob-
jectives and image resolution. While the 23.2 frames per second achieved by our model
may not be sufficient for real-time videos at 30 fps, it could be effective for videos with
low sampling rates, such as 15 or 20 fps. Therefore, we conclude that the proposed model
can robustly segment neural tissues in real time. Implementing such technology could
greatly benefit less-experienced spinal surgeons by providing enhanced guidance during
procedures, ultimately serving as an educational tool for junior surgeons.

4.2. Clinical Significance

Our qualitative analysis provides valuable insights into the ability of the model
to distinguish neural tissues from other tissues, even in scenarios with limited tissue
visibility. The deep learning model, trained on manually labeled ground truth masks
using LabelMe, demonstrated superior accuracy by correctly excluding fat tissue, which is
often mislabeled as neural tissue in manual annotations, as shown in Figure 4a—c. It also
performed impressively in recognizing small segments of the neural tissue that are only
partially visible in the surgical field. However, the model exhibited limitations, as shown in
Figure 5a,b, where metallic surgical instruments were misclassified as neural tissue owing
to the reflections of the neural tissue on the metal surfaces. This misclassification, although
a shortcoming, indicates that the model has the potential to recognize complex visual
patterns, including neural tissue reflections on metals, which extend beyond direct visual
cues. These observations highlight the model’s advanced capability in feature detection
but also underscore the need for further refinement to reduce false positives associated
with instrument reflections and similar tubular structures.

The high positive predictive value (PPV) demonstrates its effectiveness in accurately
identifying true neural tissues, which is crucial to ensuring that neural structures are not
overlooked during surgery. Our results may not be immediately acceptable for direct
application in routine clinical settings. However, this study represents an early exploration
of applying deep learning to neural tissue detection, a complex task with high variability in
endoscopic images. Even the most skilled surgeons experience fatigue or face challenging
surgical environments, which can increase the risk of errors. Our model aims to provide
an additional layer of support, ultimately serving as a tool to assist surgeons in reducing
preventable mistakes. With further development, including improved model performance
and real-time implementation, we believe that such Al-based assistance can complement
a surgeon’s expertise and contribute significantly to enhancing patient safety. This high
PPV is encouraged, as it reduces the risk of surgeons overlooking critical neural tissues.
Therefore, despite the need for improvement in reducing false positives, as highlighted by
the challenges associated with the negative predictive value (NPV), the model’s current
ability to reliably identify neural tissue remains clinically significant. Its existing capabilities
suggest that the model is sufficiently robust to be considered for deployment in clinical
settings, offering valuable support during surgical procedures.
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Neural tissue recognition during surgery is particularly crucial because many surgical
complications, such as dural tears or direct neural injuries, often occur when surgeons fail
to detect small, partially obscured neural fibers. The ability of our model to recognize these
critical but minimally visible neural structures suggests that it has substantial potential
to reduce such surgical risks. Surgeons are more likely to make fewer mistakes when
neural structures are fully visible and distinct from the surrounding tissues. However,
errors are more common when neural structures are only slightly visible or overlap with
other tissues. The success of our model in these nuanced detection tasks highlights its
significance, suggesting that it can serve as a valuable tool for enhancing surgical accuracy
and reducing the likelihood of complications associated with misidentification.

4.3. Limitations and Future Work

A notable limitation of our model was the low NPV, despite the high PPV. We hy-
pothesized that this issue may be influenced by the loss function used during training.
Specifically, the dice loss places a greater emphasis on TP regions and does not account
for true negative (TN) areas. As a result, TN pixels may not have been adequately trained,
potentially leading to a reduced NPV. Implementing binary cross-entropy loss instead of
dice loss could potentially improve the NPV, although this might occur at the expense
of decreased PPV. Another drawback was the relatively small dataset, which may have
affected the generalizability of the model. The current focus on neural tissues limits their
applicability in more complex scenarios. Enlarging the dataset by expanding the cohort is
the preferred option. However, improvements can also be achieved through enhanced data
preprocessing and augmentation techniques. For instance, histogram equalization methods,
such as global histogram equalization and contrast-limited adaptive histogram equaliza-
tion, emphasize the borders of different tissues more prominently, which can result in the
improved learning of important features. Additionally, extensive augmentation techniques,
such as CutMix and color jittering, may contribute to improved performance because they
aid the model in learning more generalized features [24]. Diversifying label entities not
only confined to neural tissue may positively affect the model’s performance, because it
would be able to learn complicated spatial and temporal relations among different types of
objects, allowing them to “think” more like surgeons, who are also heavily dependent on
anatomical clues, to distinguish between different types of tissue.

We present this study as a baseline reference and plan to extensively investigate other
architectures in the future. Since the publication of U-Net, many of its variants have
emerged and have produced better results in segmentation tasks [17]. Residual U-Nets
manipulate skip connections within the network to enhance gradient propagation, and
the utilization of recurrent convolutional blocks has been reported to improve the perfor-
mance [25,27]. R2U-Net incorporates these two concepts to achieve superior results [20].
Another variant, named Attention U-Net, uses an attention mechanism to aid the neural
network in learning where to “pay attention,” and this method allows the model to have
more explainability, which is a crucial aspect of Al, especially in the clinical setting [21].

In this study, we chose not to include preprocessing steps because our primary objec-
tive was to develop a model that could perform robustly under raw surgical conditions,
thereby increasing its generalizability across diverse clinical environments. By using raw
input data, we aimed to validate the model’s effectiveness without relying on preprocessing,
which might introduce biases or dependencies that are difficult to standardize in practice.
However, in certain scenarios, preprocessing methods such as image normalization, con-
trast enhancement, or noise reduction could enhance the model performance, particularly
for challenging or inconsistent imaging conditions. Future research could explore the
addition of preprocessing techniques for specific applications where standardized imaging
environments are available, and these methods could help to further improve segmentation
accuracy and reduce variability.
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5. Conclusions

Our study demonstrates the promising potential of U-Net-based deep learning models
for neural tissue recognition in spinal endoscopy, achieving a DSC of 0.824 and a Jaccard
index of 0.701. These metrics indicate competitive performance compared to similar medical
image segmentation tasks. The precision and recall scores of 0.810 and 0.839, respectively,
further demonstrate the robustness of our model in accurately identifying neural tissues,
even in challenging surgical environments. While the results are encouraging, further
research is necessary to enhance the model performance and expand its applicability to
diverse tissue types. These advancements could provide significant support to spine
surgeons, particularly those with less experience, and ultimately improve the surgical
outcomes and patient safety during endoscopic procedures.
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