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Abstract: In this study, we developed an endoscopic hyperspectral imaging (eHSI) system and evalu-
ated its performance in analyzing tissues within tissue phantoms and orthotopic mouse pancreatic
tumor models. Our custom-built eHSI system incorporated a liquid crystal tunable filter. To assess its
tissue discrimination capabilities, we acquired images of tissue phantoms, distinguishing between
fat and muscle regions. The system underwent supervised training using labeled samples, and this
classification model was then applied to other tissue phantom images for evaluation. In the tissue
phantom experiment, the eHSI effectively differentiated muscle from fat and background tissues. The
precision scores regarding fat tissue classification were 98.3% for the support vector machine, 97.7%
for the neural network, and 96.0% with a light gradient-boosting machine algorithm, respectively.
Furthermore, we applied the eHSI system to identify tumors within an orthotopic mouse pancreatic
tumor model. The F-score of each pancreatic tumor-bearing model reached 73.1% for the KPC tumor
model and 63.1% for the Pan02 tumor models. The refined imaging conditions and optimization of
the fine-tuning of classification algorithms enhance the versatility and diagnostic efficacy of eHSI in
biomedical applications.

Keywords: hyperspectral imaging; endoscopic imaging; orthotopic mouse model; pancreatic cancer;
machine learning

1. Introduction

Pancreatic cancer remains the fourth most common cause of cancer-related death, with
incidence rates increasing by 1% per year and death rates increasing by 0.2% per year in
both sexes [1]. Only 13% of pancreatic cancers are detected at the local stage upon diagnosis
when other major regional (29%) and distant metastases (51%) are detected [2]. Due to the
advanced stage of the cancer upon diagnosis, only 15% to 20% of patients are candidates for
pancreatectomy, which is the only curative method. In addition, despite surgical resection,
prognosis is poor. Even in patients with negative margin resections with presumed curative
intent, up to 80% can experience disease recurrence [3].

Despite surgical interventions, the high recurrence rates post-surgery highlight the
need for more refined imaging modalities to enhance tumor detection and guide therapeutic
strategies. Fluorescence-guided surgery (FGS) exhibits promise in tumor detection in the
intraoperative period [4,5], and its their reliance on exogenous targeting materials presents
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limitations in terms of clinical applicability. Thus, the quest for imaging methods devoid of
exogenous dyes is paramount for translational research in pancreatic cancer diagnostics.

Hyperspectral imaging (HSI) emerges as a promising candidate in this pursuit, offering
the advantages of label-free imaging and ease of assembly in imaging systems [6,7] This
modality operates on the principle of capturing a spectral wavelength of light in each pixel,
with the help of an element like diffraction grating or a prism [8]. Currently, HSI is applied
to many kinds of disease, but it is majorly confined to superficial organs due to the light’s
limited ability to penetrate the tissue [9,10].

Recent endeavors have explored the application of hyperspectral imaging in endo-
scopic settings [11,12]. The endoscopic HSI (eHSI) technique allows us to discriminate
neoplastic tissues from normal tissues in the esophagus and colon. However, these applica-
tions have predominantly focused on ex vivo tissues, limiting their potential for in vivo
evaluations of deep-seated organs. More recently, the first-in-human pilot study of eHSI
with a fiber-bundle-based endoscope was applied to the human colon [13]. However, the
image quality was limited due to the limitation of the numbers of fiber bundles.

In response to this gap, our study introduces the development of an in vivo eHSI sys-
tem designed for label-free tissue discrimination. Through the analysis of our lab-built eHSI
system, we aimed to assess tissue identification performance within tissue phantoms. The
evaluation involved three distinct machine learning-based tissue classification algorithms
to identify an optimal classification model. Furthermore, we sought to extend the applica-
bility of eHSI to an in vivo setting by evaluating its performance in an orthotopic mouse
pancreatic tumor model. The outcomes of this study not only contribute insights into tissue
discrimination capabilities but also provide a foundation for considering translational
research opportunities in the context of pancreatic cancer diagnostics.

2. Materials and Methods
2.1. Development of the eHSI System

The eHSI system developed for this study incorporated a liquid crystal tunable filter
(LCTF) to enable spectral scanning (Figure 1). Our eHSI system featured a dual-camera
setup to enhance imaging capabilities. The rigid endoscope (HOPKINS II Telescope
27301AA, Karl Storz, Tuttlingen, Germany), strategically positioned at the front of the
system, facilitated efficient data collection. A high-power light-emitting diode (LED) light
source (TouchBright X6, Live Cell Instrument, Seoul, Republic of Korea) was applied as
an illumination light source. This configuration allowed for the simultaneous acquisition
of white light endoscopic color images and hyperspectral data. An achromatic lens (focal
length = 75 mm, LA1608-A-ML, Thorlabs, NJ, USA) and a beam splitter (30:70 (reflection–
transmission)), BS049, Thorlabs, NJ, USA) were assembled between the endoscope and
detection cameras to obtain images from the white-light and HSI cameras simultaneously. A
high-quality color CMOS camera achieved white light endoscopic color imaging (acA1920-
40uc, BASLER AG, Ahrensburg, Germany). The white light images served as a reference
for comparison with the hyperspectral data, aiding in the interpretation and analysis of
tissue characteristics.

Hyperspectral imaging using the eHSI system was carried out with a scientific CCD
camera (Retiga R1, Qimaging, Surrey, BC, Canada) connected to the LCTF. The LCTF
utilized in our custom-built system was the Kurios-WB1/M model from THORLABS
(NJ, USA). This component was crucial in capturing hyperspectral information from the
target tissues. In addition, all components were attached on the aluminum breadboard
(MB3030/M, Thorlabs, NJ, USA) and articulated on the ball stage (SL20/M, Thorlabs, NJ,
USA) to make a better position. The field of view (FOV) and spatial resolution were assessed
at a working distance of 10 mm using the USAF 1951 resolution target (R1L1S1P, Thorlabs,
NJ, USA). The FOV measured 11.1 mm, while the spatial resolution was determined to be
18.0 line pairs per millimeter (lp/mm).
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Figure 1. Endoscopic hyperspectral imaging system. A liquid crystal tunable filter was applied
between the endoscope and camera to obtain hyperspectral imaging.

The imaging workflow involved the coordinated functioning of the dual-camera
system. While the white light endoscopic color images provided a baseline for anatomical
reference, the eHSI data acquisition process involved scanning the target tissues using the
LCTF and attaching the CCD camera behind the LCTF. The hyperspectral images captured
by the scientific CCD camera facilitated the extraction of spectral signatures for subsequent
analysis.

2.2. Tissue Phantom Imaging with the eHSI System

Fresh pork tissue phantoms were employed to assess the performance of the developed
eHSI system. The exposure time of CCD camera for the eHSI system imaging was set at
500 ms for each wavelength, and the spectral range spanned from 420 nm to 730 nm with
an imaging wavelength interval of 10 nm. The light source intensity was maintained at
100%, ensuring consistent illumination during the imaging process.

Simultaneously, white light endoscopic color images were acquired using a color
CMOS camera with an exposure time of 30 ms, corresponding to video rate conditions.
This parallel acquisition of white light images provided a real-time reference for anatomical
features, complementing the hyperspectral data obtained by the eHSI system.

Following image acquisition, each wavelength-specific image generated by the eHSI
system was saved in *.tif file format.

2.3. Image Analysis

The analysis of hyperspectral data obtained from the tissue phantom imaging ex-
periments was conducted through a systematic and comprehensive approach. The raw
*.tif images, representing different wavelengths, were merged into a single ENVI file for-
mat using MATLAB ver. R2022b (Mathworks, Inc., Natick, MA, USA) This consolidation
facilitated efficient handling and processing of the hyperspectral dataset.

To conduct the analysis, we utilized the commercial software Breeze (Prediktera AB,
Umea, Sweden). Backgrounds were eliminated from individual images using pseudo RGB
representations derived from the hypercube within the software. Spectral preprocessing
procedures included principal component analysis (PCA) alongside standard normal
variate (SNV) transformation and mean centering to mitigate the effects of light scattering.
Test samples underwent manual annotation after delineating three regions of interest (ROIs)
corresponding to known tissue characteristics, such as fat or muscle (Figure 2). Within
each ROI, 500 representative pixels were evenly selected to construct representative spectra
showcasing the tissue characteristics.
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Figure 2. Image classification of eHSI in a tissue phantom. The muscle (green rectangle) and fat (blue
rectangle) of tissue phantoms were labeled with multiple rectangular regions of interest (ROIs).

For the training phase of tissue identification, we selected the light gradient boosting
machine (LGBM) algorithm following an automated evaluation of macro accuracy across
various available algorithms within the software, including decision trees, random forests,
support vector machines, maximum entropy, and logistic regression. The training of these
algorithms utilized ten pre-labeled eHSI datasets.

Upon completion of the training phase, the discrimination of tissue areas was executed
on the single test sample. In this stage, three distinct algorithms were deployed: support
vector machine (SVM), neural network (NN), and light gradient boosting machine (LGBM).
Subsequently, the pre-trained classification model was applied to additional single hyper-
spectral images obtained from different tissue phantom sites to assess the system’s ability
to discern between fat and muscle tissues. The utilization of three different algorithms facil-
itated the examination of performance disparities and identification of the most effective
approach for tissue classification.

The evaluation of classification performance employed precision, recall, and F-score
metrics, which were specifically selected to gauge the accuracy of the classification model
in distinguishing fat tissue from muscle. The adoption of multiple algorithms and rigorous
evaluation metrics contributes to a comprehensive understanding of the capabilities and
constraints of the developed eHSI system in discerning tissue characteristics within the
tissue phantom model.

2.4. Generation of Orthotopic Mouse Pancreatic Tumor Model

This animal study was conducted in compliance with ethical standards and received
approval from our Institutional Animal Care and Use Committee (IACUC). Six-week-old
female C57BL/6 mice were purchased for the study (Gbio, Gwangju, Republic of Korea).
The mice underwent a preparatory phase that involved the removal of hair from the
abdominal area using a combination of a hair remover machine and hair removing cream.
Subsequently, a carefully executed incision was made in the lateral ventral region of the
mouse, exposing the abdominal cavity, and we proceeded to make an orthotopic pancreatic
tumor model (Figure 3).
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Figure 3. The surgical process of generating the mouse pancreatic tumor model. After identifying the
mouse pancreas, pancreatic cancer cells were injected into the pancreatic tissue. A suture was applied
to the injection site to prevent accidental spillage of cancer cells. After the suture was finished, the
abdominal wall and skin were sutured with surgical suture material.

The pancreas was identified using forceps, and mouse pancreatic cancer cells (KPC,
1 × 105/20 µL; Pan02, 3 × 105/20 µL) were injected directly into the pancreatic tissue via
an insulin syringe (Ultra-fineTM II, BD, Biosciences, San Jose, CA, USA). To prevent the
reflux of cancer cells into the abdominal cavity, the injection site was ligated using vicryl
sutures. Following the injection, the abdominal wall and skin were sutured to complete the
surgical procedure. After a two-week period, tumor formation was assessed by making a
small incision in the abdominal wall. The presence and characteristics of the tumors were
examined, ensuring that the model accurately represented pancreatic tumor development.

2.5. eHSI in Orthotopic Pancreatic Tumors

The developed eHSI system was strategically employed in the assessment of the
orthotopic mouse pancreatic tumor model (Figure 4). The primary objective was to leverage
the advanced imaging capabilities of the eHSI system to discriminate between pancreatic
tumors and adjacent normal tissues. The imaging conditions for the eHSI system during
this application were configured. The exposure time for each wavelength was set at 500 ms,
spanning a wavelength range of 420–730 nm with a 10 nm imaging wavelength interval.
The light source intensity was adjusted to 60% to optimize imaging conditions. In addition,
the color camera image served as a guide to align the imaging field of the eHSI system,
ensuring precise targeting of the pancreatic tumor and surrounding tissues.
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Figure 4. Endoscopic hyperspectral imaging (HSI) system in an orthotopic pancreatic mouse tumor
model. (a) Tilted endoscopic HSI system focused on the mouse abdomen. (b) Magnified images
from the red-dotted area in Figure (a). Tip of endoscope (red arrow) focused on the open belly of the
mouse abdomen.
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Similar to the image analysis process applied in the previous tissue phantom experi-
ments, the obtained hyperspectral images were subjected to analysis using Breeze software
ver. 2023.2.0 (Prediktera AB, Umea, Sweden). The algorithm training was carried out with
single pre-labeled eHSI obtained from orthotopic pancreatic tumor model. The pre-trained
classification model was then applied to other single eHSI obtained from a different or-
thotopic pancreatic tumor model, allowing for the evaluation of the system’s ability to
discriminate tumors from other normal tissues. The tumor classification performance of
each algorithm was expressed as precision, recall, and F-score.

3. Results
3.1. Tissue Classification Performance of eHSI Images in Tissue Phantoms

The tissue classification analysis with eHSI showed notable ability to discriminate
between fat and muscle tissue (Figure 5). The classification software marked the fat tissue
of the tissue phantom with a clear margin.
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Figure 5. Hyperspectral image (HSI)-based tissue classification in a tissue phantom. (a) Pseudo
RGB image showing muscle and fat tissues of a tissue phantom. The margins are highlighted with
blue lines. (b) HSI-based classification of fat tissues (blue-colored area) and muscle tissues using the
support vector machine algorithm.

All three machine learning algorithms showed strong tissue classification performance
in discriminating fat from muscle in a tissue phantom (Table 1). Regarding precision, SVM,
NN, and LGBM achieved 98.3%, 97.7%, and 96.0%, respectively. Additionally, all three
classification models demonstrated commendable recall values, with SVM achieving 93.4%,
NN 93.8%, and LGBM 97.2%. The overall classification performance measured by the
F-score, with SVM leading at 95.8%, followed closely by NN at 95.7% and LGBM at 96.6%.
Notably, SVM exhibited the highest precision among the algorithms, showcasing its efficacy
in discriminating fat tissue from muscle within the tissue phantom model.

Table 1. Classification performance in discriminating fat from muscle in a tissue phantom according
to different artificial intelligence-based training algorithms.

SVM 1 NN 2 LGBM 3

Precision 98.3% 97.7% 96.0%
Recall 93.4% 93.8% 97.2%
F-score 95.8% 95.7% 96.6%

1 SVM, support vector machine; 2 NN, neural network; 3 LGBM, light gradient boosting machine.

3.2. Tissue Classification Performance of eHSI in Orthotopic Pancreatic Tumors

Hematoxylin and eosin staining was applied to the extracted pancreas from the
control (without cancer cell implantation), KPC, and Pan02 tumor-bearing mouse models



Bioengineering 2024, 11, 208 7 of 12

(Figure 6). Compared with the control group, bulky tumor formation was observed within
the pancreas in the KPC and Pan02 tumor-cell-implanted groups. Magnified tissue images
showed tumor cells located within the normal pancreatic cells.
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Figure 6. Histological examination of orthotopic pancreatic tumors. The white light (WL) image
depicts tumor formation (red circle) within the pancreas of mice implanted with KPC (middle column)
and Pan02 (right column) tumor cells, contrasted with the control group (left column). Hematoxylin
and eosin (H&E)-stained images, with a magnified view of the delineated red rectangular area,
illustrate the presence of tumor cells (T) amidst the glandular architecture of the normal pancreatic
tissue.

The outcomes of the classification analysis with eHSI data, elucidated in the presented
tables, underscore the effectiveness of three distinct machine learning algorithms—SVM,
NN, and LGBM—in distinguishing tumor tissues within the examined models (Table 2).

Table 2. Classification performance in discriminating tumors from adjacent normal tissue in two
orthotopic pancreatic tumor models with three different machine learning algorithms.

KPC Tumor Bearing Model Pan02 Tumor Bearing Model
SVM 1 NN 2 LGBM 3 SVM 1 NN 2 LGBM 3

Precision 91.5% 91.7% 89.6% 83.0% 82.5% 73.3%
Recall 58.5% 57.9% 61.7% 50.9% 50.8% 48.8%
F-score 71.4% 71.0% 73.1% 63.1% 62.9% 58.6%

1 SVM, support vector machine; 2 NN, neural network; 3 LGBM, light gradient boosting machine.

In the KPC tumor-bearing model, SVM exhibited a substantial precision of 91.5%,
closely followed by NN at 91.7%, and LGBM at 89.6%. Similarly, within the Pan02 tumor-
bearing model, SVM demonstrated a precision of 83.0%, surpassing NN at 82.5% and
LGBM at 73.3%. A representative image with NN is presented in Figure 7.

Regarding recall values, SVM displayed a recall of 58.5%, while NN and LGBM
achieved 57.9% and 61.7%, respectively, in the KPC tumor-bearing model. In the Pan02
model, SVM exhibited a recall of 50.9%, exceeding NN at 50.8% and LGBM at 48.8%.
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Figure 7. Hyperspectral image (HSI)-based tissue classification in an orthotopic mouse pancreatic
tumor model. (a) Pseudo RGB image showing a KPC pancreatic tumor-bearing mouse. Tumor
margins are highlighted by green lines. (b) HSI-based tissue classification of a pancreatic tumor
(red-colored area) using the neural network classification algorithm.

Furthermore, the F-score, serving as the harmonic mean of precision and recall, repre-
sents a balanced metric for evaluating the efficacy of tumor classification. In the KPC model,
SVM yielded an F-score of 71.4%, closely followed by NN at 71.0% and LGBM at 73.1%.
Similarly, within the Pan02 model, SVM attained an F-score of 63.1%, outperforming NN at
62.9% and LGBM at 58.6%. These metrics collectively underscore the nuanced performance
of the algorithms in achieving a harmonious balance between precision and recall in the
classification of tumor tissues.

4. Discussions and Conclusions

Our results present the development and evaluation of an eHSI system for discriminat-
ing tissue characteristics. The eHSI system exhibited robust performance in tissue phantom
imaging, successfully distinguishing between fat and muscle tissues. Subsequently, the
system was applied to an in vivo orthotopic pancreatic tumor model, employing three
machine learning-based classification algorithms. While the results demonstrated com-
mendable precision, the recall performance was comparatively limited, highlighting the
nuanced challenges in classifying tumor tissues within a biological context.

The fundamental basis for disease diagnosis employing his lies in the alterations of
tissue optical properties induced by morphological and biochemical changes associated
with disease progression [14]. These modifications empowhisHSI to discern lesions and
abnormal tissue, obviating the need for histological examination and thereby enhancing
efficiency and treatment outcomes. Reflectance, absorption, and scattering phenomena
spanning the visible to near-infrared light spectrum (400–1000 nm) furnish diagnostic
insights into tissue physiology, morphology, and composition [15]. Each wavelength of
light interacts uniquely with the material, influenced by its chemical composition, including
water content, hemoglobin levels, lipid concentrations, and other molecular constituents.
For instance, in pancreatic cancer, enlarged nuclear size in adenocarcinoma cells alters the
optical signature of reflectance spectra compared to normal pancreatic tissue [16]. HSI can
detect these changes and aid in discriminating tumors from normal tissues.

Morehisr, HSI finds application in disease monitoring during anticancer therapy
by reflecting tissue perfusion and oxygenation dynamics [17,18]. When anti-angiogenic
drugs are administered in breasthisncer, HSI effectively captures changes in oxygenation,
reflecting tumor responses [19]. This underscores the phisntial of HSI as a label-free
monitoring modality, garnering attention for its non-invasive and real-time assessment of
disease dynamics.

The pursuit of employing eHSI for cancer detection dates back to 2004 [20]. Initial
attempts involved acquiring eHSI data on lung epithelial tissue, marking the inception of
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broader research endeavors into lung cancer detection. Subsequently, the application of
eHSI expanded to encompass diverse biomedical approaches. However, the inherent chal-
lenge lies in the time-intensive nature of multiple imaging procedures, limiting real-time
applications. In response, some researchers have adopted a pragmatic approach, obtaining
hyperspectral images with a restricted number of spectral bands (less than six) [21,22].
Alternatively, others have sought to identify singular wavelengths that exhibit the most sub-
stantial contrast between normal and neoplastic lesions [23]. Despite promising outcomes
reported in the literature, the efficacy of hyperspectral imaging (HSI) was constrained by
the limited number of spectral bands.

To address this limitation, recent efforts have applied a more extensive spectral band
approach in eHSI applications for laryngeal [24] and upper gastroesophageal malignan-
cies [11,25]. The discrimination between tumors and adjacent normal tissues has been
accomplished through the deployment of classification methods. Presently, a transition
towards the clinical translation of eHSI is occurring; this is being facilitated by the commer-
cialization of eHSI systems, with the aim of assessing tissue perfusion [26] and identifying
key anatomical structures, such as blood vessels and nerves, during surgical procedures [27].
In line with these investigations, our study amalgamated this approach with machine learn-
ing algorithms for in vivo pancreatic tumor analysis.

To attain superior performance in tissue classification, we employed three machine
learning-based classification algorithms: SVM, NN, and LGBM. In the tissue phantom,
all three algorithms showed a higher F-score, with the highest value in LGBM (96.6%).
Meanwhile, in the orthotopic pancreatic tumor model, the overall F-score was highest in
LGBM (73.1%) in the KPC tumor-bearing mouse model and in SVM (63.1%) in the Pan02
tumor-bearing mouse model.

SVM, renowned for its robustness and efficacy, stands as one of the most widely
utilized predictors in classification problem domains. It is designed to ascertain the optimal
hyperplane for the separation of data, a process integral to the classification of diverse
classes [28,29]. An illustrative application of SVM in the realm of medical imaging is
evident in the work of Urbanos G. et al., who utilized SVM to discriminate brain tumors
from adjacent healthy tissues, achieving an impressive overall accuracy of 76% [30].

The artificial NN model exhibits favorable attributes such as simplicity and robust-
ness [31]. The architecture of the network involves source nodes representing the input
layer, a single hidden layer of computation nodes, and an output layer comprising two
nodes. This configuration of the ANN is well suited to addressing multi-dimensional
mapping challenges, particularly when provided with consistently structured data and a
sufficient number of neurons within its hidden layer. Demonstrating the efficacy of this
approach, Halicek M. et al. applied a convolutional NN for the classification of tumor
margins in head and neck cancer, achieving a notable accuracy of 90% in the detection of
thyroid carcinoma margins [32].

The LGBM represents an enhanced iteration of a gradient-boosting machine (GBM),
leveraging tree-based learning techniques. Its notable capabilities include the adept han-
dling of extensive datasets and the achievement of high-accuracy outcomes while operating
within constraints of computing resources, such as memory space and computing speed.
This proficiency positions LGBM as a favorable model when compared to alternative
approaches [33]. Kim H. et al. used LGBM to classify early-stage laryngeal cancer by
classification of voice change. The sensitivity, specificity, and accuracy rates were 70.0%,
73.3%, and 71.5%, respectively [34].

Several limitations warrant consideration in our study. Firstly, a relatively small
number of samples were utilized, and we did not conduct statistical significance evaluations
among the machine learning algorithms. However, each region of interest (ROI) was
subdivided into 500 pixels, enabling a detailed assessment of 1500 spectral features for each
tissue. Further improvements in tissue classification performance may be attainable through
the utilization of a more extensive dataset. Secondly, significant variations were observed
in the classification performance between the tissue phantom and mouse tumor model.
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The limited sample size makes it challenging to interpret these variations, which may
stem from differences in tissue structures, tumor morphology, and physiological factors.
The in vivo conditions also introduced challenges, such as light reflections from moist
organs, necessitating additional image processing to mitigate these confounding factors.
Employing more sophisticated approaches with tissue condition compensation methods
will be necessary. Thirdly, we employed a limited number of classification algorithms that
are commonly used in tissue classification. Future investigations should involve larger-
scale image datasets and comprehensive comparisons of algorithms to identify the optimal
approach for tissue classification.

In conclusion, our developed eHSI system exhibits promising applications for discrim-
inating tissue characteristics in both tissue phantoms and in vivo mouse tumor models.
While the study has provided valuable insights into the system’s capabilities, optimization
of imaging conditions and algorithm selection are pivotal for advancing the practicality
and diagnostic potential of eHSI in biomedical applications. Future endeavors focusing on
these aspects will undoubtedly contribute to the refinement and broader applicability of
this innovative imaging modality.
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