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Abstract: Treatment of chronic wounds is challenging, and the development of different formulations
based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory
reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the
advantage of synergistically combining the bioactivity of the protein with the biocompatibility and
hydrogel properties of polysaccharides. In this study, a hydrogel formulation containing insulin,
chitosan, and hydroxypropyl methyl cellulose (Chi/HPMC/Ins) was prepared and characterized
by FTIR, thermogravimetric, and gel point analyses. The in vitro cell viability and cell migration
potential of the Chi/HPMC/Ins hydrogel were evaluated in human keratinocyte cells (HaCat) by
MTT and wound scratch assay. The hydrogel was applied to excisional full-thickness wounds in
diabetic mice for twenty days for in vivo studies. Cell viability studies indicated no cytotoxicity of
the Chi/HPMC/Ins hydrogel. Moreover, the Chi/HPMC/Ins hydrogel promoted faster gap closure
in the scratch assay. In vivo, the wounds treated with the Chi/HPMC/Ins hydrogel resulted in faster
wound closure, formation of a more organized granulation tissue, and hair follicle regeneration.
These results suggest that Chi/HPMC/Ins hydrogels might promote wound healing in vitro and
in vivo and could be a new potential dressing for wound healing.

Keywords: wound healing; hydrogels; biopolymers; polysaccharides; insulin

1. Introduction

The skin’s role in sensation and protection of the body from environmental hazards is
vital. This barrier is designed to prevent microorganism invasion, radiological/chemical
damage, and dehydration. Skin injuries result in a complex biologic process that integrates
inflammation, mitosis, angiogenesis, extracellular matrix synthesis, and remodeling [1]. A
medical condition is usually caused by the failure of one or more of these cellular processes,
such as diabetes and vascular disease [2]. However, new drugs or formulations with
wound healing potential have been researched as result of the need for less costly and more
efficient treatments.

Insulin is a peptide anabolic hormone and growth factor synthesized and secreted
by the beta cells of the pancreas that elicits metabolic effects throughout the body [3]. It
regulates glucose and lipid metabolism, protein synthesis, mitochondrial biogenesis, cell
growth, proliferation, differentiation, and migration in many tissues [4]. In skin, epidermal
and dermal human cell growth is dependent on insulin [5].
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Insulin’s effects on wound healing started to be observed in the 1930s, when it was
noticed that systemic insulin treatment could reduce surgical site infections in diabetic
patients. Although the treatment had side effects such as hypoglycemia and hypokalemia.
Later, in the 1960s, it was noticed that topical insulin use improved pressure ulcer healing
without affecting blood glucose levels [4,5].

In recent decades, the effects of topical insulin on cellular and molecular mechanisms
in wound healing have been studied through in vivo and in vitro studies. Among the
effects found, it is evident that insulin accelerates re-epithelialization by increasing ker-
atinocyte migration and differentiation. Chen et al. [6] showed that topical insulin could
improve healing by regulating the quantity and function of macrophages. These kinds
of cells contribute to the secretion of inflammatory mediators responsible for the wound
inflammatory phase modulation. Furthermore, insulin activates the insulin receptor (IR,
IRS)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways. AKT raises vas-
cular endothelial growth factor (VEGF), which induces the phosphorylation and activation
of endothelial nitric oxide synthase (eNOS) in bone marrow, resulting in mobilization of
endothelial progenitor cells into the circulation, where they contribute to tissue regenera-
tion. Despite the positive effects that topical insulin has on wound healing, it is an unstable
molecule that is easily degradable; for that reason, new formulations have been developed
to keep its stability and bioactivity.

One of these possible formulations is its incorporation into hydrogels. Hydrogels have
a porous structure, and this characteristic makes them suitable for incorporating many
bioactive molecules in order to accelerate wound healing [7,8]. Furthermore, hydrogels
have good hydrophilicity, biocompatibility, and a three-dimensional (3D) structure, which
resemble those of the skin extracellular matrix (ECM) [7].

Hydrogels can be prepared from natural polymers, synthetic polymers, or a mix of
these materials [9,10]. Among natural compounds, chitosan has attracted researchers’
attention due to its properties [11]. This is a hydrophilic polymer [12], and it has amino
groups which make it an appropriate compound for the encapsulation and delivery of
active ingredients such as insulin [13], magnesium hydroxide [14], LL-37 peptide [15],
honey [11], and many others [16–18]. Chitosan can act in all stages of wound healing. In
the coagulation and hemostasis phase, it can prevent exsanguination. In the inflammatory
phase, it regulates the secretion of inflammatory mediators and enhances the function of
leukocytes, macrophages, and neutrophils, leading to a microenvironment propitious for
healing. In the proliferative phase, this natural polymer stimulates fibroblasts’ prolifera-
tion and collagen deposition and promotes angiogenesis, which could contribute to scar
prevention in the remodeling phase [19].

Despite these advantages, chitosan has limited stability and low mechanical strength,
which could hinder its application for topical gels. To overcome these potential drawbacks,
chitosan can be blended with other polysaccharides such as hydroxypropyl methylcellulose
(HPMC) [19]. HPMC belongs to the group of cellulose ethers [20], as a semisynthetic
nonionic water-soluble polymer [21]. HPMC forms a gelatinous layer, which regulates
water transport in the system, contributing to the controlled release of substances from
the hydrogel. Additionally, incorporating HPMC into chitosan might be a beneficial
approach to enhance the mechanical strength of the hydrogel to provide greater therapeutic
efficiency [22].

In this work, we have designed and prepared a formulation containing chitosan,
HPMC, and insulin (Chi/HPMC/Ins) for wound healing applications. The goal was to
obtain stable gels with advanced wound healing properties.

2. Materials and Methods
2.1. Materials

Chitosan (Pharmaceutical grade, molecular weight 190–310 kDa, deacetylation
degree: ≥75%) was purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA).
3-(4, 5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT); Dulbecco’s modified
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Eagle’s medium–nutrient mixture F-12 (DMEM/F12) and fetal bovine serum (FBS) were
purchased from Gibco, BRL (Eggenstein, Germany). Streptozotocin was obtained from
Sigma-Aldrich Inc. (St. Louis, MO, USA). Hydroxypropyl methyl cellulose (HPMC), with
an average molecular weight of 86 kDa, was obtained from Sigma-Aldrich Inc. (St. Louis,
MO, USA). Regular Insulin (Novolin®) was made by Novo Nordisk A/S Bagsvaerd.

2.2. Hydrogel Preparation

To prepare Chi/HPMC/Ins hydrogels, chitosan and HPMC were separately dispersed
in deionized water and the compounds were gently stirred at 60 ◦C for 30 min. The chitosan
and HPMC solutions were mixed with a ratio of 2:1 v/v, and then 3 mL of glycerol was
added to 18 mL of Chi/HPMC solution. The glycerol was used as a vehicle because it is
cosmetically acceptable, has a high viscosity index, is soluble with insulin [23] and can
improve the hydrogel’s mechanical properties [24]. The prepared solution was mixed for
1 h at 60 ◦C. After the mixture had cooled, the human regular insulin was added to the
Chi/HPMC solution, and then it was mixed for 1 h more at room temperature. The final
insulin concentration was 2 U/g. This mixture was spread on aluminum foil, frozen in
liquid nitrogen and placed in a Lyoquest −85 freeze dryer. The lyophilized sample was
characterized through FTIR, TGA, and SEM.

2.3. Characterization

FTIR spectra were collected using a Bruker Alpha FTIR-ATR, using four scans on the
dried gel. Dried gels were also characterized by thermogravimetric analysis utilizing a
TGA Q500 (TA Instruments) under a nitrogen atmosphere with a heating rate of 10 ◦C/min
towards a temperature of 550 ◦C. The surface and cross-section of the film were coated with
a layer of gold/palladium for 40 s at 30 mA and imaged using a JEOL JSM-6010 scanning
electron microscope.

The gel point of the Chi/HPMC/Ins solutions was determined using a stress-controlled
Anton Paar MCR702 rheometer. The home-made plate–plate geometry used consisted
of a roughened aluminum bottom plate connected to a Peltier plate, as well as a 25 mm
diameter roughened aluminum upper plate. The plates were roughened to avoid wall slip.
To closely mimic the application of the gel to a wound, it was explicitly decided not to
perform any evaporation control. A time sweep at a constant strain of 0.1% and a frequency
of 10 rad/s was performed at a temperature of 37 ◦C to determine the gel point. The gel
point is defined as the time it takes for the storage modulus (G′) to reach and exceed the
value of the loss modulus (G′′).

2.4. Cell Viability Studies

Cell viability studies were assessed using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazoline bromide (MTT) assay on the HaCat cell line. Briefly, cells were seeded
in 12-well plates at 1 × 104 cells/well and maintained at 37 ◦C with 5% CO2 in DMEM
containing 10% bovine fetal serum (BFS). Then, the medium was removed and replaced
with a fresh one containing Chi/HPMC/Ins hydrogel or Chi/HPMC hydrogel. The DMEM
medium was used as a negative control. After 24 h, 48 h, and 72 h after cell seeding, the
culture medium was removed from the 12-well plate and 150 µL of MTT (0.5 mg/mL) was
added to each well. Afterwards, the cells were incubated at 37 ◦C for 3–4 h in a dark place;
then, the solution was removed, and 0.1 mL DMSO was added to each well. The relative
absorbance at 490 nm was measured using a Varioskan Flash microplate reader (Thermo
Scientific, Waltham, MA, USA). The cell viability% was calculated using the following
equation:

Cell viability (%) =
A sample
A control

× 100

where A sample and A control indicate the absorbance of the sample and control wells,
respectively. The experiments were performed in triplicate.
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2.5. Wound Scratch

HaCaT cells were seeded in a 12-well plate at a cell density of 3 × 105 cells/mL until
a 90% confluent cell monolayer was obtained. The cell monolayer was scratched in a
straight line with a p200 micropipette tip. The debris was removed by washing cells with
phosphate-buffered solution, which was replaced with 2 mL of culture medium containing
Chi/HPMC hydrogel or Chi/HPCM/Ins hydrogel. In the negative control group, cells
were treated with DMEM-1% FBS. Photographs of the wounded area were taken at 24 h
and 48 h to investigate and analyze the scratch wound. The percentage of wound closure
was calculated using ImageJ 1.49v software (National Institutes of Health, Bethesda, MD,
USA) and expressed as reported in the following equation [14]:

Wound closure (%) =
At − A0

At
× 100

where A0 is the area of the wound measured immediately after scratching, and At is the
area of the wound measured after 24 h or 48 h. All assays were carried out in triplicate.

2.6. Wound Healing In Vivo

All animal experiments were approved by the Ethical Committee for Animal Research
(approval number 5695-1/2021) at the State University of Campinas (Brazil). Male C57BL/6
mice were purchased from the Breeding Centre of the State University of Campinas (Brazil).
Diabetes mellitus (DM) was induced in 6-week-old C57BL/6 mice by intraperitoneal strep-
tozotocin (STZ) injections (50 mg/kg) for 5 consecutive days. The animals were fasted from
food 4 h prior to each administration. After three weeks, the caudal vein blood was col-
lected, and the blood glucose was measured with a glucometer (Accu-Check). The criterion
for developing DM was defined as a blood glucose level ≥250 mg/dL. The diabetic animals
were randomly divided into three treatment groups: the saline group (SAL), treated with
physiological saline solution; Chi/HPMC, treated with the hydrogel; and Chi/HPMC/Ins,
treated with the hydrogel containing insulin. Then, under general anesthesia, 100 mg/kg
ketamine and 10 mg/kg xylazine were administered intraperitoneally. After that, the dorsal
region of the mice was shaven and depilated to expose the dorsal skin. A plastic mold
of 1 cm2 was used to create an excisional full-thickness dorsal skin wound. The wounds
were treated daily according to the respective group. Photographs of the wound site were
taken at 0, 3, 7, 10, 14, 17 and 20 days after surgery. Wound contraction was measured
using ImageJ 1.49v software (National Institutes of Health, Bethesda, MD, USA). The blood
glucose and the body weight were also monitored at these times. On days 7, 14, and 20
after surgery, the mice were euthanized. The wounded skin tissues were collected and fixed
in 4% paraformaldehyde, dehydrated using an ethanol gradient, embedded in paraffin
wax, and cut into 5 µm sections using a microtome. Thus, sections were stained with
hematoxilin and eosin (H&E) to observe the morphological structure of the granulation
tissue and epidermis.

2.7. Statistical Analysis

Results are presented as the mean ± standard deviation (SD) for each experimental
group. Statistical comparisons of the data were performed by one-way ANOVA followed
by Tukey’s post-test using GraphPad Prism software version 5.0. Differences between
groups were considered significant when p ≤ 0.05.

3. Results
3.1. Characterization

The Chi/HPMC/Ins hydrogel was spread evenly on aluminum foil to create a thin
film and freeze-dried to permit chemical characterization and imaging. The sparse dis-
tribution of large macropores and the presence of fibrillar structures on the film surface
are notable. Furthermore, the globular features suggest that there is heterogeneity in the
sample (Figure 1a,b). The cross-section (Figure 1c,d) reveals distinct layers in the sample.
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From left to right, there is a thin aluminum layer, a core structure with distinct layers, and a
denser outer layer. The latter is the surface shown in Figure 1a,b. The porosity in the core is
defined by the large cavities existing between layers and microcavities inside the layers.
These microcavities are considerably smaller compared to the pores on the surface.
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Figure 1. Surface (a,b) and cross-section (c,d) of the dried Chi/HPMC/Ins film.

The ATR-FTIR spectra of chitosan, HPMC, and dried Chi/HPMC/Ins gels are pre-
sented in Figure 2. For chitosan, the broad absorption signal spanning 3600 cm−1–3100 cm−1

indicates vibrations related to O-H and N-H stretching, while the peak found at 2875 cm−1

is associated with C-H stretching vibrations [25]. Absorption peaks at 1647 cm−1 mark the
presence of C=O vibrations of amide II groups, and those at 1577 cm−1 indicate the presence
of N-H vibrations in amine groups. The peaks at 1419 cm−1 and 1374 cm−1 originate from
C-H vibrations, while both peaks at 1058 cm−1 and 1025 cm−1 are related to C-O stretch-
ing [25,26]. For HPMC, there exists an absorption band spanning 3600 cm−1–3100 cm−1

which is associated solely with O-H stretching vibrations. The absorption peak at 2908 cm−1

marks C-H stretching vibrations in HPMC. The peak at 1453 cm−1 is attributed to methylene
groups. At 1375 cm−1, there is the peak related to O-H bending of the alcohol stretching
vibrations, and at 1058 cm−1, there is a peak related to C-O stretching vibrations [27,28]. In
the Chi/HPMC/Ins film, characteristic peaks of HPMC are clearly observed. In addition,
there is broadening of the characteristic peaks at 3365 cm−1, 2900 cm−1, and 1643 cm−1,
indicating the presence of chitosan. For insulin, it is expected that amide groups generate
absorption bands around 1652 cm−1 (amide I) and 1540 cm−1 (amide II) [29,30]. For amide
I, there is overlap with the signal of chitosan, while presence of an absorption band at
1540 cm−1 was not observed. A possible explanation is the low concentration of insulin in
comparison with other components of the gel or the location of the insulin in the core of the
film, i.e., at depths higher than 1 µm that are not accessible using the FTIR-ATR technique.
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We hypothesize that the gel structure comprises an interpenetrating network of HPMC and
chitosan with the inclusion of insulin.
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When heating the samples up to 100 ◦C, weight losses due to water are observed,
as seen in Figure A1. The reason for weight loss at the beginning of the temperature
increase is the evaporation of adsorbed water on the surface of the sample [31]. There is an
initial drop in the TGA graph because of the removal of adsorbed water below 100 ◦C [31].
Degradation of chitosan and HPMC is expected above 200 ◦C [32,33]. Glycerol has a
boiling point of 290 ◦C, but the presence of water reduces the boiling point [34]. Therefore,
the drop in weight between 110 ◦C and 210 ◦C is possibly attributed to the removal of
entrapped glycerol containing small quantities of water. The final transition with the onset
at 335 ◦C marks the degradation of the polysaccharides [32,33]. A second decrease marks
decomposition of the polysaccharides around 338.5 ± 3.6 ◦C. The rheological experiment
confirms that a gel film forms at 37 ◦C. According to the graph displaying changes in
the loss (G′′) and storage moduli (G′) as a function of time, which is shown in Figure A2
(Appendix A), the gel point is 240 ± 155 s.

3.2. Chi/HPMC/Ins Hydrogel Enhances the Cellular Viability of Human Keratinocyte HaCaT

To investigate the proliferation of HaCat cells on Chit/HPMC and Chi/HPMC/Ins
hydrogels after 24 h, 48 h, and 72 h of incubation, the MTT assay was performed. This anal-
ysis evidenced that the Chi/HPMC/Ins hydrogel is not cytotoxic to human keratinocytes
during any of the incubation periods. The Chi/HPMC/Ins hydrogel was able to increase
mitochondrial viability after 24, 48, and 72 h of treatment. The Chi/HPMC/Ins hydrogel
stimulated a 31.9% increase in viability of after 24 h (p = 0.3867), a 76% increase after 48 h
(p < 0.0001), and a 112% increase after 72 h, compared to the DMEM control group
(p < 0.0001) (Figure 3).
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Figure 3. Effect of Chi/HPMC/Ins hydrogel on the cell viability of human keratinocytes (HaCaT).
An increase in the cell viability of keratinocytes was produced by the Chi/HPMC/Ins hydrogel after
24 h, 48 h and 72 h of treatment, as evidenced by the MTT assay method. Values are represented
as the mean ± SD tested by one-way ANOVA with Tukey’s post hoc test. The experiments were
performed in triplicate. * p < 0.05.

3.3. Chi/HPMC/Ins Hydrogel Stimulates Cell Proliferation and Migration according to the HaCaT
Scratch Assay in Keratinocytes

To evaluate the effect of Chi/HPMC/Ins on the cell migration and proliferation of
HaCaT cells, a time-dependent (0–60 h) wound scratch assay was conducted. To do so,
the treatment’s effect on wound healing was analyzed by measuring the areas of wounds
immediately after wounding and at four different time points (Figure 4). At 24 h, the
wound open areas in the Chi/HPMC/Ins hydrogel, the Chi/HPMC hydrogel, and the
DMEM control group were 50%, 93%, and 88%, respectively (p < 0.001). At 48 h, the open
areas in the Chi/HPMC/Ins hydrogel, the Chit/HPMC hydrogel, and the DMEM were
3%, 87%, and 87%, respectively (p < 0.001). At 60 h after treatments, the Chi/HPMC/Ins
hydrogel group’s wounded area was completely closed, whereas the wounds in the other
groups were still open. The results show that the cells treated with Chi/HPMC/Ins
hydrogel migrated significantly compared to those in the Chi/HPMC hydrogel group and
the DMEM control group (Figure 4).
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3.4. The Effects of Chi/HPMC/Ins on Body Weight and Fasting Blood Glucose

Streptozotocin is a medication that destroys the pancreatic islet β-cells, inducing
diabetes mellitus. Typical symptoms of diabetes such as polydipsia, polyphagia, and
polyuria were observed in the animals after its administration. On day 3 after the wound,
the body weight slightly decreased in all experimental groups and returned to initial levels
on day 7, which was maintained until the end of the experiment on day 20, as shown in
Figure 5. Regarding the blood glucose levels, persistent hyperglycemia was observed in all
experimental groups, which confirmed the successful establishment of diabetes in C57BL/6
mice. Furthermore, it shows that the incorporation of insulin into the hydrogel does not
affect the blood glucose levels.
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Figure 5. (A) Blood glucose levels (mg/dL) on days 0, 3, 7, 10, 14, 17 and 20 after wounding are
shown as bar graphs. (B) Body weights after wounding at the same time points are depicted as line
graphs. The data are expressed as mean ± SD.

3.5. Chi/HPMC/Ins Hydrogel Reduces the Area of Full-Thickness Dorsal Skin Wound in Diabetic Mice

A full-thickness cutaneous wound in diabetic mice was established to evaluate the
efficiency of Chi/HPMC/Ins hydrogels in promoting wound healing. Mice were divided
into three groups for in vivo testing: the saline group (negative control group), Chi/HPMC
hydrogel group, and Chi/HPMC/Ins hydrogel group. The wound healing was monitored
for 20 days and photographs were taken at different time points using images captured
with a digital camera (Figure 6A). The Chi/HPMC/Ins hydrogel group presented a ten-
dency towards greater retraction in the wound area on days 3 (p < 0.05), 7 (p < 0.01), and
10 (p < 0.05) compared to the saline group and on days 7 and 10 (p < 0.01) and compared to
the Chi/HPMC group (Figure 6B).
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Figure 6. (A) Representative pictures of the area contraction of wounds treated with SAL, Chi/HPMC
hydrogel, and Chi/HPMC/Ins hydrogel on day 0, 3, 7, 10, 14, 17, and 20 post injury. Scale bar 1 cm.
(B) Percentage wound contraction. The data are expressed as mean ± SD. The level of significance is
denoted * p < 0.05 and ** p < 0.01, respectively, as tested by a one-way ANOVA with Tukey’s post hoc
test. (C) Representative images of H&E-stained histological sections on days 7, 14, and 20 after injury.
Scale bars: 100 µm.

3.6. Histological Assessment

A histological assessment of the wounded tissue in diabetic mice was performed.
Tissue sections were stained with H&E to evaluate the wound healing process on days 7,
14, and 20 post wounding. On the seventh day after injury, the Chi/HPMC/Ins hydrogel-
treated group exhibited more organized granulation tissue compared to the Chi/HPMC
hydrogel and SAL groups. On the 14th day after injury, the tissues had similar charac-
teristics in the three groups. On the 20th day after injury, all groups showed complete
re-epithelialization, but the Chi/HPMC/Ins hydrogel group showed hair follicle growth
and a smaller scar area (Figure 6C).

4. Discussion

It was hypothesized that the Chi/HPMC/Ins hydrogel might act as a wound dressing
due to the properties of its components. Several hydrogel wound dressing formulations
have been developed due to the advantages of using these materials [13,35–38].

The three-dimensional structure of hydrogels is comparable to that of the ECM, mak-
ing them of interest. Hydrogels have high hydrophilicity, which allows them to absorb
exudates and contribute to a moist environment. Furthermore, they have high porosity, are
biocompatible, have a modifiable degradation rate and a microporous structure network,
and have the potential to promote cellular proliferation and migration. All these aspects
make them suitable for wound dressings [39–44].

The hydrogel developed in this study has chitosan, HPMC, and insulin in its compo-
sition. Chitosan is a polysaccharide widely used in the design of wound dressings with
hemostatic, anti-bacterial, and fungistatic properties that enhance wound healing [45–47].

Hydroxypropyl methylcellulose (HPMC) is a white powder non-ionic cellulose ether
that is commonly used in pharmaceutical formulations [48]. The cellulose ether has sev-
eral important properties such as high tensile strength, and it shows biodegradability
and good biocompatibility with natural biopolymers such as chitosan [48]. Insulin is
a peptide hormone which exerts functions in different types of body tissue, including



Bioengineering 2024, 11, 168 11 of 16

the skin. Other studies that investigate topical insulin for wound healing showed it
modulates the re-epithelialization process, stimulating cell proliferation and migration of
keratinocytes [13,49]. Biodegradable carbohydrate polymers control hydrogel degradation
while liberating the hormone in a continued manner [9]. Therefore, the Chi/HPMC/Ins
hydrogel seems particularly promising for wound healing.

In this study, the effects of Chi/HPMC/Ins hydrogels were evaluated by in vitro and
in vivo analysis. The in vitro results show that Chi/HPMC/Ins hydrogels are not cytotoxic
to human keratinocytes. Furthermore, the hydrogel can stimulate cell proliferation and
migration of HaCaT with faster wound gap closure in a scratch model. These results
corroborate other studies which have found similar results regarding insulin’s effect on
HaCat cells [50,51]. In keratinocytes, insulin exerts its effects through PI3K-Akt-Rac1 path-
way activation, and this signaling stimulates cell migration. Furthermore, the hydrogels’
structure is like that of skin tissue and the extracellular matrix, which contributes to cellular
migration and proliferation, thus leading to faster complete tissue regeneration [39]. The
keratinocyte migration and proliferation are essential for successful wound healing [52].

In vivo, the Chi/HPMS/Ins hydrogel contributed to the wound healing process in
hyperglycemic mice without affecting blood glucose levels. Other studies have reported
the same findings for different types of hydrogels containing insulin, which reinforce our
results and the safety of topical insulin use for the treatment of skin lesions [53,54].

Topical insulin has attracted increasing interest as more effective substances are devel-
oped for the long-term release of bioactive insulin. The systemic effects of topical insulin
can be influenced by its concentration [54]. However, the use of this dose in the study
is justifiable because insulin gel enhances wound healing without alterations in glucose
level [49].

In hydrogels, insulin is entrapped in the structure, and this allows for prolonged and
controlled hormone release into the wound bed [13]. This characteristic could contribute to
safety concerning blood glucose levels. Other types of dressings have used insulin in their
formulations, and animals’ blood glucose levels have been affected by them [55,56].

Hydrogels have some essential characteristics for wound dressing, such as the ability
to keep the wound bed moist, suitable mechanical properties, and biocompatibility. These
properties are maintained in the formulation of Chi/HPMC/Ins hydrogels [13].

Additionally, hydrogels can protect the bioactive agents added to them without al-
tering their properties and can control the release of these substances to the wound bed.
Furthermore, their structure is like that of skin tissue and the extracellular matrix, which
contributes to cellular migration and proliferation, thus leading to faster complete tissue
regeneration [18,39,57–59].

Hydrogel formulations for wound dressings are well accepted in clinical practice. A
meta-analysis examined the healing effectiveness of various types of dressings, such as
hydrocolloids, foams, and hydrogels, in diabetic foot ulcers and venous leg ulcers. This
study concluded that hydrogel-based dressings were more effective in tissue repair than
other types of dressings [60,61].

Insulin use for the treatment of non-healing wounds is widespread in the litera-
ture [4,6,9,13,30,49,51,53–56,62–71]. Some studies have elucidated the effects of insulin
creams, hydrogels, or solutions in the wound-healing process [6,13,54,70]. The results of
these studies showed greater inflammatory response, re-epithelialization, and a longer
remodeling phase.

This hormone can reduce the wound healing time, modulate the inflammatory phase,
and contribute to neogenesis and epithelization. Notably, the repair of all skin structures
depends on the combination of cells, signaling molecules, and the extracellular matrix. In
addition, in vitro and in vivo studies that seek to understand the specific characteristics of
tissue repair and new products are needed to bridge the gap between dressings’ properties
and clinical practice.

In this study, the tissue microscopic evaluation showed improved granulation tissue
organization after wound treatment with a Chi/HPMC/Ins hydrogel, which indicates
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greater tissue repair. On the 20th day after the surgery, all experimental groups showed
complete epithelization and no inflammation. Full-thickness excisional wounds of diabetic
mice have been shown to take 17 days to close. Li et al. analyzed the effects of a pH-
responsive hydrogel loaded with insulin on wounds on the feet of diabetic rats [69]. The
wounds almost completely healed after 16 days of treatment. The Chi/HPMC/Ins group
demonstrated hair follicle regeneration in the wound bed, which could indicate that the
dermal papilla has recovered. This structure is crucial for hair follicle regeneration [71].
This finding corroborates that of a similar study which evaluated the effects of a pH-
responsive hydrogel loaded with insulin and a keratin-conjugated insulin hydrogel on
wound healing [42,69].

Although the application of topical insulin as a wound dressing has been investigated
using different types of formulations, such as hydrogels, creams, and fibers [9,49,51,55],
there is no consensus regarding the dosage of insulin necessary to promote wound healing.
These data can vary in the literature in terms of application frequency and the amount of in-
sulin that each product has. This makes comparisons between studies and the formulations
applied difficult [4].

5. Conclusions

In vitro assessments showed that Chi/HPMC/Ins hydrogels have very good biocom-
patibility and increased keratinocyte migration, and they are not cytotoxic for this type
of cell. In vivo, the Chi/HPMC/Ins hydrogel group had the highest wound closure rate
compared with the Chi/HPMC and SAL groups in hyperglycemic mice. Furthermore,
the Chi/HPMC/Ins hydrogel contributed to hair follicle regeneration at the wound site.
These results suggest that Chi/HPMC/Ins hydrogels could be a new potential dressing
for wound healing. Nevertheless, it is important to consider the practical clinical setting,
because in this scenario, wounds have different etiologies, and every patient has intrinsic
and extrinsic factors that could interfere in wound healing. Thus, a personalized wound
dressing should be designed to address these differences. Nevertheless, it is challenging to
translate knowledge from laboratories with controlled environments to clinical practice,
wherein different variables may affect wound healing. For that reason, clinical studies
should be performed.
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Figure A1. Weight loss as a function of temperature for the dried Chi/HPMC/Ins. 
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Figure A1. Weight loss as a function of temperature for the dried Chi/HPMC/Ins.
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