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Abstract: Background: Whole-Body Diffusion-Weighted Imaging (WBDWI) is an established tech-
nique for staging and evaluating treatment response in patients with multiple myeloma (MM) and
advanced prostate cancer (APC). However, WBDWI scans show inter- and intra-patient intensity
signal variability. This variability poses challenges in accurately quantifying bone disease, tracking
changes over follow-up scans, and developing automated tools for bone lesion delineation. Here,
we propose a novel automated pipeline for inter-station, inter-scan image signal standardisation on
WBDWI that utilizes robust segmentation of the spinal canal through deep learning. Methods: We
trained and validated a supervised 2D U-Net model to automatically delineate the spinal canal (both
the spinal cord and surrounding cerebrospinal fluid, CSF) in an initial cohort of 40 patients who
underwent WBDWI for treatment response evaluation (80 scans in total). Expert-validated contours
were used as the target standard. The algorithm was further semi-quantitatively validated on four
additional datasets (three internal, one external, 207 scans total) by comparing the distributions of
average apparent diffusion coefficient (ADC) and volume of the spinal cord derived from a two-
component Gaussian mixture model of segmented regions. Our pipeline subsequently standardises
WBDWI signal intensity through two stages: (i) normalisation of signal between imaging stations
within each patient through histogram equalisation of slices acquired on either side of the station
gap, and (ii) inter-scan normalisation through histogram equalisation of the signal derived within
segmented spinal canal regions. This approach was semi-quantitatively validated in all scans avail-
able to the study (N = 287). Results: The test dice score, precision, and recall of the spinal canal
segmentation model were all above 0.87 when compared to manual delineation. The average ADC
for the spinal cord (1.7 × 10−3 mm2/s) showed no significant difference from the manual contours.
Furthermore, no significant differences were found between the average ADC values of the spinal
cord across the additional four datasets. The signal-normalised, high-b-value images were visualised
using a fixed contrast window level and demonstrated qualitatively better signal homogeneity across
scans than scans that were not signal-normalised. Conclusion: Our proposed intensity signal WBDWI
normalisation pipeline successfully harmonises intensity values across multi-centre cohorts. The
computational time required is less than 10 s, preserving contrast-to-noise and signal-to-noise ratios
in axial diffusion-weighted images. Importantly, no changes to the clinical MRI protocol are expected,
and there is no need for additional reference MRI data or follow-up scans.

Keywords: deep learning; segmentation; Whole-Body Diffusion-Weighted Imaging (WBDWI); metastatic
bone disease; multiple myeloma

1. Introduction

WBDWI is an increasingly used non-invasive technique for detecting and assessing
response to systemic treatments in patients with bone disease resulting from advanced
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prostate and breast cancer [1–4]. Furthermore, it is now recommended as first-line imaging
for evaluation of multiple myeloma (MM) [5] due to its high sensitivity. The technique is
generally well-tolerated by patients and facilitates long-term monitoring without radiation
burden [6]. The technique offers excellent contrast between healthy and diseased bone
that allows qualitative assessment “at a glance” of cancer spread across the skeleton; high-
b-value images (>800 s/mm2) typically demonstrate hyper-intensity in regions of bone
disease compared with background tissues. Acquisitions of images at two or more b-values
also enable calculation of full-body maps of the Apparent Diffusion Coefficient (ADC),
which may reflect tumour cellularity [7]. Evidence suggests that an increase in tumour
ADC following treatment indicates a positive response [8,9].

Unfortunately, due to the influence of T1/T2 weighting, proton density, and coil sen-
sitivity, it is difficult to compare signal intensities of acquired diffusion-weighted images
throughout the course of treatment in an individual patient, or indeed compare signal
intensities of images acquired from different scanners and/or vendors [10,11]. Furthermore,
signal inhomogeneities across the imaging field of view (a “bias field”) and non-uniform
signal between anatomical acquisition stations on WBDWI could degrade the accuracy of
approaches for automatic tumour delineation of these datasets [12]. Signal normalisation
techniques could improve clinician assessment of bone disease from WBDWI by improv-
ing lesion localisation, diameter measurement, and assessment of post-treatment changes
by standardising the display of high-b-value images. Moreover, such techniques could
facilitate the development of accurate automated tools for delineating bone diseases from
high-b-value images [13,14], which would provide fast access to quantitative response
biomarkers (ADC and lesion volume) in a deleterious disease for which there are no cur-
rently approved ways to assess early treatment changes. Ultimately, this could potentially
reduce morbidity and improve survival rates [15].

Jager et al. [16] introduced a new method for intensity signal standardisation from MRI
data using properties of all acquired images jointly (e.g., T1- and T2-weighted images). The
method employed a non-rigid registration algorithm between the joint probability density
distributions of a newly acquired image and a reference MRI dataset. However, we sought
to develop a fast, WBDWI-only approach, as mis-registrations between diffusion-weighted
imaging and other contrasts (caused by magnetic field inhomogeneities and the use of
echo-planar imaging in WBDWI [17]) prohibit the use of joint histograms. Blackledge
et al. [18] proposed an algorithm that might improve the standardisation and interpretation
of WBDWI, which synthesises new contrast by combining voxel-wise ADC with voxel-wise
estimates of the ADC uncertainty (thus removing the need for high-b-value images). The
authors demonstrated initial results in a cohort of 16 patients with advanced prostate cancer
(APC) but noted the limitation that protocols must include at least three b-values, which
can make the approach difficult to adopt at some centres. Ceranka et al. [19] proposed
a new method for signal intensity normalisation between baseline and follow-up whole-
body MRI. The method involved two steps. (i) A 3D T1-weighted follow-up image was
registered to the baseline image using B-spline deformable registration, and (ii) histogram
matching was applied to the follow-up image to normalise signal intensity. The authors
successfully applied this approach to a cohort of healthy volunteers and patients with APC
(10 whole-body MRIs). The computational time of the registration step was 30 min, and no
external validation datasets were used for testing.

Despite these recent advances, there remains a lack of clinical tools for inter-scan
signal intensity normalisation based on WBDWI alone. We therefore aimed to develop an
algorithm that met the following requirements: (i) fast computation time (within seconds),
(ii) operates on WBDWI data alone, (iii) does not impact the underlying contrast-to-noise
ratio (CNR) of images, and (iv) can be used on a single dataset with or without the
availability of a follow-up scan. Our methodology is inspired by the approach taken
by Padhani et al. [20], who normalised the signal intensity of high-b-value images by
comparing against the signal intensity within muscle, kidney, and spinal cord signal
following manual delineation of these regions. The authors derived the results from a
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cohort of 16 patients without metastatic bone disease, 21 patients with untreated metastases
of breast cancer, and 12 patients with myeloma. However, their approach required manual
delineation of anatomical regions, which is a significant barrier to clinical implementation
of the technique. We have developed a fully automated workflow that leverages deep
learning to automatically delineate the entire spinal canal on WBDWI and subsequently
uses the pixel intensities within this region for histogram matching across cohort studies.

2. Material and Methods
2.1. Patient Population and MRI Protocol

Initial training and testing of our spinal canal segmentation model was conducted in
a cohort of 40 patients with confirmed APC (Dataset (1)); the training/test split for these
patients was 32/8. A further “external” validation dataset comprised 85 patients with
confirmed APC from three cohorts (Dataset (2) = 33 patients, Dataset (3) = 22 patients, and
Dataset (4) = 18 patients), and 12 patients with confirmed diffuse MM from a single cohort
(Dataset (5)). Patients with confirmed APC underwent baseline and follow-up WBDWI
scans and patients with MM only had one WBDWI scan before treatment initiation. As a
result, the total number of studies in the training, testing, and external validation cohorts
were 64, 16, and 207, respectively. All images were acquired at a single imaging centre
except Dataset (3) and 7 patients from Dataset (2), which were performed at two additional
imaging facilities.

WBDWI images were acquired using a 1.5 T scanner (MAGNETOM Aera/Avanto,
Siemens Healthcare, Erlangen, Germany) across 4–5 anatomical stations (depending on
patient height) from skull to mid-thigh (metastatic bone disease) or skull vertex to knees
(myeloma) using two (50/900 s/mm2) or three (50/600/900 s/mm2) b-values. Each station
comprised 40 slices with a slice thickness of 5–6 mm. Echo-planar image acquisition was
used (GRAPPA parallel image acceleration R = 2), using a double-spin echo diffusion
encoding scheme applied over three orthogonal encoding directions [21,22]. All MRI
parameters are reported in Table 1 for each dataset involved in the study. All data were
fully anonymised, and the study was performed in accordance with the Declaration of
Helsinki (2013). A local ethical committee waived the requirement of patient consent for
use of these retrospective datasets.

Table 1. Scanning protocol and MRI parameters for all WBDWI datasets investigated in our study.
Minimum and maximum values are displayed in parenthesis.

APC Cohort
Dataset (1)

(40 Patients;
80 WBDWI Scans)

APC Cohort
Dataset (2)

(33 Patients;
115 WBDWI Scans)

APC Cohort
Dataset (3)

(22 Patients;
44 WBDWI Scans)

APC Cohort
Dataset (4)

(18 Patients;
36 WBDWI Scans)

MM Cohort
Dataset (5)

(12 Patients;
12 WBDWI Scans)

MR scanner 1.5T Siemens Aera 1.5T Siemens
Aera/Avanto 1.5T Siemens Aera 1.5T Siemens Aera 1.5T Siemens Avanto

Sequence Diffusion-Weighted
SS-EPI

Diffusion-Weighted
SS-EPI

Diffusion-Weighted
SS-EPI

Diffusion-Weighted
SS-EPI

Diffusion-Weighted
SS-EPI

Acquisition plane Axial Axial Axial Axial Axial
Breathing mode Free breathing Free breathing Free breathing Free breathing Free breathing

b-values [s/mm2] b50/b600/b900
for all patients

b50/b600/b900
for all patients

b50/b900
for 7 patients;

B50/b600/b900
for 15 patients

b50/b600/b900
for all patients

b50/b900
for 9 patients;

B50/b600/b900
for 3 patients

Number of averages
(per b-value) (2,2,4)–(3,3,5) (3,3,5) (3,5)–(3,3,5) (3,6,6) (4,4)–(2,2,4)

Reconstructed
resolution [mm2] [1.56 × 1.56–1.68 × 1.68] [1.68 × 1.68–2.5 × 2.5] [1.68 × 1.68–3.12 × 3.12] [3.21 × 3.21] [1.54 × 1.54–1.68 × 1.68]

Slice thickness [mm] 5 5 6 5 5
Repetition time [ms] [6150–12,700] [5490–10,700] 12,003 6320 [6150–14,500]

Echo time [ms] [60–79] 69 [69–72] 76 [66.4–69.6]
Inversion time

(STIR fat suppression)
[ms]

180 180 180 180 180

Flip angle [◦] 90 90 90 90 180
Encoding code 3-scan Trace 3-scan Trace 3-scan Trace 3-scan Trace 3-scan Trace

Field of view [mm] [98 × 128–256 × 256] [130 × 160–208 × 256] [208 × 256–216 × 257] [108–134] [208 × 256–224 × 280]
Receive bandwidth

[Hz/Px] [1955–2330] 1955 1955 2195 [1984–2330]
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2.2. Spinal Canal Delineation
2.2.1. Dataset Description

Patient data from Dataset (1) were split into training (24 patients, 48 studies), valida-
tion (8 patients, 16 studies), and test (8 patients, 16 studies) datasets. The segmentation
model was trained using axial images extracted from all available WBDWI studies; thus, the
total size of the training and validation data was 8749 and 2758 axial images, respectively,
and the test data consisted of 2687 axial images. A medical physicist with over 2 years’
experience with WBDWI defined the ground truth by manually delineating the spinal cord
and surrounding CSF for all WBDWI scans in Dataset (1) (80 studies in total). Accuracy of
these delineations was confirmed by two radiologists, each with over 10 years’ experience
in WBDWI.

2.2.2. Image Pre-Processing

A deep learning model with U-Net architecture [23] was trained to automatically
delineate the spinal cord and surrounding CSF on WBDWI scans. The network involves a
2-channel input: (i) the ADC map, and (ii) the estimated intercept (S0) image at b = 0 s/mm2.
The ADC map and S0 image were derived by fitting a monoexponentially decaying model to
the diffusion data [18,24] (negative ADC values were not removed from ADC maps so as not
to introduce artificial boundaries in the derived images). The single-channel output of the
deep learning model was the estimated segmentation of the spinal cord and surrounding CSF.
All images were interpolated to matrix = 256 × 256 and resolution = 1.6 × 1.6 mm, and input
images were normalised using the following transformations:

scaled ADC map = ADC map / 3.5 10−3mm2/s (1)

scaled S0 image = log(S0 image) /max(log(S0 image)) (2)

2.2.3. U-Net Model Architecture and Hyper-Parameter Selection

The U-Net architecture implemented in this study employed encoder (contractive) and
decoder (expansive) symmetrical paths with skip connections at each level. The encoder
path involved convolution blocks each followed by max pooling and dropout layers
(dropout rate of 0.2), enabling the extraction of hierarchical features. Encoder convolution
blocks consisted of two 2D convolutional layers with a 3 × 3 kernel (stride = 1), followed by
batch normalisation and rectified linear unit (ReLU) activation. The encoder path featured
four down-sampling steps with kernel filters of 32, 64, 128, and 256, reaching a bottleneck
depth of 512. The decoder path used 2D transposed convolutions (kernel = 3 and stride = 2)
for up-sampling and concatenating feature maps from the decoder path to capture fine-
grained details. Additionally, dropout and two 2D convolutional layers followed the
transposed operation at each level of the encoder path. Finally, the model generated a
single-channel output representing the segmentation mask of the input image through a
1 × 1 convolutional layer with sigmoid activation applied to the output of the final decoder
convolutional block. Dropout layers were incorporated to mitigate overfitting, while
batch normalisation enhances model stability and convergence during training. Adam
optimisation with an initial learning rate of 10−3 was used to minimise each loss function
investigated over 150 epochs using a batch size of 8 slices. To facilitate efficient training and
effective fine-tuning of the U-Net model, a dynamic learning rate strategy was implemented.
This strategy involved reducing the learning rate by half when the loss function failed to
improve for 10 consecutive epochs, continuing this process until the learning rate reached
a minimum value of 10−5. A summary of the network hyper-parameters is reported in the
Supplementary Material (Table S1). Four loss functions were compared to identify the best
trade-off between precision and recall due to the significant imbalance between the number
of voxels from the background image and the foreground spinal cord mask. Definitions
of the losses investigated and their respective hyper-parameters are shown in Table 2.
Where applicable, loss function hyper-parameters were optimised by identifying values
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that minimised the validation Dice score (1-Dice loss). All algorithms were implemented
in python (v.3.7) using Tensorflow v.2.3.1 and Keras toolboxes, running on a Windows
platform (v.10.0.19) accelerated by an NVIDIA RTX6000 GPU 24 GB RAM (Santa Clara,
CA, USA).

Table 2. Definitions of the examined losses along with their corresponding hyper-parameters, which
were used in the process of training the 2D U-Net model for automatically delineating the spinal
canal from WBDWI. TP = true positives, FP = false positives, FN = false negatives, yn = true label for
voxel n (0 = background, 1 = spinal canal), ŷn = model-predicted label probability for voxel n.

Loss Name Definition Discussion

Log-cosh Dice LCDL = ln(cosh(DL))
where DL = 1 − 2·TP

2·TP+FP+FN

This univariate transformation of the Dice loss, DL, has
been suggested for improving medical image

segmentation in the context of imbalanced distributions
of labels [25].

Combo
CL = DL − ω 1

N

N
∑

n = 1
yn·lnŷn

+(1 − yn)·ln(1 − ŷn)

A weighted sum of Dice and binary cross-entropy
losses [26]. To identify the optimal weight ω ∈ (0, 1)
between these two losses, training/validation of the

U-Net model was compared using values of ω from 0 to
1 at increments of 0.1.

Tversky TL = 1 − TP
TP+α·FP+β·FN

A generalised version of the Dice loss (α = β = 0.5),
this loss provides more nuanced balancing between a
requirement for high sensitivity (α > β) or precision

(α < β). The best trade-off was investigated by varying
the values of α and β, from 0 to 1 with an increment of

0.1 [27].

Focal Tversky FTL = TLγ

A further generalisation of the Tversky loss, this loss
employs a third parameter γ, which controls the

non-linearity of the loss. In class-imbalanced data,
small-scale segmentations might result in a high TL
score; however, γ > 0 causes a higher gradient loss,

forcing the model to focus on harder examples (small
regions of interest that do not contribute to the loss
significantly) [28]. We varied γ from 1 to 3 with an

increment of 0.1 to determine the optimal value.

2.2.4. Post-Processing

The final layer of the 2D U-Net model was a sigmoid activation function, which
generates a value ranging from 0 (background) to 1 (spinal cord and surrounding CSF). For
an individual patient study, these values were linearly interpolated between adjacent slices
to create a final 3D prediction from the most superior slice to the most inferior. Subsequently,
a threshold of 0.5 was applied to derive the final binary mask. Once the spinal canal was
delineated, the predicted segmentations were transferred to calculated ADC maps; the
resulting ADC values were modelled using a 2-component Gaussian Mixture Model (GMM)
to reflect values in the spinal cord and surrounding CSF, respectively [29]. The GMM model
was implemented using the Scikit-Learn v.0.23.2 software package.

2.3. WBDWI Signal Normalisation

Our signal normalisation pathway consists of three core steps, as illustrated in Figure 1:

(1) A whole-body bc = 900 s/mm2 image is computed (cDWI) to optimize the SNR
and increase the suppression of the background signal for the detection of bone
metastases [24]. The cDWI images are computed from the estimated S0 images and
ADC maps for each station using:

S(bc) = S0e−bc · ADC (3)
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(2) The signal intensity of sequential stations of derived cDWI volumes is normalised by
applying a linear scaling term to the cDWI data that minimises the mean square error
between cumulative frequency curves of cDWI intensities from axial images on either
side of each station boundary, as previously described [30,31].

(3) The spinal cord and surrounding CSF segmentations derived using the U-Net model
(Section 2.2) are transferred to the cDWI images and the voxel values across the entire
field of view are standardised to the 90th percentile of the signal within the entire
spinal canal.
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Figure 1. Schematic representation of the developed method for intensity signal normalisation on
WBDWI. The method involves (i) computing the b = 900 s/mm2 image (cDWI) from the derived
ADC map and S0 image and composing the whole-body cDWI, (ii) correcting the signal inhomo-
geneity (green arrow) across sequential stations, (iii) deriving the spinal cord and surrounding CSF
segmentation from the developed U-Net model, (iv) generating the “signal-normalised image” by
dividing the entire image by the 90th percentile of cDWI (step (ii)) signal within the spinal cord and
surrounding CSF region.

2.4. Evaluation Criteria
2.4.1. Spinal Canal Segmentation

To assess the best set of hyper-parameters and loss function for the U-Net model,
patient-wise Dice score, precision, and recall between the manual and derived spinal cord
and surrounding CSF masks were reported for all validation patients from Dataset (1).
Volume and average cross-sectional area of the derived spinal canal segmentations were
reported together with the true values for all patients in the validation and test datasets of
Dataset (1), along with parameters estimated from GMM modelling of the ADC values.
Significant differences in the performance of the U-Net model and manual delineations
were assessed using a Wilcoxon signed-rank test (p < 0.05 indicating significance).

A qualitative visual assessment of segmentations derived from the U-Net model was
performed on the external validation datasets for which no ground-truth contours were
available (Datasets (2), (3), (4), and (5)). Derived spinal cord and CSF segmentations were
superimposed on coronal and sagittal maximum-intensity projections (MIPs) of the high-
b-value (b = 900 s/mm2) images to facilitate the visual assessment of delineated regions.
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Furthermore, ADC distributions and volumes within the spinal cord and surrounding
CSF (obtained following GMM modelling) were compared with those obtained in the
test/validation data from Dataset (1) to provide a semi-quantitative evaluation of seg-
mentation accuracy. Differences between the derived spinal cord or CSF volumes across
the external validation datasets were assessed using the ANOVA test (p < 0.05 indicating
significance). Average ADC values of the spinal cord and surrounding CSF for each external
validation dataset, as derived using the GMM, were assessed for significant differences
using the Wilcoxon signed-rank test (p < 0.05 indicating significance).

2.4.2. Intensity Signal WBDWI Normalisation

A qualitative assessment of the developed intensity signal normalisation pipeline
was performed by comparing visual appearance of derived images with the standard
b = 900 s/mm2 images for all patients in the test images from Dataset (1), and all external
validation datasets, using fixed window settings.

A semi-quantitative assessment was performed by an experienced radiologist with
10+ years of experience in WBDWI who delineated regions of suspect bone disease ac-
cording to MET-RADS-P guidelines [1] in 10 patients from Dataset (2) (both baseline
and post-treatment scans). Resulting regions of interest were transferred to the signal-
normalised and conventional b = 900 s/mm2 images to derive the voxel-wise distribution
of signal intensity within the delineated regions. Differences in the tumour distributions of
normalised and conventional image signals were visually compared between patients and
between successive scans of the same patient. The number of bone metastases delineated
on average per WBDWI scan was 15 with an average total disease volume of 430 mL.

3. Results
3.1. Spinal Canal Segmentation

The best-performing U-Net model demonstrated an average validation dice score of
0.871 when trained using the Focal Tversky loss function, as shown in Table 3. This loss
function showed the best trade-off between precision and recall by tuning the coefficients
α = 0.7, β = 0.3 (weighting more for false negative than false positive detection) and
improving small region contribution to the loss by tuning γ = 1.1. The average dice score,
precision, and recall between manual and derived segmentations from the best-performing
U-Net model across all hold-out test datasets were 0.879, 0.869, and 0.896, respectively.

Table 3. Mean and standard deviation of similarity metrics between manual and U-Net model
automated segmentations of spinal canal for patients in Dataset (1) (for optimum hyper-parameters).

Loss Function Dice Score Precision Recall
Log cosh Dice 0.865 ± 0.04 0.898 ± 0.03 0.839 ± 0.08
Combo (ω = 0.8) 0.858 ± 0.06 0.912 ± 0.02 0.819 ± 0.104
Tversky (α = 0.7, β = 0.3) 0.860 ± 0.04 0.844 ± 0.03 0.883 ± 0.08
Focal Tversky (α = 0.7, β = 0.3,
γ = 1.1) 0.871 ± 0.04 0.870 ± 0.03 0.878 ± 0.081

The U-Net model generated spinal cord and surrounding CSF segmentations that
show excellent agreement with the true labels and patient anatomy without overfitting on
the test datasets, as shown in Figure 2. Furthermore, ADC histograms within the segmented
regions illustrate two peaks for both methods. A similar result was observed in all other
test data, supporting our hypothesis for the use of a two-component GMM for classifying
pixels as either belonging to the spinal cord or CSF.
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Figure 2. Coronal and sagittal view of maximum-intensity projection (MIP) of b = 900 s/mm2 image
and superimposed manual and derived spinal cord and surrounding CSF segmentation for two
test datasets (Dataset (1)). Histogram of ADC values within manual and automated (U-Net model)
segmentations and fitting using a 2-component GMM for the same test datasets.
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Shape-based and GMM parameters from our U-Net model were compared with
manually defined contours for both validation and test data from Dataset (1) and are
reported in Table 4. Median measure of volume and average cross-section area for the
validation data were 169 mL and 179 mm2, respectively, and 164 mL and 204 mm2 for the
test data, as derived using our automated model. No significant differences were observed
between manual and automated segmentation. Parameters derived from the GMM showed
similar trends for both methods and again without any significant differences.

Table 4. Median and interquartile range of volume and average cross-section area derived from
manual and automated (U-Net model) segmentation of the spinal cord and surrounding CSF for all
patients in the validation and test WBDWI datasets (Dataset (1)). Mean and standard deviations of
parameters from fitting the ADC values within manual and automated (U-Net model) segmentation
of the spinal cord and surrounding CSF using a 2-component GMM for all patients in the validation
and test WBDWI datasets (Dataset (1)). Significant differences between manual and automated
segmentation are for p < 0.05 (Wilcoxon paired rank-sum test: two-tailed).

Volume
[mL]

Average
Cross-Section
Area [mm2]

GMM—Weights GMM—Means
[×10−3 mm2/s] GMM—Variance

Validation set
(8 patients;
16 WBDWI
scans)

1st comp PDF
(spinal cord)

2nd comp PDF
(CSF)

1st comp PDF
(spinal cord)

2nd comp PDF
(CSF)

1st comp PDF
(spinal cord)

2nd comp PDF
(CSF)

Manual
delineation 152 [138–188] 176 [151–184] 0.58 ± 0.09 0.41 ± 0.09 1.67 ± 0.20 3.17 ± 0.31 0.38 ± 0.09 0.59 ± 0.11

U-Net model 169 [141–192] 17 9 [158–192] 0.61 ± 0.08 0.40 ± 0.08 1.72 ± 0.13 3.17 ± 0.27 0.37 ± 0.1 0.58 ± 0.12
p-value 0.91 0.94 0.31 0.31 0.04 0.12 0.69 0.16

Volume
[mL]

Average
Cross-Section
Area [mm2]

GMM—Weights GMM—Means
[×10−3 mm2/s] GMM—Variance

Holdout set
(8 patients;
16 WBDWI
scans)

1st comp PDF
(spinal cord)

2nd comp PDF
(CSF)

1st comp PDF
(spinal cord)

2nd comp PDF
(CSF)

1st comp PDF
(spinal cord)

2nd comp PDF
(CSF)

Manual
delineation 160 [147–184] 199 [184–226] 0.59 ± 0.06 0.41 ± 0.06 1.70 ± 0.15 3.33 ± 0.28 0.35 ± 0.07 0.56 ± 0.20

U-Net model 164 [153–175] 204 [192–213] 0.60 ± 0.06 0.40 ± 0.06 1.73 ± 0.13 3.36 ± 0.28 0.35 ± 0.10 0.60 ± 0.19
p-value 0.26 0.28 0.67 0.67 0.14 0.30 0.73 0.04

Figure 3 illustrates four example patients, each randomly selected from the external
validation Datasets (2)–(5). Visually, our segmentation model correctly predicted the posi-
tion of the spinal cord within each patient, without showing signs of overfitting. Moreover,
the derived ADC histogram within the delineated regions predominantly showed the same
bimodal distribution observed in the training data.

The distributions of volumes and average ADC for the spinal cord and CSF are
presented in Figures 4 and 5, respectively. No statistical differences were observed in these
distributions between the different datasets used (p = 0.13), with exclusion of Dataset (4),
which demonstrated a marginally increased volume of the spinal cord. Derived volumes
for the spinal cord and CSF across different datasets range from 92 to 105 mL and from
55 to 74 mL, respectively. Furthermore, derived values of ADC mean for spinal cord and
CSF were on average 1.7 and 3.2 × 10−3 mm2/s, respectively, with significant differences
between both components (p < 0.001).
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Figure 3. Coronal and sagittal view of maximum-intensity projection (MIP) of b = 900 s/mm2 image
and superimposed derived spinal cord and surrounding CSF segmentation for four patients in the
external WBDWI validation datasets. Histogram of ADC values within automated (U-Net model)
segmentations and fitting using a 2-component GMM for the same external validation datasets.
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Figure 4. Violin plots of the derived spinal cord and CSF volumes (weight per segmentation volume)
from U-Net model segmentations and GMM fitting of ADC values within the delineated regions for
all external validation datasets. Additionally, reference values for spinal cord (indicated by the red
dashed line) and CSF (indicated by the purple dashed line) volumes were obtained from manual
contours of the spinal canal on WBDWI studies included in Dataset (1). No statistical differences
were observed for CSF volumes across different external validation datasets (the ANOVA test showed
a p-value > 0.05). The same trend was observed for the spinal cord volumes, if Dataset (4) is excluded.
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Figure 5. Violin plots of derived spinal cord and CSF ADC mean from U-Net model segmentations
and GMM fitting of ADC values within the delineated regions for all external validation datasets.
Additionally, reference values for spinal cord (indicated by the red dashed line) and CSF (indicated
by the purple dashed line) ADC mean were obtained from manual contours of the spinal canal
on WBDWI studies included in Dataset (1). Statistical differences were observed between the
2 components of the GMM from the same dataset (Wilcoxon signed-rank test showed a p-value < 0.05).
The same trend was observed for all the external validation datasets.

3.2. Intensity Signal WBDWI Normalisation

Examples of normalised high-b-value MIP images are compared with acquired b = 900 s/mm2

MIP images in Figure 6. MIPs of both high-b-value and signal-normalised images for pa-
tients with APC and MM show high signal intensity for suspected metastatic bone lesions
across much of the skeleton. For the normalised images, however, it is straightforward
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to scale the intensity level using a fixed window level = 1.5 and window width = 3.0.
By contrast, the acquired high-b-value images demonstrate significant signal variation
between and within datasets when presented using fixed window level = 250 and window
width = 500. Our pipeline generates the normalised high-b-value images in seconds and
does not require spatial registration of successive time-points of individual patients.
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Figure 6. Coronal view of maximum-intensity projection (MIP) of b = 900 s/mm2 image with
and without intensity signal normalisation for baseline and follow-up WBDWI scans of a patient
from the test dataset and for four patients from the external validation datasets. Images with and
without signal-based normalisation were scaled using a fixed window of 0–500 and 0–3, respectively.
Signal-normalised images show a more uniform signal across sequential stations and no variation
in intensity values in skeleton areas with the same properties as bone lesions across all datasets. In
contrast, acquired b = 900 s/mm2 images show signal inhomogeneity across sequential stations,
between baseline and follow-up scans and different WBDWI datasets.
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As presented in Figure 7, distributions of tumour signal intensity values from nor-
malised images were more homogenous between patients and between successive scans of
the same patient (signal range of tumours 0.65–1.25), when compared with conventional
high-b-value signal intensities. This could improve radiological interpretation of scans
and provide a range of standardised signal intensities for regions of suspected disease
on WBDWI.
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Figure 7. Voxel-wise distribution of signal intensity values within delineated bone metastases from
10 patients with APC who underwent baseline and WBDWI scans. Signal intensity values are
compared between our signal-normalised images (top) and conventional b = 900 s/mm2 images
(bottom). Our pipeline for normalising signal intensity on high-b-value WBDWI datasets reduces
inter-patient variation in image signal within delineated lesions. Furthermore, we observe reduced
variation in lesion signal intensity between scans for the same patient using our approach (see Patient
5 for a particularly poor example, green arrow).

4. Discussion and Conclusions

Inter- and intra-patient signal normalisation on WBDWI is a challenging task but could
vastly improve the consistency of interpretation of high-b-value imaging and facilitate the
development of automated tumour delineation techniques. In this article, a novel method
has been developed to improve signal normalisation of WBDWI, using a validated deep
learning approach for automatic delineation of the spinal canal from which signal statistics
can be much more readily derived.
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The dice scores between manual and automated spinal canal segmentations were
excellent in all cases tested (>0.87) and demonstrated visually exceptional results when
qualitatively assessed in four external validation datasets (85 patients, 207 scans). The
segmentation masks, superimposed on coronal and sagittal MIPs of high-b-value images,
visibly matched the patient anatomy in all cases, even in those data acquired by external
imaging centres with variations in MRI scanning protocol.

A further advantage of this technique is that segmentations may be transferred to the
ADC map to interrogate distributions of ADC within delineated regions. We utilised a
two-component GMM of the ADC distribution to derive separate sub-segmentations for the
spinal cord and surrounding CSF. Parameters estimated from such models demonstrated no
significant differences between manual and automated segmentation in 16 validation/test
patients (32 studies in total). Likewise, a bimodal ADC distribution within delineated
regions and consistent spinal cord/CSF volumes and average ADC values were derived
for patients in the external validation datasets.

Several studies by other investigators have also explored deep learning to automati-
cally delineate the spinal cord from MRI data. Lemay et al. [32] introduced a 3D patch-based
U-Net model, which successfully delineated a bounding box for the spinal canal from T2w
MRI images (this model served as a preliminary step for a second algorithm focused on
detecting suspected spinal cord tumours). They achieved a dice score of 0.89 on a single-
centre test cohort. McCoy et al. [33] proposed a 2D U-Net model for automated delineation
of the spinal canal from axial T2w images acquired using a 3T MRI, facilitating the detection
of acute spinal cord injuries. The model achieved a dice score above 0.9 on 560 axial images
from a single-centre test cohort. Gros et al. [34] developed a cascade of three Convolutional
Neural Networks (CNNs) for spinal cord centre line detection, delineation of the spinal
cord, and identification of suspected Multiple Sclerosis (MS) lesions. The authors employed
a 2D patch-based U-Net model with dilated kernels in the decoder path for spinal cord
centre line detection from T1w and T2w MRI images, followed by a 3D patch-based U-Net
model with prior knowledge of the spinal cord location for spinal canal segmentation.
The dice score between manual expert and automated methods was above 0.9 from a
multi-centre cohort of 1042 patients. Remarkably, our method demonstrates segmentation
accuracies close to those reported by these studies, yet operates on diffusion-weighted im-
ages alone, which are typically acquired with lower resolution than T1 and/or T2 weighted
imaging. Furthermore, WBDWI can be severely affected by geometric distortions, which
warrants the need for a dedicated WBDWI approach; as far as we are aware, we are the
first to propose such a methodology.

Intensity signal normalisation was compared against the original acquired high-b-
value images on test and external WBDWI scans. Our approach greatly improved har-
monisation of signal intensity across sequential stations within each patient, and between
patients/institutions. In future, this should facilitate more consistent clinical reading of
WBDWI scans due to more uniform signal presentation and increase confidence in the
results, even for less experienced scanning centres (though this will require further testing
in larger-cohort, multi-centre studies). Global signal normalisation may also improve com-
parison of findings from the same patient at different time-points throughout the course
of their treatment, thus providing clearer indications of disease changes. As our method
requires only the b-value images from a single acquisition as input and does not affect the
contrast-to-noise and signal-to-noise ratios in axial diffusion-weighted images, it may be
readily applied to correct for inter-patient signal variation and/or intra-patient variation
observed at different scanning dates/times for a single patient.

Recent publications have developed techniques for full skeleton segmentation on
WBDWI [35–37]. By leveraging the results found in this study, it may be possible to directly
utilise WBDWI signal within statistical or deep learning approaches to the segmentation
of disease within the skeleton. Once defined, the derived ROIs can be transferred to the
calculated ADC maps to derive biomarkers such as the Total Diffusion Volume (TDV),
which reflects the estimated tumour burden within the skeleton, and median global ADC.
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Existing evidence points to these as emergent biomarkers of response for metastatic bone
disease treated with novel therapeutics in patients with APC [38].

One of the limitations of this study was the smaller number of datasets used for
external validation that were acquired at different centres; Dataset (2) and Dataset (3)
included seven and twenty-two patients acquired at different imaging centres, respectively.
However, it is worth noting that all patients underwent multiple post-treatment scans,
thereby enhancing the impact of these datasets. Furthermore, the supervised deep learning
model for automatically delineating the spinal canal from WBDWI has been developed and
tested using labels provided by a single annotator. To address concerns about potential bias,
the segmentation accuracy in external validation WBDWI datasets was assessed through
qualitative evaluation by two radiologists in functional cancer imaging, each with over 10
years of experience. This evaluation involved overlaying the spinal canal masks on ADC
maps and S0 images, ensuring that the boundaries delineated by the automated tool aligned
with the true shape and position of the spinal canal visible in WBDWI scans. Furthermore,
the evaluation of spinal canal segmentation accuracy and image normalisation on external
validation datasets was either qualitative or semi-quantitative in nature. Prospective
evaluation of our tool in a multi-centre setting is the subject of a currently ongoing trial
that is evaluating the effectiveness of these tools for automatic delineation of bone disease
from WBDWI.

In conclusion, our automated pipeline accurately delineates the spinal cord and sur-
rounding CSF, which in turn can be used to normalise signals within and between WBDWI
acquisitions. This could drastically improve visual assessment of disease in longitudinal
WBDWI studies and thus has the potential to positively impact the healthcare of patients
with advanced cancers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11020130/s1, Table S1: Training parameters of the
spinal canal segmentation model.
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