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Abstract: A biodegradable hybrid polymer patch was invented at the University of Cincinnati to
cover gaps on the skin over the spinal column of a growing fetus, characterized by the medical
condition spina bifida. The inserted patch faces amniotic fluid (AF) on one side and cerebrospinal
fluid on the other side. The goal is to provide a profile of the roughness of a patch over time at 0, 4, 8,
12, and 16 weeks with a 95% confidence band. The patch is soaked in a test tube filled with either
amniotic fluid (AF) or phosphate-buffered saline (PBS) in the lab. If roughness is measured at any
time point for a patch, the patch is destroyed. Thus, it is impossible to measure roughness at all weeks
of interest for any patch. It is important to assess the roughness of a patch because the rougher the
patch is, the faster the skin grows under the patch. We use a model-based approach with Monte Carlo
simulations to estimate the profile over time with a 95% confidence band. The roughness profiles
are similar with both liquids. The profile can be used as a template for future experiments on the
composition of patches.

Keywords: birth defects; hybrid polymer patches; destructive sampling; multivariate normal distribution

1. Introduction

Spina bifida (SB) is a congenital neural tube defect that occurs during the early stages
of fetal development, which is characterized by the incomplete closure of the neural tube,
resulting in a range of spinal cord abnormalities [1]. The neural tube normally forms early
in pregnancy, closing around the fourth week of conception [2]. However, in cases of spina
bifida, this closure is incomplete, with amniotic fluid entering the fetus and cerebrospinal
fluid seeping out of the fetus, resulting in structural defects in the spinal cord that can
significantly impact the quality of life and well-being of the patients [3]. The three main
types of spina bifida are spina bifida occulta, meningocele, and myelomeningocele, with
varying degrees of severity [4]. Spina bifida occulta is the mildest form, involving a small
gap in the spine with no visible protrusion [5]. Meningocele involves a sac of cerebrospinal
fluid protruding through the opening, while myelomeningocele is the most severe form,
where the spinal cord and its protective covering protrude outside the body [6–8]. Spina
bifida can range from being soft to causing a disability. Symptoms depend on where on
the spine the opening is located and how large the gap is. More serious symptoms happen
when the spinal cord and nerves are involved. The precise etiologies of spina bifida are
complex and multifactorial, involving genetic and environmental factors [9]. Factors such
as folic acid deficiency, certain medications, and maternal health conditions may contribute
to the occurrence of spina bifida [9,10].
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In the United States, about 1500 infants, or 1 in every 2700 births, are born with spina
bifida every year [11]. It is a neural tube defect that frequently occurs in families. Spina
bifida occurs because of an abnormality in the development of the spinal cord that occurs
in the first trimester of pregnancy. Treatment of spina bifida varies based on the severity
and type of the condition, and it includes several methods [12]. If the condition is detected
early, fetoscopy is a good option for rectifying the problem, having been proven to be safer
and more beneficial than traditional surgery [13–15]. The latest technology used in the
minimally invasive fetoscope prenatal surgery involves deploying a coiled patch through a
trocar, expanding the patch at the surgical site, and using tissue sealants or sutures [16]. If
the condition is not detected in a timely fashion, the baby will live with the condition with
several physical and mental ailments like paralysis and bowel and bladder dysfunction [13].
When necessary, early treatment for spina bifida involves surgery. However, surgery does
not always completely restore lost function. Ideally, early screening and diagnosis can
reduce the likelihood of damage to the baby.

2. Materials and Methods

The Cincinnati Children’s Hospital Medical Center, in cooperation with the Biomedical
Engineering Department at the University of Cincinnati, had developed a polymeric patch
to protect the defect site and prevent fluid transfer. The patch designed is biocompatible,
watertight, self-expanding, and biodegradable. It is a hybrid of poly (L-lactic acid) (PLA)
and poly(ε-caprolactone) (PCL) polymers in a 4:1 ratio. PLA degrades quickly, while PCL
degrades slowly. Through a series of experiments, it was found that the hybrid patch
degrades by an average of ~20% by weight in 16 weeks. Further studies will be conducted
in animal models to track degradation beyond 16 weeks.

The patch has been experimented successfully on rats. One major advantage of
the hybrid patch is that it is not necessary to perform a second surgery to remove the
patch. The patch is patented (the patch for spina bifida repair is under U.S. Patent No.
WO/2018/067811), and the details about the patch were reported in their previous re-
search [16–18].

The next item on their research agenda was to examine the properties of the hybrid
polymer patch in a simulated fetal environment. Inside the womb, the patch faces amniotic
fluid (AF) on one side and physiological (cerebrospinal) fluid on the other side. The
physiological fluid is chemically represented by phosphate-buffered saline (PBS). Amniotic
fluid discarded from fetal surgeries at Cincinnati Children’s Hospital Medical Center
was used for experimental purposes with IRB permission (CCHMCIRB#2017-2414). The
designed patches are placed in test tubes either soaked in AF or PBS. One of the tasks is to
measure patch roughness over a span of time. The reason for measuring roughness is to
assess how good the patch is at absorbing nutrients. The higher the degree of roughness
is, the stronger the nutrients latch onto the patch, and the speedier the natural skin covers
the gap. To measure the roughness of a patch, the patch is subjected to a process, which is
destructive. Once the measurement is obtained, the patch is no longer usable. Consequently,
how roughness evolves over time cannot be assessed. Despite this acute difficulty in
obtaining the requisite data, it is hoped that the assessment over time could be possible in
some way. We are addressing this issue in the paper.

The data we have on hand are destructive. All the roughness measurements come
from different patches. The goal is to develop a profile of roughness using this destructive
data. This problem is common in pharmaceutical drug testing [19–21]. One common
research problem in pharmacokinetics is obtaining a profile of how much of a drug remains
in the blood. A researcher injects a specific drug at 0 h into a mouse and examines how
much drug is left in the bloodstream at several different hours. At any hour of interest,
a mouse has to be sacrificed in order to determine the amount of drug in the blood. It is
impossible to measure the amount of drug left in the blood for several hours for a single
mouse. Pharmaceutical researchers implement the so-called “Sacrifice Design” to collect
data [19–21]. The classical complete data design where each animal is sampled for analysis
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once per time point is usually only applicable for larger animals. In the case of rats and mice,
where blood sampling is restricted, the batch design or the serial sacrifice design needs
to be considered. In serial sacrifice designs, only one sample is taken from each animal.
The design involves injecting the drug into 10 animals, for example. At one hour, two
animals are sacrificed to measure their drug content. At two hours, another two animals are
sacrificed to measure their drug content. This is repeated at 4, 10, 12, and 24 h. We will never
have data at all hours of interest for any animal [22–25]. Our data, in spirit, are similar to
the data from the sacrifice design. Monte Carlo methods can be used to recover profile data
from the destructive data [25,26]. The Monte Carlo method is a generic name for recovering
information from partial data by simulations. In this paper, we introduce an innovative
Monte Carlo method to generate profiles of patches from destructive data. Our method is
model-based. We pursued two types of Monte Carlo simulations to generate profiles with
confidence bands. In one, it was a conditional profile conditioned on information at the
16th week. In the other, it was an unconditional profile covering the entire time span. The
details are provided in the Materials and Method Section 2.2.

2.1. Experimental Details

Twelve patches were placed in separate test tubes soaked in AF and kept in a shaker.
Another twelve patches were placed in separate test tubes soaked in PBS in a shaker.
Roughness was measured on an additional three patches as baseline measurements. At
four weeks, three patches from AF test tubes were removed and roughness was measured.
As has been pointed out, these patches were not reusable. The same process is repeated at
eight weeks, twelve weeks, and sixteen weeks. The same is repeated for PBS patches. The
data are reproduced in Table 1. Summary statistics are provided in Table 2.

Table 1. Roughness measurements by fluid and time.

Roughness

Week Baseline AF PBS

0 139
0 122
0 132
4 223 177
4 267 202
4 217 212
8 245 185
8 269 198
8 257 205
12 265 167
12 283 217
12 285 248
16 306 224
16 247 198
16 320 229

Table 2. Mean and standard deviation (SD) of roughness by fluid and time.

Week
Baseline AF PBS

Mean SD Mean SD Mean SD

0 131 8.54
4 235.67 27.3 197 18.03
8 257 12 196 10.15

12 277.67 11.02 210.67 40.87
16 291 38.74 217 16.64
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The roughness of a patch rises over time on average, no matter whether the patch was
soaked in amniotic fluid or phosphate-buffered saline. Our goal was to build a profile of the
roughness of a patch soaked either in AF or PBS at 0, 4, 8, and 12 weeks given X5. We use a
model-oriented endeavor to build the profiles. The method is outlined and implemented in
Section 2.2.

2.2. Statistical Methods

For any hybrid polymer patch, let X1 = roughness at zero weeks. After the patch is
dipped in AF (or PBS), let X2 = roughness at four weeks, X3 = roughness at eight weeks,
X4 = roughness at twelve weeks, and X5 = roughness at sixteen weeks.

Technically, the vector (X1, X2, X3, X4, X5) is not observable in its entirety for any patch.
This means, for example, if X1 is observed for a patch, X2, X3, X4, and X5 are not observable.
In the experiment, three measurements were obtained on each Xi independently from a
total of 15 patches. Let (µ1, µ2, µ3, µ4, µ5) be the population mean vector of (X1, X2, X3,
X4, X5). The homogeneity of the means was tested by the ANOVA (analysis of variance)
method. The null hypothesis of homogeneity of means was rejected for patches soaked
in AF (p < 0.001). The homogeneity of population variances was tested by the Bartlett test
(p = 0.247). The hypothesis of homogeneity of variances was not rejected. An estimate of
the common variance was given as 517. The normality and homoskedasticity were checked
out to be valid (Wilk–Shapiro test: p = 0.705). Similar results hold for patches soaked in
PBS (homogeneity of means: p = 0.005; normality and homoscedasticity: Wilk–Shapiro
Test: p = 0.364; homogeneity of variances: Bartlett test: p = 0.253). Estimate of the common
variance = 490.

Each Xi can be taken to be normally distributed. It is reasonable to assume that (X1,
X2, X3, X4, X5)~MVN5(µ, Σ) with mean vector µT = (µ1, µ2, µ3, µ4, µ5) = (µ(1), µ5) and
dispersion matrix

Σ =


σ2

1 ρσ1σ2 ρσ1σ3 ρσ1σ4 ρσ1σ5
ρσ2σ1 σ2

2 ρσ2σ3 ρσ2σ4 ρσ2σ5
ρσ3σ1 ρσ3σ2 σ2

3 ρσ3σ4 ρσ3σ5
ρσ4σ1 ρσ4σ2 ρσ4σ3 σ2

4 ρσ4σ5
ρσ5σ1 ρσ5σ2 ρσ5σ3 ρσ5σ4 σ2

5

=

(
Σ11 Σ12
Σ21 Σ22

)
,

where Σ11 is the dispersion matrix of (X1, X2, X3, X4), and Σ22 = (σ2
5 ). The entity µ(1) is the

mean vector of (X1, X2, X3, X4). The way we have partitioned the mean vector and the
dispersion matrix is influenced by the following conditional distribution. The acronym
MVN stands for multivariate normal distribution.

The Xi s are equi-correlated with common correlation coefficient ρ. The dispersion
matrix is positive if −1/4 < ρ < 1. We have chosen the simple model because it is a
reasonable way to build a conditional profile of roughness. We can also handle the
conditional probability.

Pr(−a ≤ X1 − µ1 ≤ a, −b ≤ X2 − µ2 ≤ b, −c ≤ X3 − µ3 ≤ c, −d ≤ X4 − µ4 ≤ d|X5),
which will be helpful for building a prediction band. Even though we know the conditional
distribution of X1, X2, X3, X4 given X5, under this model, calculating the conditional proba-
bility is extremely difficult. It involves evaluating a four-dimensional integral. However,
the distribution can be simulated so that the joint probability can be estimated. This is the
gist of the Monte Carlo simulations.

The conditional joint distribution of

(X1, X2, X3, X4) |X5 ∼ MVN4

(
λ, Σ11 − Σ12Σ−1

22 Σ21

)
,
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where λ = µ(1) + Σ12Σ−1
22 (X5 − µ5) =


µ1
µ2
µ3
µ4

+ ρ


σ1/σ5
σ2/σ5
σ3/σ5
σ4/σ5

(X5 − µ5) and

Σ11 − Σ12Σ−1
22 Σ21= Σ11 −ρ2


σ1
σ2
σ3
σ4

(
σ1 σ2 σ3 σ4

)
.

The conditional dispersion matrix is also equi-correlated with correlation ρ/(1 + ρ).
The conditional variance of Xi|X5 is (1 − ρ2) × σ2

i . The conditional variance is less now,
and the correlation is also less if ρ > 0.

Our strategy now works out as follows:

1. Given X5, simulate the joint distribution of (X1, X2, X3, X4). This requires knowledge
of the conditional mean and conditional dispersion matrix.

2. We need µi s, which can be estimated using the individual data on Xi s.
3. We need σi s, which can be estimated using the individual data on Xi s.
4. The correlation coefficient ρ glues the means, variances, and joint distribution. There

was no way we can estimate the correlation coefficient using the marginal data we
have. We performed simulations by assuming the value of ρ = 0.0 (0.1) 0.9.

5. We conducted Monte Carlo simulations. For each choice of ρ and fluid, Steps 1 through
4 were repeated one thousand times. The average of (X1, X2, X3, X4) s was the desired
profile. The 95% band surrounding the mean was built using the following inequality:

Pr(−a1 ≤ X1 − µ1 ≤ a1, −a2 ≤ X2 − µ2 ≤ a2, −a3 ≤ X3 − µ3 ≤ a3, −a4 ≤ X4 − µ4 ≤ a4|X5)

≥ ∏4
i=1 Pr(−ai ≤ X1 − µ1 ≤ ai|X5)

See Dykstra [27] and Tong [28,29].
Each marginal probability was set at 0.95ˆ0.25 and solved for a. The band was conser-

vative. Simulations were carried out and the results were reported in Section 3.
For the unconditional profile, we took each Xi to be normally distributed. It was

reasonable to assume that (X1, X2, X3, X4, X5)~MVN5(µ, Σ) with mean vector µT = (µ1, µ2,
µ3, µ4, µ5) and dispersion matrix

Σ = σ2


1 ρ ρ ρ ρ
ρ 1 ρ ρ ρ
ρ ρ 1 ρ ρ
ρ ρ ρ 1 ρ
ρ ρ ρ ρ 1

.

Each Xi was assumed to have the same variance. This was justified by the ANOVA
procedure carried out in Section 2.2. This model was the classic equi-correlated normal
distribution, which means there was the same variance and correlation (ρ) between any
two Xi and Xj. We took the liberty in assuming equi-correlation. This assumption allowed
us build a profile of roughness overtime and a 95% confidence band of the profile. We
chose the simple model because this was a reasonable way to build a profile of roughness.

The goal now was to find a number a such that:

Pr(−a ≤ X1 − µ1 ≤ a, −a ≤ X2 − µ2 ≤ a, −a ≤ X3 − µ3 ≤ a, −a ≤ X4 − µ4 ≤ a, a ≤ X5 − µ5 ≤ a) = 0.95.

This probability was a function of the means µ1, µ2, µ3, µ4, µ5, σ2, and ρ. We used
estimates of means and common variance in the equation. We experimented with several
choices of correlation for the band. We chose ρ = 0.5 for which the length of each interval
2 × a was minimum. The calculation of the probability was daunting. We resorted to Monte
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Carlo simulations. The multivariate normal distribution was simulated one thousand times
to determine a for our choice of ρ [30].

3. Results
3.1. Conditional Profile

We set X5 to equal the average of observed X5. For AF, X5 = 291 and for PBS, X5 = 217.
The Monte Carlo average profile remained more or less the same across a whole range of ρ
s. We calculated the average profile at ρ = 0.6 for each fluid.

For amniotic fluid, the band is narrow at 0, 8, and 12 weeks. The band is very wide
at 12 weeks. The variances in the marginal data very strongly influence the width of the
bands (Figure 1).
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Figure 1. Conditional profile of roughness at zero, four, eight, and twelve weeks given roughness at
sixteen weeks + 95% prediction band.

3.2. Unconditional Profile

The unconditional profiles were stable across time. This was the result of the model
we assumed. The vertical width was constant across time. The width was wider for AF
than for PBS.

4. Discussion and Conclusions

Estimating roughness profile of a patch at 0, 4, 8, and 12 weeks given information
on roughness at 16 weeks seemed to be hopeless with the data we had on hand. Our
data were destructive in the sense that once roughness was measured on a patch, the
patch was no longer useable. We overcame the difficulties by following a model-based
approach. We assumed that the roughness measurements on a patch have a multivariate
normal distribution with all pairwise correlations equal. By resorting to Monte Carlo
simulations [19–21], we were able to build the required profile.
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The means of roughness were rising over the weeks no matter in what fluid the patches
were soaked in. However, there was no clear pattern among standard deviations. The
standard deviations of roughness were the largest at 16 weeks for AF and 12 weeks for PBS.
Since we were conditioning the profile at 16 weeks, the profile of roughness at the other
weeks for AF provided a steady behavior over the weeks. However, the band for PBS at
12 weeks was very wide, reflecting unusual variation present at 12 weeks for PBS.

The unconditional profile was stable over time for both fluids. The stability was due
to a constant variance in roughness over time. The assumption of variance was permissible
because the ANOVA procedure justified it. According to Figures 2 and 3, the vertical width
of the profiles was approximately 100.
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Figure 3. Unconditional profile of roughness at zero, four, eight, twelve and sixteen weeks + 95%
prediction band for PBS.

This is the first study that develops a biodegradable hybrid patch to cover the gap
in the skin of a fetus. The roughness measurements and the profile serve as a template
for future research. Future research work would involve creating a hybrid patch with a
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different composition of polymer patches. The roughness of the new patch can then be
compared with our roughness analysis of the hybrid patch.

Inferring the joint behavior of the variables based on marginal behavior is fraught with
difficulties. The assumption of equi-correlation seems to be very strong, and its validity is
difficult to assess with the limited data available. There are some limitations to our study.
There is considerable variation in the marginal data. It seems that no fluid is preferable
to the other. Small sample size could be a reason. Sample sizes are typically small in
biomedical research. We have informed the core researcher of the need for a reasonable
number of samples for a clear understanding of the evolution of roughness over time. In
addition, our study is a single-institution study. More trustworthy conclusions could be
drawn from a multi-institutional study.

Examining properties of hybrid patches is a natural line of research following the core
experiment of covering gaps on the skin of a fetus. In this paper, we laid out how to build a
profile using destructive data. The methodology we used is applicable to study other prop-
erties. We also plan to explore and improve the methodology to overcome assumptions.

The overarching research goal is to understand how roughness of hybrid patches
evolves overtime when the patch is immersed either in AF or PBS. The profile we developed
can be used as a template for future experiments on the composition of patches. The
experimentalists, as it stands now, understand that amniotic fluid exposure has a higher
effect on the surface roughness of the patch.

Author Contributions: Conceptualization, T.G. and M.B.R.; methodology, T.G.; software, T.G. and
K.W.; validation, T.G., R.T. and M.B.R.; formal analysis, T.G.; investigation, M.O., J.L.P. and C.-Y.L.;
resources, M.O., J.L.P. and C.-Y.L.; data curation, R.T., M.O., J.L.P., C.-Y.L. and T.G.; writing—original
draft preparation, T.G.; writing, M.B.R. and T.G.; visualization, M.B.R.; supervision, M.B.R.; project
administration, T.G.; funding acquisition, T.G. and M.B.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by “Bioengineering Research Grant, grant number NIH/NINDS
R01NS103992” and “The APC was funded by University of Cincinnati, Library”.

Institutional Review Board Statement: The animal study protocol was approved by the Institutional Re-
view Board (or Ethics Committee) of the University of Cincinnati (protocol code CCHMCIRB#2017-2414).

Informed Consent Statement: Not applicable.

Data Availability Statement: Reported in Table 1.

Acknowledgments: We thank Melodie Fickenscher at the Advanced Materials Characterization
Center (University of Cincinnati) for help with surface roughness characterization. We also thank
the Bioengineering Research Grant (NIH/NINDS R01NS103992), Ohio’s Third Frontier Technology
Validation and Start-up Fund (TVSF), and the Cincinnati Children’s Innovation Fund for the financial
support. This publication was made possible in part by support from the Kent State University Open
Access Publishing Fund. We sincerely appreciate the College of Public Health at Kent State University
for providing facilities to carry out research of the paper. The first author immensely grateful to Mu
Guan for sustaining throughout her life so far.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Iskandar, B.J.; Finnell, R.H. Spina Bifida. N. Engl. J. Med. 2022, 387, 444–450. [CrossRef] [PubMed]
2. Avagliano, L.; Massa, V.; George, T.M.; Qureshy, S.; Bulfamante, G.; Finnell, R.H. Overview on Neural Tube Defects: From

Development to Physical Characteristics. Birth Defects Res. 2018, 111, 1455–1467. [CrossRef] [PubMed]
3. Hassan, A.-E.S.; Du, Y.; Lee, S.Y.; Wang, A.; Farmer, D.L. Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging

Cellular Therapies. J. Dev. Biol. 2022, 10, 22. [CrossRef] [PubMed]
4. About Spina Bifida. Available online: https://www.nichd.nih.gov/health/topics/spinabifida/conditioninfo (accessed on 23

January 2024).
5. How Do Healthcare Providers Diagnose Spina Bifida? Available online: https://www.nichd.nih.gov/health/topics/spinabifida/

conditioninfo/diagnose (accessed on 23 January 2024).

https://doi.org/10.1056/NEJMra2116032
https://www.ncbi.nlm.nih.gov/pubmed/35921452
https://doi.org/10.1002/bdr2.1380
https://www.ncbi.nlm.nih.gov/pubmed/30421543
https://doi.org/10.3390/jdb10020022
https://www.ncbi.nlm.nih.gov/pubmed/35735913
https://www.nichd.nih.gov/health/topics/spinabifida/conditioninfo
https://www.nichd.nih.gov/health/topics/spinabifida/conditioninfo/diagnose
https://www.nichd.nih.gov/health/topics/spinabifida/conditioninfo/diagnose


Bioengineering 2024, 11, 249 9 of 9

6. Song, R.B.; Glass, E.N.; Kent, M. Spina Bifida, Meningomyelocele, and Meningocele. Vet. Clin. N. Am. Small Anim. Pract. 2016,
46, 327–345. [CrossRef] [PubMed]

7. Muñiz, L.M.; Del Magno, S.; Gandini, G.; Pisoni, L.; Menchetti, M.; Foglia, A.; Ródenas, S. Surgical Outcomes of Six Bulldogs with
Spinal Lumbosacral Meningomyelocele or Meningocele. Vet. Surg. 2019, 49, 200–206. [CrossRef] [PubMed]

8. Piatt, J.H. Treatment of Myelomeningocele: A Review of Outcomes and Continuing Neurosurgical Considerations among Adults.
J. Neurosurg. 2010, 6, 515–525. [CrossRef] [PubMed]

9. Copp, A.J.; Adzick, N.S.; Chitty, L.S.; Fletcher, J.M.; Holmbeck, G.N.; Shaw, G.M. Spina Bifida. Nat. Rev. Dis. Primers 2015,
1, 15007. [CrossRef]

10. Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; García, F.; Kemper, A.R.; Krist, A.H.; Kurth, A.;
Landefeld, C.S.; et al. Folic Acid Supplementation for the Prevention of Neural Tube Defects. JAMA 2017, 317, 183. [CrossRef]

11. Spina Bifida Data and Statistics|CDC. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/
ncbddd/spinabifida/data.html (accessed on 23 January 2024).

12. Spina Bifida—Diagnosis and Treatment—Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/
spina-bifida/diagnosis-treatment/drc-20377865 (accessed on 23 January 2024).

13. Adzick, N.S.; Thom, E.; Spong, C.Y.; Brock, J.W.; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton,
L.N.; et al. A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004.
[CrossRef]

14. Moldenhauer, J.S.; Soni, S.; Rintoul, N.E.; Spinner, S.S.; Khalek, N.; Martinez-Poyer, J.; Flake, A.W.; Hedrick, H.L.; Peranteau,
W.H.; Rendon, N.; et al. Fetal Myelomeningocele Repair: The Post-MOMS Experience at the Children’s Hospital of Philadelphia.
Fetal Diagn. Ther. 2014, 37, 235–240. [CrossRef]

15. Cortés, M.S.; Chmait, R.H.; Lapa, D.A.; Belfort, M.A.; Carreras, E.; Miller, J.L.; Brawura-Biskupski-Samaha, R.; González, G.S.;
Gielchinsky, Y.; Yamamoto, M.; et al. Experience of 300 Cases of Prenatal Fetoscopic Open Spina Bifida Repair: Report of the
International Fetoscopic Neural Tube Defect Repair Consortium. Am. J. Obstet. Gynecol. 2021, 225, 678.e1–678.e11. [CrossRef]

16. Tatu, R.; Oria, M.; Pulliam, S.; Signey, L.; Rao, M.B.; Peiró, J.L.; Lin, C. Using Poly(L-lactic Acid) and Poly(

Bioengineering 2024, 11, x FOR PEER REVIEW 9 of 10 
 

4. About Spina Bifida. Available online: https://www.nichd.nih.gov/health/topics/spinabifida/conditioninfo (accessed on 23 Janu-
ary 2024). 

5. How Do Healthcare Providers Diagnose Spina Bifida? Available online: https://www.nichd.nih.gov/health/topics/spinabi-
fida/conditioninfo/diagnose (accessed on 23 January 2024). 

6. Song, R.B.; Glass, E.N.; Kent, M. Spina Bifida, Meningomyelocele, and Meningocele. Vet. Clin. N. Am. Small Anim. Pract. 2016, 
46, 327–345. https://doi.org/10.1016/j.cvsm.2015.10.007. 

7. Muñiz, L.M.; Del Magno, S.; Gandini, G.; Pisoni, L.; Menchetti, M.; Foglia, A.; Ródenas, S. Surgical Outcomes of Six Bulldogs 
with Spinal Lumbosacral Meningomyelocele or Meningocele. Vet. Surg. 2019, 49, 200–206. https://doi.org/10.1111/vsu.13342. 

8. Piatt, J.H. Treatment of Myelomeningocele: A Review of Outcomes and Continuing Neurosurgical Considerations among 
Adults. J. Neurosurg. 2010, 6, 515–525. https://doi.org/10.3171/2010.9.peds10266. 

9. Copp, A.J.; Adzick, N.S.; Chitty, L.S.; Fletcher, J.Μ.; Holmbeck, G.N.; Shaw, G.M. Spina Bifida. Nat. Rev. Dis. Primers 2015, 1, 
15007. https://doi.org/10.1038/nrdp.2015.7. 

10. Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; García, F.; Kemper, A.R.; Krist, A.H.; Kurth, 
A.; Landefeld, C.S.; et al. Folic Acid Supplementation for the Prevention of Neural Tube Defects. JAMA 2017, 317, 183. 
https://doi.org/10.1001/jama.2016.19438. 

11. Spina Bifida Data and Statistics|CDC. Centers for Disease Control and Prevention. Available online: 
https://www.cdc.gov/ncbddd/spinabifida/data.html (accessed on 23 January 2024). 

12. Spina Bifida—Diagnosis and Treatment—Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-condi-
tions/spina-bifida/diagnosis-treatment/drc-20377865 (accessed on 23 January 2024). 

13. Adzick, N.S.; Thom, E.; Spong, C.Y.; Brock, J.W.; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; 
Sutton, L.N.; et al. A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele. N. Engl. J. Med. 2011, 364, 
993–1004. https://doi.org/10.1056/nejmoa1014379. 

14. Moldenhauer, J.S.; Soni, S.; Rintoul, N.E.; Spinner, S.S.; Khalek, N.; Martinez-Poyer, J.; Flake, A.W.; Hedrick, H.L.; Peranteau, 
W.H.; Rendon, N.; et al. Fetal Myelomeningocele Repair: The Post-MOMS Experience at the Children’s Hospital of Philadelphia. 
Fetal Diagn. Ther. 2014, 37, 235–240. https://doi.org/10.1159/000365353. 

15. Cortés, M.S.; Chmait, R.H.; Lapa, D.A.; Belfort, M.A.; Carreras, E.; Miller, J.L.; Brawura-Biskupski-Samaha, R.; González, G.S.; 
Gielchinsky, Y.; Yamamoto, M.; et al. Experience of 300 Cases of Prenatal Fetoscopic Open Spina Bifida Repair: Report of the 
International Fetoscopic Neural Tube Defect Repair Consortium. Am. J. Obstet. Gynecol. 2021, 225, 678.e1–678.e11. 
https://doi.org/10.1016/j.ajog.2021.05.044. 

16. Tatu, R.; Oria, M.; Pulliam, S.; Signey, L.; Rao, M.B.; Peiró, J.L.; Lin, C. Using Poly(L-lactic Acid) and Poly(Ɛ-caprolactone) Blends 
to Fabricate Self-expanding, Watertight and Biodegradable Surgical Patches for Potential Fetoscopic Myelomeningocele Repair. 
J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 107, 295–305. https://doi.org/10.1002/jbm.b.34121. 

17. Oria, M.; Tatu, R.; Lin, C.; Peiró, J.L. In Vivo Evaluation of Novel PLA/PCL Polymeric Patch in Rats for Potential Spina Bifida 
Coverage. J. Surg. Res. 2019, 242, 62–69. https://doi.org/10.1016/j.jss.2019.04.035. 

18. Tatu, R.; Oria, M.; Rao, M.B.; Peiró, J.L.; Lin, C. Biodegradation of Poly(l-Lactic Acid) and Poly(ε-Caprolactone) Patches by 
Human Amniotic Fluid in an in-Vitro Simulated Fetal Environment. Sci. Rep. 2022, 12, 3950. https://doi.org/10.1038/s41598-022-
07681-8. 

19. Bonate, P.L. A Brief Introduction to Monte Carlo Simulation. Clin. Pharmacokinet. 2001, 40, 15–22. 
https://doi.org/10.2165/00003088-200140010-00002. 

20. Martins, M.T.; Lourenço, F.R. Measurement Uncertainty for <905> Uniformity of Dosage Units Tests Using Monte Carlo and 
Bootstrapping Methods—Uncertainties Arising from Sampling and Analytical Steps. J. Pharm. Biomed. Anal. 2024, 238, 115857. 
https://doi.org/10.1016/j.jpba.2023.115857. 

21. Lecina, D.; Gilabert, J.F.; Guallar, V. Adaptive Simulations, towards Interactive Protein-Ligand Modeling. Sci. Rep. 2017, 7, 8466. 
https://doi.org/10.1038/s41598-017-08445-5. 

22. Bailer, A.J.; Ruberg, S.J. Randomization tests for assessing the equality of area under curves for studies using destructive sam-
pling. J. Appl. Toxicol. 1996, 16, 391–395. https://doi.org/10.1007/BF01062139. 

23. Holder, D.J.; Hsuan, F.; Dixit, R.; Soper, K. A method for estimating and testing area under the curve in serial sacrifice, batch, 
and complete data designs. J. Biopharm. Stat. 1999, 9, 451–464. https://doi.org/10.1081/BIP-100101187. 

24. Wolfsegger, M.J.; Jaki, T. Estimation of AUC from 0 to infinity in serial sacrifice designs. J. Pharmacokinet. Pharmacodyn. 2005, 32, 
757–766. https://doi.org/10.1007/s10928-005-0044-0. 

25. Rabbee, N. Biomarker Analysis in Clinical Trials with R, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abing-
don, UK, 2020. https://doi.org/10.1201/9780429428371. 

26. Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed; John Wiley & Sons: Hoboken, NJ, USA, 2016. 
https://doi.org/10.1002/9781118631980. 

27. Dykstra, R.L. Product Inequalities Involving the Multivariate Normal Distribution. J. Am. Stat. Assoc. 1980, 75, 646–650. 
https://doi.org/10.1080/01621459.1980.10477526. 

28. Tong, Y.L. Some Probability Inequalities of Multivariate Normal and Multivariate t. J. Am. Stat. Assoc. 1970, 65, 1243–1247. 
https://doi.org/10.1080/01621459.1970.10481159. 

29. Tong, Y.L. Probability Inequalities in Multivariate Distributions. J. Am. Stat. Assoc. 1982, 77, 690. https://doi.org/10.2307/2287749. 
30. Ripley, B.D.; Ohio Library and Information Network. Stochastic Simulation; Wiley: New York, NY, USA, 1987; p. 28. 

-caprolactone) Blends
to Fabricate Self-expanding, Watertight and Biodegradable Surgical Patches for Potential Fetoscopic Myelomeningocele Repair.
J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 107, 295–305. [CrossRef]

17. Oria, M.; Tatu, R.; Lin, C.; Peiró, J.L. In Vivo Evaluation of Novel PLA/PCL Polymeric Patch in Rats for Potential Spina Bifida
Coverage. J. Surg. Res. 2019, 242, 62–69. [CrossRef]

18. Tatu, R.; Oria, M.; Rao, M.B.; Peiró, J.L.; Lin, C. Biodegradation of Poly(l-Lactic Acid) and Poly(ε-Caprolactone) Patches by
Human Amniotic Fluid in an in-Vitro Simulated Fetal Environment. Sci. Rep. 2022, 12, 3950. [CrossRef]

19. Bonate, P.L. A Brief Introduction to Monte Carlo Simulation. Clin. Pharmacokinet. 2001, 40, 15–22. [CrossRef]
20. Martins, M.T.; Lourenço, F.R. Measurement Uncertainty for <905> Uniformity of Dosage Units Tests Using Monte Carlo and

Bootstrapping Methods—Uncertainties Arising from Sampling and Analytical Steps. J. Pharm. Biomed. Anal. 2024, 238, 115857.
[CrossRef]

21. Lecina, D.; Gilabert, J.F.; Guallar, V. Adaptive Simulations, towards Interactive Protein-Ligand Modeling. Sci. Rep. 2017, 7, 8466.
[CrossRef]

22. Bailer, A.J.; Ruberg, S.J. Randomization tests for assessing the equality of area under curves for studies using destructive sampling.
J. Appl. Toxicol. 1996, 16, 391–395. [CrossRef]

23. Holder, D.J.; Hsuan, F.; Dixit, R.; Soper, K. A method for estimating and testing area under the curve in serial sacrifice, batch, and
complete data designs. J. Biopharm. Stat. 1999, 9, 451–464. [CrossRef] [PubMed]

24. Wolfsegger, M.J.; Jaki, T. Estimation of AUC from 0 to infinity in serial sacrifice designs. J. Pharmacokinet. Pharmacodyn. 2005,
32, 757–766. [CrossRef] [PubMed]

25. Rabbee, N. Biomarker Analysis in Clinical Trials with R, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon,
UK, 2020. [CrossRef]

26. Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016.
[CrossRef]

27. Dykstra, R.L. Product Inequalities Involving the Multivariate Normal Distribution. J. Am. Stat. Assoc. 1980, 75, 646–650. [CrossRef]
28. Tong, Y.L. Some Probability Inequalities of Multivariate Normal and Multivariate t. J. Am. Stat. Assoc. 1970, 65, 1243–1247.

[CrossRef]
29. Tong, Y.L. Probability Inequalities in Multivariate Distributions. J. Am. Stat. Assoc. 1982, 77, 690. [CrossRef]
30. Ripley, B.D. Ohio Library and Information Network. In Stochastic Simulation; Wiley: New York, NY, USA, 1987; p. 28.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cvsm.2015.10.007
https://www.ncbi.nlm.nih.gov/pubmed/26725976
https://doi.org/10.1111/vsu.13342
https://www.ncbi.nlm.nih.gov/pubmed/31758707
https://doi.org/10.3171/2010.9.PEDS10266
https://www.ncbi.nlm.nih.gov/pubmed/21121724
https://doi.org/10.1038/nrdp.2015.7
https://doi.org/10.1001/jama.2016.19438
https://www.cdc.gov/ncbddd/spinabifida/data.html
https://www.cdc.gov/ncbddd/spinabifida/data.html
https://www.mayoclinic.org/diseases-conditions/spina-bifida/diagnosis-treatment/drc-20377865
https://www.mayoclinic.org/diseases-conditions/spina-bifida/diagnosis-treatment/drc-20377865
https://doi.org/10.1056/NEJMoa1014379
https://doi.org/10.1159/000365353
https://doi.org/10.1016/j.ajog.2021.05.044
https://doi.org/10.1002/jbm.b.34121
https://doi.org/10.1016/j.jss.2019.04.035
https://doi.org/10.1038/s41598-022-07681-8
https://doi.org/10.2165/00003088-200140010-00002
https://doi.org/10.1016/j.jpba.2023.115857
https://doi.org/10.1038/s41598-017-08445-5
https://doi.org/10.1002/(SICI)1099-1263(199609)16:5%3C391::AID-JAT363%3E3.0.CO;2-C
https://doi.org/10.1081/BIP-100101187
https://www.ncbi.nlm.nih.gov/pubmed/10473031
https://doi.org/10.1007/s10928-005-0044-0
https://www.ncbi.nlm.nih.gov/pubmed/16328101
https://doi.org/10.1201/9780429428371
https://doi.org/10.1002/9781118631980
https://doi.org/10.1080/01621459.1980.10477526
https://doi.org/10.1080/01621459.1970.10481159
https://doi.org/10.2307/2287749

	Introduction 
	Materials and Methods 
	Experimental Details 
	Statistical Methods 

	Results 
	Conditional Profile 
	Unconditional Profile 

	Discussion and Conclusions 
	References

