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Abstract: This study presents an advanced method for predicting symptom escalation in chemother-
apy patients using Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks
(CNNs). The accurate prediction of symptom escalation is critical in cancer care to enable timely in-
terventions and improve symptom management to enhance patients’ quality of life during treatment.
The analytical dataset consists of daily self-reported symptom logs from chemotherapy patients,
including a wide range of symptoms, such as nausea, fatigue, and pain. The original dataset was
highly imbalanced, with approximately 84% of the data containing no symptom escalation. The data
were resampled into varying interval lengths to address this imbalance and improve the model’s
ability to detect symptom escalation (n = 3 to n = 7 days). This allowed the model to predict signifi-
cant changes in symptom severity across these intervals. The results indicate that shorter intervals
(n = 3 days) yielded the highest overall performance, with the CNN model achieving an accuracy
of 81%, precision of 87%, recall of 80%, and an F1 score of 83%. This was an improvement over the
LSTM model, which had an accuracy of 79%, precision of 85%, recall of 79%, and an F1 score of 82%.
The model’s accuracy and recall declined as the interval length increased, though precision remained
relatively stable. The findings demonstrate that both CNN’s temporospatial feature extraction and
LSTM’s temporal modeling effectively capture escalation patterns in symptom progression. By
integrating these predictive models into digital health systems, healthcare providers can offer more
personalized and proactive care, enabling earlier interventions that may reduce symptom burden and
improve treatment adherence. Ultimately, this approach has the potential to significantly enhance
the overall quality of life for chemotherapy patients by providing real-time insights into symptom
trajectories and guiding clinical decision making.

Keywords: symptom prediction; deep learning; chemotherapy; symptom management

1. Introduction

Managing symptoms in cancer care is paramount for improving patients’ quality
of life while undergoing treatment. Symptom management strategies aim to reduce the
severity of symptoms and minimize the side effects of cancer therapies, enhancing both
patient comfort and treatment outcomes [1]. The specific symptoms experienced by cancer
patients can vary widely, depending on the type and stage of the cancer, as well as the
treatments administered. Common symptoms include pain, fatigue, nausea, vomiting, and
appetite changes [2]. According to the National Cancer Institute, 20% to 50% of cancer
patients experience pain during their illness or treatment, while fatigue affects between
14% and 96% of patients undergoing treatment [2]. Addressing these symptoms requires
a multidisciplinary approach that leverages evidence-based strategies and the combined
efforts of healthcare professionals [3].
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Previous randomized controlled trials demonstrated the positive impact of symptom
monitoring on the quality of life of patients undergoing cancer treatment [4–6]. Chemother-
apy, one of the most frequently used cancer treatments, targets rapidly dividing cancer cells
but often causes significant side effects, including fatigue, nausea, vomiting, mouth ulcers,
hair loss, and an increased risk of infections [7]. These side effects can substantially impact
the patient’s quality of life and their ability to complete treatment. Therefore, effective
symptom management is crucial to mitigating these adverse effects, improving patient
outcomes, and increasing the likelihood of treatment adherence [1]. Recent studies have
shown that continuous monitoring of patient-reported symptoms can significantly extend
patient survival by enabling timely interventions, early detection of cancer recurrence, and
better management of chemotherapy-related side effects [8].

In recent years, integrating digital health technologies in clinical workflows has
emerged as a promising solution for improving symptom management in cancer care [9].
Home-based telemonitoring was shown to be well accepted by patients with chronic health
conditions [10,11] and older adults [12]. Modern digital health technologies enable real-time
monitoring of symptoms, offer automated guidance to patients and caregivers, and alert
healthcare professionals to worsening conditions, allowing for timely interventions [13,14].
The deployment of such digital systems has shown great potential in addressing the com-
plex and evolving needs of cancer patients, their caregivers, and healthcare providers [15].
However, a significant challenge remains in effectively utilizing patient-reported outcomes
(PROs) to predict symptom escalation and determine when intervention is necessary [16].

Current criteria for identifying when symptom management protocols should be trig-
gered often need to be more specific, leading to uncertainty about when to act [17,18]. To ad-
dress this issue, machine learning (ML) techniques, particularly deep learning models like
Long Short-Term Memory (LSTM) networks [19–21], have shown considerable promise in
predicting cancer symptom trajectories based on sequential self-reported data [22]. LSTMs
are particularly well suited for modeling temporal dependencies in patient-reported data
and, therefore, the detection of patterns that may indicate an impending worsening of symp-
toms [23–25]. In contrast, CNNs leverage spatial feature extraction, making them effective
in identifying symptom escalation patterns within the dataset’s complex structure [26–28].

Previous studies demonstrated the potential of deep learning models, such as LSTM
and CNN, for predictive modeling of patient-generated data [29–31]. This study in-
vestigates both LSTM and CNN models to predict symptom escalation or prognosis in
chemotherapy patients using longitudinal data from self-reported symptom logs. By lever-
aging sequential data over varying time intervals, each model captures distinct aspects of
symptom progression: LSTMs excel in temporal pattern recognition, while CNNs enhance
feature detection and analyses of data with grid-like topology. By enhancing the ability
to predict symptom escalation in cancer patients, we can enable timely interventions and
improve symptom management. Integrating these predictive models into digital health
systems allows healthcare providers to deliver more personalized and proactive care,
potentially improving patient outcomes and quality of life during cancer treatment.

2. Materials and Methods
2.1. Data Collection and Preprocessing

The analysis was conducted using data from the comprehensive Symptom Care
at Home Study [32], which meticulously collected 26,599 records during chemotherapy
treatment for cancer patients. Participants were asked to maintain a daily log of their
symptoms through a technology-based system, ensuring a high level of compliance. For
this study, 12 specific symptoms were collected, including nausea/vomiting, sore mouth,
diarrhea, fatigue, trouble thinking, feeling blue, nervous/anxious, hair loss/weight change,
pain/discomfort, numbness/tingling, trouble sleeping, and fever-related distress.

For each symptom, two metrics were recorded: severity and distress. If a symptom
was not present, both values were marked as zero. For symptoms that were reported,
each metric was scored from 1 to 10, where 10 represented the highest intensity. The only
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exception was fever, where only distress was measured. The overall symptom score was
calculated by summing all symptoms’ severity and distress values, yielding a total possible
score ranging from 0 to 230. This allowed for a quantifiable measure of the patient’s overall
symptom burden. A total of 349 patients participated in this study. The median number
of chemotherapy cycles per patient was three, with a range from one to thirteen cycles.
On average, patients participated in the symptom survey for 78.24 days, with a median
of 81 days and a maximum of 175 days. Data from patients who participated for fewer
than three days, affecting ten patients, were excluded from the analysis. The final dataset
included 339 patients.

Some missing values were observed for the severity and distress metrics across various
symptoms. Linear interpolation was used to address these gaps, estimating the missing
values using data from the same symptom recorded on the preceding and subsequent days.
Finally, a combined ‘Severity + Distress’ score (for each symptom) was calculated for each
day by summing the scores of all reported symptoms. This daily total score was then added
to the dataset. The final dataset was highly imbalanced, with approximately 84% of the
total scores being zero.

To address this imbalance, one approach was to define intervals within the data. By
aggregating data into larger time intervals, we aimed to reduce the frequency of zero scores
and provide the model with a more balanced distribution of the target variable. This
method allowed us to capture meaningful trends across multiple days and improve the
model’s ability to detect changes in symptom patterns.

2.2. Resampling and Interval Creation

The core of this method involves resampling the symptom data into n-day intervals.
For each patient, data were grouped into intervals of 3, 4, 5, 6, or 7 days, and the average
values of the features (i.e., symptom scores) were computed within each interval. This
transformation condenses the daily data into manageable chunks while preserving temporal
trends across intervals.

To ensure sufficient temporal data for each participant, only those with a minimum
time span of n days × 7 intervals were included in the analysis, where n represents the
number of days for interval resampling. Participants with shorter spans were excluded
from the study to maintain consistency in interval-based resampling. In other words,
patients were excluded if they had fewer than 21 days of continuous data for n = 3, and
so on. The dataset was, thus, filtered to retain patients with sufficiently long time-series
data, ensuring that all participants had at least n data intervals available for analysis. For
example, if n = 3, participants must have at least 21 days of continuous data. We selected
interval lengths of n = 3 to n = 7 days based on the goal of capturing both short- and
medium-term symptom trends. Intervals shorter than 3 days, such as 2-day intervals,
were deemed too brief to capture meaningful changes in symptom escalation. Longer
intervals, such as 10 days, risked losing temporal resolution and responsiveness to changes,
as symptoms could escalate rapidly within this period without timely detection

To address missing data points (such as when patients skipped reporting symptoms on
some days), gaps in the resampled intervals were filled by averaging the surrounding valid
intervals. This approach ensures that no significant gaps disrupt the temporal sequence,
which is crucial for training the LSTM model.

A binary response column was created for each interval, where the response was coded
as 1 if the total symptom score for that interval was greater than 0, and 0 otherwise. This
binary classification framework was used to predict whether a patient would experience
symptom escalation in the next interval. Each interval was assigned the response value
of the subsequent interval to transform it into a prediction algorithm (e.g., using data
from intervals 1 to 3, the model predicted whether symptoms would escalate in interval 4).
Figure 1 provides an overview of the steps involved in training and testing the data.
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2.3. Model Architecture: LSTM and CNN Approaches

Two deep learning models were applied to predict symptom escalation: an LSTM
model to capture temporal dependencies and a CNN model to identify spatial patterns
within the symptom data.

LSTM Network: An LSTM network was employed to model the temporal depen-
dencies in the symptom data. The architecture of the LSTM was designed to capture both
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short-term fluctuations and longer-term trends in symptom scores, which are crucial for
accurate forecasting.

- Input Layer: The data were reshaped into a 3D structure suitable for LSTM input
(samples, timesteps, features), a common requirement for LSTM networks to capture
temporal patterns. Each sample corresponds to a single patient record, with symptom
data segmented into intervals of n days to represent sequential information. Each
interval acts as a timestep, capturing the progression of symptom scores over time.
The features dimension represents the various symptom metrics recorded for each
interval, including severity and distress scores for each symptom. The model can learn
temporal dependencies across intervals by reshaping the data into this 3D structure.

- LSTM Layer: The LSTM layer is the core of the model, with 50 units used to capture
the temporal patterns within the data.

- Dropout Layer: To prevent overfitting, a dropout layer was added with a dropout rate
of 0.2.

- Dense Layer: A fully connected layer with a sigmoid activation function was used to
produce the binary classification output (i.e., whether symptoms would escalate or
not in the next interval).

The model was compiled using binary cross-entropy as the loss function, with accuracy
as the primary evaluation metric. The model was trained for 50 epochs with an 80–20 split
for training and testing data. The Adam optimizer was used to ensure efficient and adaptive
learning during model training.

CNN Model: The CNN model was structured to detect spatial patterns in symptom
escalation by processing the data as sequences of symptom profiles.

- Convolutional Layer: A 1D convolutional layer with 64 filters and a kernel size of 3
was applied to capture local patterns within the symptom data sequence.

- Max-Pooling Layer: A max-pooling layer with a pool size of 2 was added to reduce
spatial dimensions and retain prominent features.

- Flatten Layer: The features were then flattened into a vector for processing by fully
connected layers.

- Dense Layer: A fully connected dense layer with 64 units and ReLU activation was
added, followed by a dropout layer to guard against overfitting.

- Output Layer: The final output layer with a sigmoid activation function performed
binary classification to predict symptom escalation.

The CNN model was compiled with binary cross-entropy as the loss function and
used the Adam optimizer. Training was conducted with an 80–20 data split.

The performance of both models was evaluated using several metrics, including
accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic
curve (AUC). These metrics provide a comprehensive view of the models’ ability to correctly
predict symptom escalation, particularly in the context of class imbalance between symptom
escalation (1 s) and non-escalation (0 s). Hyperparameter tuning was conducted using a
grid search, adjusting parameters such as the number of units, learning rate, and dropout
rate to achieve optimal performance.

This study was approved by the University of Utah Internal Review Board (protocol
IRB_00017472).

3. Results

The performance of both the LSTM and CNN models was evaluated across different
interval lengths (n = 3 to n = 7 days). These models allowed for comparisons in how each
approach captured patterns in symptom escalation under varying temporal aggregations.
Table 1 summarizes the performance metrics for each value of n, comparing results across
the two models.
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Table 1. Results for both the LSTM and CNN models are presented across various values of n to
showcase the performance metrics for each interval length.

n Model Accuracy Precision Recall F1 Score AUC

3 LSTM 0.79 0.85 0.79 0.82 0.84

3 CNN 0.81 0.87 0.8 0.83 0.85

4 LSTM 0.78 0.85 0.79 0.82 0.83

4 CNN 0.8 0.86 0.81 0.83 0.84

5 LSTM 0.75 0.83 0.78 0.8 0.79

5 CNN 0.77 0.85 0.79 0.81 0.81

6 LSTM 0.77 0.84 0.82 0.83 0.81

6 CNN 0.78 0.85 0.82 0.83 0.82

7 LSTM 0.75 0.84 0.78 0.81 0.79

7 CNN 0.76 0.85 0.79 0.81 0.8

For the LSTM model, the results show that as the interval length increases, the model’s
accuracy and recall decline, but precision remains stable. Shorter intervals (n = 3) capture
symptom escalation patterns more effectively, providing the highest overall performance.
In addition, Figure 2 shows a comparison of the ROC curve. We observed that AUC values
tended to decrease as the interval length increased, indicating a decline in the model’s
ability to distinguish between symptom escalation and non-escalation over longer time
frames. This decline suggests that the model’s generalization ability weakens as n grows.
Shorter intervals, with higher AUC values, allow the model to capture sharper, more
immediate changes in symptom severity, resulting in better classification performance.
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In contrast, the CNN model also showed superior performance at shorter intervals,
achieving an accuracy of 81%, precision of 87%, recall of 80%, and an F1 score of 83% for
n = 3. While both models demonstrated effective pattern recognition at shorter intervals,
the CNN model consistently outperformed the LSTM model by a slight margin in accuracy,
precision, and recall across most intervals.

The observed decline in model performance, particularly in accuracy and recall, as
interval length n increases may be influenced by several factors. One primary reason
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is the reduction in available training data for longer intervals, which limits the model’s
exposure to diverse patterns of symptom escalation. Additionally, longer intervals may
dilute symptom escalation trends, as they average symptom scores over extended periods,
potentially masking short-term fluctuations indicative of escalation. In contrast, shorter
intervals preserve these temporal dynamics, allowing the model to detect abrupt changes
more effectively. Another factor could be the nature of symptom escalation itself, which
may not follow a steady progression and could vary widely between patients. Thus, larger
intervals might fail to capture subtle but clinically relevant symptom changes that are more
apparent in shorter time frames.

As n increased, the number of training and testing data points decreased, and more
participant IDs were removed due to insufficient time spans. For instance, when n = 3,
there were 8178 training data points and 40 IDs removed. At n = 7, the number of training
data points dropped to 3384, and 74 IDs were removed. This is due to the need for longer
time spans to generate larger intervals, which reduces the number of eligible participants
for training.

Table 2 shows the total number of training data, testing data, and removed IDs for
each value of n (the length of the intervals).

Table 2. Total number of data after applying n interval to each patient ID.

n # of Training Data # of Testing Data (20%) Removed IDs

3 8178 2045 40

4 6142 1536 45

5 4918 1230 51

6 4032 1008 63

7 3384 846 74

4. Discussion

The results of this study underscore the potential of LSTM and CNN in accurately
predicting symptom escalation in chemotherapy patients. The models’ performance was
most robust when using shorter time intervals (n = 3 days). For the LSTM model, shorter
intervals proved especially effective in identifying temporal dependencies, as indicated by
higher accuracy and recall. Similarly, the CNN model performed well with shorter intervals
by leveraging spatial features within the data structure and showed slight improvements
in precision and recall over LSTM. However, as the interval length increased, the model
accuracy and recall exhibited a noticeable decline, while precision remained relatively
stable. This suggests that shorter intervals are more suitable for predicting rapid changes
in symptoms, a common occurrence during chemotherapy treatment.

These findings suggest that the LSTM and CNN models can offer valuable insights
into symptom progression, with each model contributing unique strengths. While LSTMs
are effective at modeling sequential data, CNNs add the capability to detect grid-like
features, which may enhance predictive accuracy in complex datasets. This dual approach
could be adapted across various clinical applications, particularly when continuous patient
monitoring is essential. Implementing these models in digital health systems could provide
automated alerts to healthcare providers, enabling proactive symptom management and
allowing providers to focus more on patients with a high risk for symptom escalation.
This aligns with the growing trend of using digital health tools to enhance symptom
management in cancer care, where early intervention has been shown to improve both
clinical outcomes and patient satisfaction. One challenge faced in this study was the highly
imbalanced nature of the dataset, with approximately 84% of the total symptom scores
being zero. The method of resampling data into n-day intervals helped to mitigate the
imbalance, but the decline in performance for longer intervals underscores the difficulty
of predicting symptom escalation over extended periods. Future research should explore
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additional techniques to address data imbalance, such as oversampling or synthetic data
generation, which could further improve the model’s ability to predict symptom escalation
over varying time intervals.

Table 3 compares results for both LSTM and CNN models across different time win-
dows in predicting symptom escalation. In this analysis, different time windows (n = 3,
4, and 5 days) represent the number of preceding days’ symptom data used to predict
symptom escalation on the following day. By using symptom data from a fixed number
of previous days, the models aim to detect patterns and trends that could indicate an
impending escalation. For instance, with n = 3, the model considers symptom scores from
days i, i − 1, and i − 2 to predict whether escalation will occur on day i + 1. Expanding
to n = 4 or n = 5 includes additional days of history, potentially providing the model with
more context to identify escalation trends.

Table 3. Performance comparison of LSTM and CNN models across different time windows for
predicting symptom escalation on the unbalanced dataset (without resampling).

Days (n) Model Accuracy (%) Class I Predictive Value (%)

3 LSTM 59.6 61.3
4 LSTM 58 65.3
5 LSTM 57.7 68.3
3 CNN 59.1 60.5
4 CNN 56.3 66.6
5 CNN 58.6 61.8

An interesting trade-off emerges with these results: adjusting the class weighting
values in the models could potentially enhance the detection of symptom escalation (Class I
Predictive Value) but would likely result in a reduction in overall accuracy. By increasing
the weight given to positive cases, the models can be encouraged to focus more on detecting
symptom escalations, which is often desirable in clinical or symptom monitoring settings.
However, this comes at a cost, as the models may start to misclassify more non-escalation
cases as escalations, leading to a decline in overall accuracy. This trade-off highlights the
balance that must be struck between maximizing sensitivity to symptom escalation and
maintaining an acceptable level of general accuracy across all cases. Adjusting class weights
could, thus, be strategically applied based on the specific requirements of the application,
favoring sensitivity when escalation detection is a priority.

The relatively low accuracies in Table 3, even with the defined weighting values, can
be attributed to the imbalanced nature of the dataset (16.7% escalation days vs. 83.3%
non-escalation days). This imbalance makes it challenging for the models to accurately
detect escalation instances, as they are heavily outnumbered by non-escalation instances.
To address this, we used a resampling strategy that helped to significantly improve both
overall accuracy and escalation detection by balancing the dataset.

Our results are well aligned with previous reports demonstrating the potential of deep
learning for the predictive modeling of serial patient-generated data [28–31,33]. Despite these
promising results, several limitations should be noted. This study relied on self-reported
symptom data, which may be subject to biases such as underreporting or inconsistencies in
daily logging. Future work could explore integrating objective physiological data [34,35], such
as heart rate or activity levels, and data from electronic health records [36,37] to supplement
self-reports and enhance prediction accuracy. Additionally, this study focused on a specific
subset of chemotherapy patients, and the generalizability of the results to other patient
populations or cancer treatment modalities requires further investigation.

5. Conclusions

This study demonstrates the feasibility and effectiveness of using the LSTM and CNN
models to predict symptom escalation in chemotherapy patients. By applying deep learning to
patient-reported symptom data, healthcare providers can deliver more personalized, proactive
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care, potentially improving patient outcomes and quality of life. Further research should
explore optimizing the models for longer time intervals and addressing data imbalance.

Integrating these predictive models into clinical workflows holds great potential for
enhancing patient care. Real-time symptom monitoring can enable healthcare teams to
intervene early, reducing symptom severity and helping patients adhere to their treatment
regimen. Further research should explore refining these models for even longer time inter-
vals, addressing data imbalance, and adapting the models for broader clinical applications,
thereby maximizing their impact in healthcare and patient management.
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