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Abstract: Kidney disease remains one of the most common ailments worldwide, with cancer being
one of its most common forms. Early diagnosis can significantly increase the good prognosis for the
patient. The development of an artificial intelligence-based system to assist in kidney cancer diagnosis
is crucial because kidney illness is a global health concern, and there are limited nephrologists
qualified to evaluate kidney cancer. Diagnosing and categorising different forms of renal failure
presents the biggest treatment hurdle for kidney cancer. Thus, this article presents a novel method for
detecting and classifying kidney cancer subgroups in Computed Tomography (CT) images based on
an asymmetric local statistical pixel distribution. In the first step, the input image is non-overlapping
windowed, and a statistical distribution of its pixels in each cancer type is built. Then, the method
builds the asymmetric statistical distribution of the image’s gradient pixels. Finally, the cancer
type is identified by applying the two built statistical distributions to a Deep Neural Network
(DNN). The proposed method was evaluated using a dataset collected and authorised by the Dhaka
Central International Medical Hospital in Bangladesh, which includes 12,446 CT images of the whole
abdomen and urogram, acquired with and without contrast. Based on the results, it is possible
to confirm that the proposed method outperformed state-of-the-art methods in terms of the usual
correctness criteria. The accuracy of the proposed method for all kidney cancer subtypes presented in
the dataset was 99.89%, which is promising.

Keywords: kidney cancer; medical imaging; image analysis; machine learning; local statistical distribution

1. Introduction

Two kidneys are in the human body, located behind the abdomen and protected by
the thorax. Blood purification is the most critical function of the kidneys. To keep the blood
and body cells clean, the kidneys remove toxic substances produced during metabolic
processes in the blood. In addition, the kidneys play a fundamental role in vitamin D
metabolism [1,2]. Kidney failure can lead to death within a few days if the blood is not
cleansed. Despite all the advances, kidney cancer continues to spread worldwide, with
over 400,000 new cases diagnosed each year [1]. Unlike most cancers, 59% of the kidney
cancer cases occur in developed countries, and the mortality rate of kidney cancer is higher
in these countries [1,2]. More than 10% of the world’s population suffers from Chronic
Kidney Disease (CKD), which was ranked as the 16th leading cause of death in 2016 and is
expected to rise to 5th place by 2040. Kidney cancer is the ninth most common cancer in
men and the fourteenth most common cancer in women [3,4]. There is a severe shortage of
nephrologists and radiologists in many regions of the world. For example, in South Asia,
the ratio of nephrologists to the population is extremely low, with only one nephrologist
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per one million people. Kidney cancer usually manifests as nodules; although, tumours
can form in one or both kidneys. Malignant cells can enter the bloodstream and affect other
organs [5,6]. Approximately 90% of the kidney cancers are caused by metastasis. Cyst
formation, nephrolithiasis, or kidney stones, and renal cell carcinoma, i.e., kidney tumours,
are the most common diseases affecting kidney function after metastasis. Early diagnosis
of kidney disorders such as cysts, stones, and tumours is essential to prevent kidney failure.
The prevalence of kidney disease, the global shortage of nephrologists and radiologists,
and the advent of medical systems based on Deep Learning (DL) paradigms highlight the
importance of developing Artificial Intelligence (AI) solutions to diagnose kidney cancer
from medical images. Such solutions can help physicians and reduce patient distress [7].
Many recent studies have been conducted to diagnose kidney cancer using medical images.
The limitations of these methods include the lack of valid datasets, the diversity of the
medical imaging devices, and the structural differences between images acquired using
different devices. Compared with long-established Machine Learning (ML) methods, DL
methods have led to the development of new medical systems. Concepts such as pre-trained
DL models have also been considered in diagnosing kidney cancer abnormalities. Based
on these explanations, a DL-based method for kidney cancer classification is proposed in
this article. The main innovations of the proposed method are as follows:

• The use of gradients and histograms with asymmetric intervals to extract features to
classify kidney cancer subtypes accurately;

• The use of feature extraction before applying the DL model to reduce the dimensional-
ity of the input data compared to the conventional methods;

• The reduction in the dimensions of the input data to increase the training speed and
reduce the complexity of the used DL model.

The proposed method, which involves calculating the intensity and gradient his-
tograms of the input kidney Computed Tomography (CT) image at asymmetric intervals,
reduces the input dimensions and effectively diagnoses various kidney cancer-related
complications. The structure of the remainder of this article is as follows: The following
section provides background information and details of applying ML and DL techniques to
detect kidney abnormalities. Section 3 explains the methodology and the proposed method.
Section 4 describes the obtained results and compares the proposed method with recent
studies in this field. Finally, Section 5 provides the conclusion.

2. Literature Review

ML-based methods can accurately segment healthy patients or those with small
nodes. However, kidney segmentation is particularly challenging [8,9]. Verma et al. [10]
preprocessed kidney ultrasound images using median and Gaussian filters and morpho-
logical operations. Using Principal Component Analysis (PCA), the authors extracted
image information and classified the kidney images using the K-nearest Neighbour (KNN)
algorithm. Khalifa et al. [11] presented a 3D technique for characterising kidneys in abdom-
inal CT images using a level set-based deformable model and Markov–Gibbs random field.
Wolz et al. [12] proposed an approach based on a hierarchical atlas registration and weighting
scheme to characterise different body organs in abdominal CT images. Yang et al. [13] also
proposed a two-step method for kidney segmentation in CT angiographic images based
on multi-atlas image registration. Zhao et al. [14] presented a 3D approach to segment
kidneys in 3D CT images, which employed an iterative technique to improve resolution.
Shehata et al. [15] employed a level set and Markov–Gibbs random field-based framework to
discriminate kidneys in diffusion Magnetic Resonance (MR) images. Khalifa et al. [16] used a
composite framework that combined non-negative matrix factorisation with a guided active
contour model to segment kidneys in 3D images. Skalski et al. [17] proposed a dynamic
contour-based method using a level-set structure for kidney segmentation in CT images.

Several ML algorithms have been investigated for kidney image classification, includ-
ing Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM), Multilayer
Perceptron (MLP), Naive Bayes, and KNN [18]. The best results were obtained using the
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KNN and Naive Bayes classifiers. Due to the increasing use of DL in image processing
and classification, many studies have been conducted to explore its applications. One of
the most promising DL applications can be found in the field of medical image processing
and analysis. For example, transfer-learning techniques have been used to process medical
images using pre-trained DL models. Compared with conventional DL models, pre-trained
models have shown better results. ResNet [19], InceptionNet [20], ExceptionNet [21], and
EfficientNet [22] are some of the pre-trained models that use transfer learning in medical
image classification. Many studies have used attention-based deep pre-trained models
for image analysis, including Vision Transformer (ViT) [23], Big Transformer (BiT) [24],
External Attention Network (EANet) [25], Compact Convolutional Transformer (CCT) [26],
and Shifted Window Transformer (SWT) [27]. Therefore, the number of DL approaches
that have been proposed to assist the diagnosis of diseases from image data is continuously
increasing. Yang et al. [28], Haghighi et al. [29], and Mehta et al. [30] used fully connected
convolutional networks to segment kidney images. Fu et al. [31] used ultrasound images
to input an attention module to segment kidney cysts in CT images. Da Cruz et al. [32]
presented a fully automated method for segmenting kidneys with and without tumours
on CT images. The method consisted of a preprocessing step for histogram normalisation,
CNN models, and a post-processing block. The first CNN model for CT image classification
and feature reduction was AlexNet, whereas the second model was U-Net, which accu-
rately segmented the kidneys. In [18,33], kidney ultrasound images were analysed using
pre-trained DNN models, mainly ResNet-101, ShuffleNet, and MobileNet-v2, for feature
extraction, and an SVM, for the classification. The above review indicates that research
on kidney images can be divided into two main categories: one focuses on kidney image
segmentation, and the other focuses on diagnosing kidney disorders. Due to the limited
number of studies addressing the diagnosis of kidney disease using medical images and
the complexity of the required processing, this study proposes a new method to identify
and categorise kidney cancer subtypes in CT images.

3. Materials and Methods

In this section, the theoretical details of the proposed method are given, along with
the selection of its parameter values. Figure 1 shows the block diagram of the adopted
methodology. Removing extra borders of the input image is a preprocessing step. The main
steps of the methodology include the extraction of the input image histogram and the use
of a Recurrent Neural Network (RNN). The selection of the correct asymmetric intervals in
the histogram extraction and the use of the RNN model are novelties of the present study.
Two blocks, namely for examining correctness and adjusting the DL parameters, were
added to maximise the efficiency of the developed methodology. The final step involves
the comparison and validation of the obtained results.

Figure 1. Diagram of the developed methodology.
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3.1. Image Black Border Removal

The border-cutting step seeks to expedite the further feature extraction by shrinking
the input image and eliminating extraneous details. Figure 2 shows an original CT image
and the corresponding one obtained after applying this procedure. With this processing,
the dark margin of the input image is eliminated, and the image is reduced. Furthermore,
because CT images contain many pixels with nearly 0 (zero) intensity values, removing
these margin pixels decreases the severity of the histogram imbalance.

Figure 2. A CT image before (on the left) and after removing its black margin (on the right).

3.2. Local Histogram with Asymmetric Intervals

An asymmetric interval is taken onto the reference to find the normalised histogram
of the regions in the cropped image. The reason for choosing an asymmetric interval for the
histogram is the higher pixel density in the darker intervals of the input image compared
with the lighter ones. This asymmetry is necessary to achieve an adequate separation in the
statistical representation of the image’s pixels. A well-known weakness of the histogram is
its global form. To solve this issue, windowing is performed, which involves dividing the
input CT image into 100 windows with identical dimensions, i.e., ten intervals in width
and height. An asymmetric normalised histogram is then built independently for each
window. An eight-point histogram yields a 100× 8 feature matrix for the input image.
Figure 3 shows an example of a windowed image.

Figure 3. An original CT image (on the left) and the corresponding windowed image (on the right).

3.3. Image Gradient Histogram with Asymmetric Intervals

In addition to extracting the input CT image’s local histogram, the image’s gradient his-
togram is used to detect the edges associated with the kidney. As all kidney complications
are usually visible as edges, the density of these edges can provide a statistical expression
of the kidney condition. Similar to the previous step, the input image is first divided into
100 windows with equal dimensions, and then, the asymmetric normalised histogram is
built from its gradient. The intervals of the gradient histogram are chosen differently from
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those of the intensity image because the gradient has a much higher density in the dark
regions of the input image; therefore, the intervals are much denser in the 0 regions and
more sparse in the lighter areas of the image. The resulting 100× 8 matrix is merged with
the intensity histogram, and the merged matrix is converted into a vector and used as a
1× 1600 input for a DNN.

3.4. Recurrent Neural Network

Figure 4 illustrates the architecture of the RNN used in this study, which consists of
sequential input and output layers and three additional layers. The second layer is a Long
Short-Term Memory Network (LSTM), a vital processing layer commonly employed in DL
models for sequential data processing.

Figure 4. The architecture of the used RNN.

The LSTM layer can retain sequential input data over long periods, making it useful
for various signal processing problems, including of medical imaging. The main advantage
of the LSTM layer is that it overcomes the usual memory limitations of the RNNs. In
conventional RNNs, the influence of distant samples becomes insignificant and eventually
tends toward 0, making them inapplicable for learning long-term dependencies. The LSTM
layer solves this problem by updating its weights using gradients while retaining the input
data longer. As shown in Figure 5, LSTMs have three main gates, input, forget, and output,
which control their output.

Figure 5. A common LSTM structure.

Each hidden unit maintains an internal state updated at each time step based on the
input and previous state. Increasing the number of hidden units improves the model’s
ability to capture complex patterns in the data but also increases the model’s computational
complexity and training time. Typically, a combination of LSTM and dropout layers is
used in the training phase to prevent overfitting. In the dropout layer, some units of the
LSTM layer are randomly disabled during training, which means that they are not updated.
However, during the prediction, all units are active. This approach effectively reduces the
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risk of overfitting. The LSTM layer can operate according to two output modes: sequence
mode and last mode. In the first mode, the LSTM generates an output equal to the input
length for each input sequence. This mode is often used for time series classification or
forecasting tasks. In the second mode, the LSTM produces only one output for the entire
input sequence, meaning that only the final response is provided. In addition, an LSTM has
several other parameters that control its behaviour, including the gate activation function,
weight initialisation, and weight regularisation. Overall, an LSTM is a robust layer for
DL models. By incorporating memory cells and information flow-controlling gates, the
LSTM layer can effectively capture long-term dependencies in the data while mitigating
the challenge of minor sample effects common in traditional RNNs. The mathematical
relationships of the LSTM structure shown in Figure 5 are as follows:

ft = σf

(
Wx f xt + Wh f ht−1 + b f

)
,

gt = σg(Wxcxt + Whcht−1 + bc),
it = σf (Wxixt + Whiht−1 + bi),
ct = ft � ct−1 � gt � it,
ot = σf (Wxoxt + Whoht−1 + bo),
ht = ot � ct,

(1)

where xt is the input, ht−1 is the previous state, ct is the last state saved in the forget gate,
W is the weight matrix, b is the bias of each gate, σ is the activation function, � is the
pointwise multiplication, and ht is the final output. The third layer, the dense layer, is
a fully connected layer commonly used in DL models for classification and regression
tasks. This layer connects each neuron in the LSTM layer to all neurons in the current layer.
The fully connected layer can effectively learn the relationships between the input data
and output classes by making such connections. Moreover, the weight matrix is updated
during training to minimise errors. In general, the result of the fully connected layer is
fed into the output layer through the softmax activation function. This function maps the
output to a range of real numbers between 0 (zero) and 1 (one) and creates a probability
distribution for the output classes. The softmax activation function is commonly used in
DL models involving classification tasks. The output of the softmax layer takes the form
of a probability vector, where each element indicates the probability of occurrence of a
particular class. The softmax output is calculated by taking the exponential of each input
vector element and then normalising the resulting values. This normalisation step ensures
that the resultant vector is a probability distribution, a vital characteristic of the softmax
activation function. The softmax function is expressed as follows:

softmax(xi) = exp(xi)/sum(exp(xj)), (2)

where xi is the input of the ith neuron, and exp is the exponential function. Throughout the
training phase, the weights of the LSTM and FC layers are modified to reduce the cross-
entropy loss function. The cross-entropy loss function models the dissimilarity between
predicted and accurate data. The cross-entropy loss function is described as follows:

L = −sum(ytrue � ypred), (3)

where ytrue is the actual value, and ypred is the predicted value.

4. Results and Discussion

This section presents the used evaluation criteria and dataset, the obtained results,
and the comparison of the proposed method with state-of-the-art methods. Thus, first, the
evaluation criteria used for the medical image classification methods are presented. Then,
the chosen dataset is described. Finally, implementation details, a study on the effects of
each method’s parameter on its accuracy, and a comparison between the results of the
proposed model and the latest methods in this field are given. All implementations were
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performed using the MATLAB 2022b software, and the hardware used consisted of an
i7-8850H 2.60 GHz (12 CPUs), 16 GB RAM, and an Nvidia Quadro P2000 graphics card.

4.1. Evaluation Metrics

The evaluation of classification models usually relies on metrics such as accuracy,
precision, recall, F1 score, and the Matthews Correlation Coefficient (MCC). Among these
metrics, accuracy, the most commonly used metric, denotes the proportion of correctly
classified samples to the total number of samples. The F1 score measures the balance
between precision and recall, as it is the harmonic mean of these two metrics. MCC is a
valuable metric when there is an imbalance in the number of classes in the used dataset,
such as detecting kidney cysts, where there may be many images without cysts compared
to those with cysts. MCC simultaneously considers true and false results in positive and
negative samples, allowing for a more accurate performance assessment than accuracy
or precision alone. Here, True Positive (TP) is defined as a correctly identified sample
belonging to a particular class, whereas True Negative (TN) represents a correctly identified
sample that does not belong to the corrected class. On the other hand, False Positive (FP)
refers to a sample assigned to a class that does not belong, and False Negative (FN) refers to
a sample that belongs to a class but is incorrectly identified as not belonging to one [34,35].
Therefore, one has the following evaluation metrics:

Accuracy = (TP+TN)
(TP+TN+FP+FN)

,
Precision = TP

(TP+FP) ,
Recall = TP

(TP+FN)
,

F1 score = 2× (Precision× Recall)/(Precision + Recall),
MCC = (TP×TN−FP×FN)√

(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
.

(4)

Additionally, the confusion matrix was used, which is a table containing the values of
TP, TN, FP, and FN from which all evaluation criteria can be derived.

4.2. Used Dataset

In this study, a dataset of kidney cysts, stones, and tumours [34] was used, which
includes images of healthy, cystic, stone, and tumour-affected kidneys obtained from the
Picture Archiving and Communication System (PACS) and workstations of the Dhaka
Central International Medical Hospital (DCIMCH), in Dhaka, Bangladesh, where the
related data collection and experimental procedures were authorised [34]. According to the
dataset description, the image headers, including patient information and various labels,
were removed, and the DICOM images were converted to the JPG format. The Philips
IntelliSpace Portal software, a standard tool for radiology equipment, was used to label
the images. In addition, the DICOM images were converted to JPG format using the Sante
DICOM Editor software. Finally, all images were reviewed and labelled by a physician [34].
The used dataset includes 12,446 images, Table 1. Examples of the images included in
the dataset are shown in Figure 6, where the red delineations indicate disease issues. For
this study, both coronal and axial sections from the CT images of the whole abdomen
and urogram, acquired with and without contrast, were selected. The unequal number of
samples across categories within the kidney dataset (Table 1) may affect the effectiveness of
the method under study. To mitigate this effect on the learning process of the proposed
method, approximately 70% (1000 samples) of the smallest category, namely the stone
category, was used for training, while the remaining samples were allocated for testing. In
addition, an equivalent number of data samples from the other categories was selected for
training, which was equal to the training samples from the stone category. This ensured that
exactly 1000 samples from each class were used in the training phase, while the remaining
samples were assigned for testing (Table 1). Therefore, the used training set included
4000 samples, while 8446 samples were assigned to the test, which means that 32% of the
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samples were assigned to the training and the rest to the test. Both training and test data
were randomly selected.

Table 1. Number of images of each class and number of training and testing samples.

Total Train Test

Cyst 3709 1000 2709
Normal 5077 1000 4077
Stone 1377 1000 377
Tumour 2283 1000 1283

Total 12,446 4000 8446

Case1 Case2 Case3

C
ys

t
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m

al
St

on
e

Tu
m
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r

Figure 6. Examples of the images included in the used dataset (delineations in red indicate disease
issues) [34].

4.3. Experimental Results

This section presents the results obtained in each step of the proposed method and the
selection scheme of its critical parameters. The results are discussed taking into account
the effect of the CT image intensity histogram intervals on the method’s accuracy, the
impact of the histogram of the image gradient intervals on the method’s accuracy, and the
performance of state-of-the-art methods.

4.3.1. Selection of Asymmetric Intervals of the Intensity Histogram

The proposed method builds an asymmetric histogram using different image windows,
which is one of the most important contributions of the current study. The asymmetric
interval of the histogram is used to separate the pixels with values near 0, owing to the large
number of dark pixels in the input image. This approach provides a more accurate statistical
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representation of CT images. However, the selection of the most suitable asymmetric
interval is crucial for obtaining accurate results. The optimal interval should maximise the
intraclass similarity of all windows and minimise the similarity of windows in different
classes. The average correlation coefficient between each window and its corresponding
window in the same classes, less the average correlation coefficient between each window
and its corresponding window in other classes, was used to generate an objective function.
The chosen histogram interval is assumed to be the same for all the windows. Thus, the
input vector of the cost function consists of seven integers between 0 and 255 values without
repetition. A genetic algorithm was used to optimise the cost function. The defined optimal
intervals are presented in Table 2. As an example, Figure 7 shows four histograms of a
window in four different classes in two symmetric and asymmetric histograms. Based on
this figure, one can perceive that, in the conventional histogram, the values of the last three
intervals are almost 0. However, all of our defined intervals have values showing that
the selected intervals have increased histogram data. In addition, the proposed intervals
decrease the similarity of the histogram values in different classes, e.g., two, three, and
four samples.

Table 2. Normal intervals and suggested intervals for a CT image intensity histogram.

Symmetric Interval 0 32 64 96 128 159 191 223 255

Suggested Range 0 8 16 32 48 80 100 130 255

Histogram (equal bins) Histogram (Unequal bins)

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3
Sa

m
pl

e
4

Figure 7. Intensity histograms of a sample window in a CT image in four classes with symmetric
intervals (on the left) and suggested intervals (on the right).
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4.3.2. Selection of Asymmetric Intervals for the Gradient Histogram

Another important novelty of the proposed method is the building of the asymmetric
gradient histogram of the input CT image. The asymmetric intervals of the histogram for
feature extraction from the gradient images are different from the used asymmetric intervals
of the CT intensity images because they have more dark pixels. This helps distinguish the
high density of pixels with near 0 values and improves the feature dissimilarity in different
classes. The process for determining the optimal interval is the same as that used for the
intensity images, except that the input is derived from the gradient of the input image.
Because the gradient captures only edges, it is generally darker than a standard image,
which results in a narrower range near 0 values and a broader range in bright areas, as
expected. The defined optimal intervals are presented in Table 3.

Table 3. Normal intervals and suggested intervals for histogram of the used CT gradient images.

Symmetric Interval 0 32 64 96 128 159 191 223 255

Suggested Range 0 4 8 12 16 24 48 96 255

Compared with Table 2, the pixels are dense around 0 values and are widely dis-
tributed at higher intervals. To illustrate this, Figure 8 shows four gradient histogram
examples in two standard and suggested intervals in a window with four different classes.

Histogram (equal bins) Histogram (Unequal bins)

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3
Sa

m
pl

e
4

Figure 8. Gradient histograms of a sample window in a CT image with four classes with symmetric
intervals (on the left) and suggested intervals (on the right).
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4.4. Experimental Results

The efficiency of the proposed method was evaluated by training its DL model using
four different approaches. First, the histogram features of the CT intensity images with the
suggested intervals were used to train the model. Second, the model was trained using the
histogram of the CT gradient images. Third, the model was trained using both features.
To analyse the effect of asymmetric intervals on the method’s accuracy, a histogram of
symmetric intervals was used for feature extraction in both CT intensity and gradient
images, and the extracted features were used to train the model. Tables 4–7 show the
confusion matrix built for each of the four classes for the training and test groups. The
results confirm that combining the intensity and gradient histograms of the CT images
yielded the best accuracy. Table 7 reveals a significant loss of efficiency when standard
histograms were used, highlighting the importance of selecting an asymmetric interval for
the histogram building.

Table 4. Confusion matrix of the proposed method for training and test sets with its model trained
with an asymmetric intensity histogram.

Train Test

Cyst Normal Stone Tumour Cyst Normal Stone Tumour

Cyst 1000 0 0 0 2709 0 0 0
Normal 2 998 0 0 3 4074 0 0
Stone 0 2 998 0 0 9 368 0
Tumour 0 0 7 993 0 0 13 1271

Table 5. Confusion matrix of the proposed method in the training and test data with its model trained
with an asymmetric gradient histogram.

Train Test

Cyst Normal Stone Tumour Cyst Normal Stone Tumour

Cyst 1000 0 0 0 2707 0 0 2
Normal 12 945 0 43 12 4013 19 33
Stone 0 9 991 0 0 17 360 0
Tumour 0 0 8 992 0 0 12 1271

Table 6. Confusion matrix of the proposed method trained with combined intensity and
gradient histograms.

Train Test

Cyst Normal Stone Tumour Cyst Normal Stone Tumour

Cyst 1000 0 0 0 2709 0 0 0
Normal 2 998 0 0 2 4074 1 0
Stone 0 3 997 0 0 1 360 0
Tumour 0 0 3 997 0 0 5 1278

Table 7. Confusion matrix of the proposed method trained with symmetric combined intensity and
gradient histograms.

Train Test

Cyst Normal Stone Tumour Cyst Normal Stone Tumour

Cyst 808 0 192 0 2131 0 578 0
Normal 1 989 10 0 0 4066 11 0
Stone 2 13 985 0 0 6 371 0
Tumour 9 1 22 968 22 15 59 1187
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Table 8 includes state-of-the-art studies that used the same kidney dataset and their
corresponding accuracies for each class. In [34,36,37], a better performance than other studies in
terms of overall accuracy was found. However, the proposed method outperformed all previous
approaches on all correctness criteria. Moreover, regarding the data assigned for training and
testing, the proposed method achieved a better response using less training data, indicating its
proper efficiency. The proposed method has several unique features that distinguish it from
the other methods. One such feature is the use of intensity and gradient histogram features.
This reduces the input dimensions and converts the two-dimensional (2D) DL model into a
one-dimensional (1D) model. As an advantage, the dimension reduction of input features and
conversion to a 1D model reduces the processing and complexity of the model. The second
advantage is the feature extraction speed of the proposed method because both the gradient
and histogram operators used in the proposed method are computationally fast. Therefore,
the proposed method is excellent regarding response time. Based on these findings, one can
conclude that the use of histogram and gradient operators in local form can be a simple but
effective approach for the classification of medical images in numerous applications.

Table 8. Comparison of the proposed and latest related methods.

Model Accuracy Class Precision Recall F1 Score MCC

YOLOv7 [35] —

Cyst 0.892 0.633 0.74 0.673
Normal — — — —
Stone 0.819 0.855 0.836 0.816

Tumour 0.936 1 0.966 0.960
Average 0.882 0.829 0.854 0.648

EANet [34] 77.02%
Cyst 0.593 1 0.745 0.788

Normal 0.896 0.848 0.871 0.616
Stone 0.845 0.495 0.624 0.821

Tumour 0.93 0.777 0.847 0.994

Swin Transformer [34] 99.30%
Cyst 0.996 0.996 0.996 0.981

Normal 0.996 0.981 0.988 0.983
Stone 0.981 0.989 0.985 0.996

Tumour 0.993 1 0.996 0.923

CCT [34] 96.54%
Cyst 0.968 0.923 0.945 0.970

Normal 0.989 0.975 0.982 0.966
Stone 0.94 1 0.969 0.956

Tumour 0.964 0.964 0.964 0.974

VGG16 [34] 98.20%
Cyst 0.996 0.968 0.982 0.965

Normal 0.985 0.973 0.979 0.974
Stone 0.966 0.988 0.977 0.986

Tumour 0.982 0.996 0.989 0.596

Inception v3 [34] 61.60%
Cyst 0.645 0.826 0.724 0.465

Normal 0.584 0.898 0.708 0.459
Stone 0.568 0.462 0.509 0.412

Tumour 0.76 0.295 0.425 0.566

Resnet50 [34] 73.80%
Cyst 0.735 0.641 0.685 0.625

Normal 0.77 0.79 0.78 0.684
Stone 0.745 0.692 0.717 0.706

Tumour 0.706 0.827 0.762 0.673

Deep CNN [36] 99.25%
Cyst 0.97 1 0.98 1

Normal 1 1 1 0.994
Stone 1 0.99 1 0.988

Tumour 1 0.98 0.99 1

Lightweight CNN [37] 99.52%
Cyst 0.994 0.999 0.998 0.995

Normal 0.995 0.997 0.997 0.993
Stone 0.997 0.979 0.988 0.986

Tumour 0.993 0.995 0.995 0.993

Proposed method 99.89%
Cyst 0.999 1 1 0.999

Normal 1 0.999 1 0.999
Stone 0.984 0.997 0.991 0.990

Tumour 1 0.996 0.998 0.998
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5. Conclusions

In this study, An innovative method for categorising kidney anomalies, including
cysts, healthy kidneys, tumours, and stones, was presented. The method uses CT scans
of the kidney as input and builds the images’ intensity and gradient histograms from
non-overlapping windows. Then, a five-layer DL model featuring an LSTM layer is
trained using these attributes to classify CT images according to the kidney issue. The
feature extraction step involves the building of the histograms using asymmetric intervals
because the CT images and their gradients usually have many pixels with dark values. The
optimum selection of asymmetric histogram intervals is the primary factor contributing to
the suggested method’s effectiveness. The histogram intervals that maximised the similarity
of the retrieved features across classes and the differences in features between classes were
chosen using a cost function. Additionally, the resultant features are combined into a feature
vector, which significantly reduces the number of weights and the overall complexity of
the used DNN model compared to the related two-dimensional model. Compared to
current efforts in this field, testing the suggested method under various situations on the
chosen dataset showed that it is highly efficient. The method has demonstrated superior
performance compared to existing methods, outperforming them in various evaluation
criteria. Specifically, it achieved a precision of 0.984, a recall of 0.996, an F1 score of 0.991,
and an MCC of 0.990. The effectiveness of the proposed method can be attributed to its
distinctive characteristics, such as the thoughtful selection of relevant features and the
design of its DL model comprising five layers. The suggested model structure seamlessly
aligns with the identified features, which increases the method’s strength and efficiency.
As part of future work, an enhanced version of the proposed method could incorporate
additional features, such as texture and time-frequency features. This modification will
extend the classification capabilities beyond those offered by the initially proposed method,
allowing for the identification of a broader range of classes. Validating the proposed
method using different datasets is critical to confirm its performance, mainly in clinical
usage, and should be addressed in the near future. Moreover, the explainability of the
proposed method should be studied to facilitate its use by clinicians.
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