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Abstract: The histopathological segmentation of nuclear types is a challenging task because nuclei
exhibit distinct morphologies, textures, and staining characteristics. Accurate segmentation is critical
because it affects the diagnostic workflow for patient assessment. In this study, a framework was
proposed for segmenting various types of nuclei from different organs of the body. The proposed
framework improved the segmentation performance for each nuclear type using radiomics. First,
we used distinct radiomic features to extract and analyze quantitative information about each type
of nucleus and subsequently trained various classifiers based on the best input sub-features of each
radiomic feature selected by a LASSO operator. Second, we inputted the outputs of the best classifier
to various segmentation models to learn the variants of nuclei. Using the MoNuSAC2020 dataset,
we achieved state-of-the-art segmentation performance for each category of nuclei type despite
the complexity, overlapping, and obscure regions. The generalized adaptability of the proposed
framework was verified by the consistent performance obtained in whole slide images of different
organs of the body and radiomic features.

Keywords: radiomics; deep learning; whole slide imaging; feature selection; classifiers

1. Introduction

Currently, the segmentation of multiple histological nuclei regions remains challeng-
ing for pathologists because of highly complex whole slide image (WSIs) datasets, which
include intraclass variations and interclass similarity characteristics of nuclei cells. These
parameters are critical factors and can provide clinically meaningful information dur-
ing disease diagnosis [1]. However, the manual identification and inspection of various
types of nuclei is a time-consuming task because of the morphological (size, shape, and
structure), texture, and staining features of the nuclei regions and can result in variability
among pathologists. Thus, the workflow for the diagnostic treatment of patients differs
considerably. Therefore, an automated system that can perform quick WSIs scanning
and segmenting of various nuclei variants should be designed to improve the workflow
efficiency of pathologists.

The major challenges in learning or segmenting distinct types of nuclei from WSIs are
the availability of accurately annotated data and the general limitations of WSIs, including
imperfect slide preparation, staining complexity, overlapping nuclei, and artifacts of cellular
structures in the histopathology data. Publicly available WSIs with accurate nuclear anno-
tation information are rarely available, and acquiring such WSIs is difficult and expensive.
To address this problem, we employed radiomics (quantitative) features that help to extract
high-throughput information [2,3] from the patches of WSIs [4], and subsequent model-
ing using machine, and deep learning algorithms [5]. Existing learning methods exhibit
considerable potential for solving general nuclei segmentation, but obtaining distinct and
inferior quality multiple variants of nuclei from WSIs of different organs of the body using
deep learning models is difficult because customized parameters are required for each
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experiment, preparing respective annotations is time-consuming, and/or configuration of
training algorithms is difficult [6–8].

In this study, we proposed a framework to segment the various types of nuclei in WSIs
using radiomic features that not only improve segmentation performance metrics but also
help to learn low-intensity distinct nuclei regions. The proposed framework was based on
variants of radiomic features (such as gray-level co-occurrence matrix features (GLCM),
gray-level dependence matrix (GLDM), gray-level run-length matrix features (GLRLM),
and gray-level size zone matrix (GLSZM)) that comprehensively learn the highly discrimi-
native distributions and characteristics of each nuclei type and select the best sub-features
of each radiomic using the LASSO operator. We then used multiple variants of machine
learning classifiers (decision tree, K-nearest neighbors, bagging, and gradient boost) to
retrieve the best patches. Subsequently, we trained different segmentation models using
the retrieved patches to achieve the segmentation of various nuclei types. The aim is
to use simple learning models that require a single unifying solution and less manual
configuration. The contributions of this study are as follows:

1. The proposed framework improves the performance of different state-of-the-art (SOTA)
segmentation models that learn and segment the type of nuclei regions in the WSIs
that exhibit different characteristics.

2. The framework exhibits superior performance results for segmentation models, yield-
ing the best score for each nuclei type using different metrics and achieving high
metric scores for the public MoNuSAC2020 benchmark.

3. We demonstrated the performance of the framework from various perspectives using
multiple radiomics types, loss functions, and visualization experiments. The results
confirmed that our model was adaptable for diagnosing and segmenting different
variants of nuclei.

The remainder of this paper is organized as follows: In Section 2, we discuss related
research. The architecture and technical details of the proposed framework are presented
in Section 3. Section 4 describes the dataset used in the study. The experimental setup,
model training, and implementation details are described in Section 5. Section 6 pro-
vides a detailed comparison of the segmentation, visualization results of the segmentation
patches, and ablation studies using the proposed framework. Finally, Section 7 provides
the concluding remarks and potential areas for future research.

2. Related Work

Radiomics [9] features were used to extract tumor patterns and quantitative character-
istics from WSIs by utilizing each feature information to segment the nuclei of different
types that are otherwise not diagnosable (observable) through conventional algorithms
for analysis [10,11]. An accurate inclusive segmentation process for various nuclei types
is cumbersome because of the invariant and complex regions across different WSIs. By
improving the quantitative analysis of WSIs using the automated high-throughput extrac-
tion method [12], the precision in diagnosis and assessment of prognosis increases, and
decision-making is improved. However, several challenges have been reported [13,14].

Yuan [15] designed various radiomic models based on CT images to predict adeno-
carcinoma or squamous cell carcinoma in histopathology [16], PET tumor stage of lung
cancer, and micropapillary patterns of lung adenocarcinomas using radiomics [17]. Liu [18]
applied radiomics with different CNN models for Alzheimer’s disease diagnosis. In this
method, several landmarks were used as extracted patches (normal and abnormal), and
output decisions were made based on majority voting among all CNNs. Wang [19] reported
the use of radiomics combined with machine learning to create a T-staging model for locally
advanced laryngeal cancer; the AUC performance of the model was 0.892%. Choi devel-
oped an SVM-LASSO radiomic model to predict the malignancy of pulmonary nodules and
improved classification using two radiomic features. The model achieved an accuracy of
84.6% [20]. Ning proposed a hybrid structure that includes various features selected with a
radiomics model and CNNs and subsequently integrated these features to help classify pat-
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terns for gastrointestinal stromal tumors [21]. Urban designed a model based on radiomics
to effectively detect and classify malignant polyps in WSIs [22]. Guo [23] designed a 3D
deep learning (ProNet) model with radiomics (adNet) methods to automatically classify
lung cancer into three types (distinguish lung adenocarcinoma, squamous cell carcinoma,
and small cell lung cancer).

Using radiomics features have some limitations that affect the development of efficient
diagnostics models, and treatment plans for individual patients [24,25]. Regardless of the
potential of radiomics results, the repeatability, and reproducibility of radiomics features
are still an important concern and often depend on the used sequence, size of the image,
imaging modality and quality, as well as motion artifacts factors, which are commonly
exploited during the extraction of features using acquisitions of images under identical or
near-identical acquisition and processing parameters [26]. Some researchers made an effort
to overcome the mentioned drawbacks which are ongoing in radiomics topic [27,28]. A
recent review performed an extensive literature search and identified radiomics features
that were shown to be repeatable and reproducible among the investigated studies [29].

Literate studies analyzing WSIs using radiomics have relied on predefined assump-
tions or learned features of nuclei or cancer types; however, because of high variants of
samples or specific categories, these approaches are not feasible for segmentation owing
to the non-availability of data on nuclei types. This problem limits the procedures and
restricts the generalized adaptability of methods. Previous segmentation models [30–32]
have achieved better performance; however, in the case of various nuclei types, a specific
set of optimal hyperparameter tuning is required, or these models are more dependent
on the segmented ROI of nuclei regions and regular nuclei types extracted from WSIs.
By contrast, our research obtains segmented individual nuclei region information from
WSIs by adopting variants of independent radiomics features of nuclei types using various
classifiers, and different segmentation models that achieve improved performance for any
type of nuclei. The selection of different radiomic features learned with the best classifier
descriptors provides considerable discriminative information, regardless of complexity,
and obscures the nuclear types of WSIs. The proposed framework comprises separable
modules that can be used for various medical image analysis tasks.

3. Proposed Framework and Architecture

In this section, we describe the pipeline of the proposed framework in Figure 1. The
proposed framework included the following modules: (Stage-A) processing of the WSIs
module that extracts patches from a dataset; (Stage-B) a patch retrieval module, in which
different types of radiomic features were used to learn the inherent characteristics of
different types of nuclei regions. Finally, the selected features were inputted into machine
learning classifiers [33] to retrieve patches from the best classifier model; (Stage-C) the
segmentation module includes different models [34,35], which are trained with the retrieved
patches to segment the variants of nuclei regions.

3.1. (Stage-A) Processing WSIs Module

A novel WSI processing module was proposed. In this model, WSIs from the dataset
were used with the corresponding XML file (mask), which includes relevant information
on each type of nucleus (such as location and type). Initially, the WSIs of various organs of
the body were read into memory at a downsampled dimension of WSI, for example, zero
level, because all slides were from different sources, which affected the patching process.
Therefore, to ensure the consistency of pixel locations for patches, we reduced and saved
each slide in the tiff form of size 256 × 256 for easy visualization with its respective XML
(masks) on the screen for segmenting and annotating nuclei-type regions.
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Figure 1. Block diagram of the proposed framework. (Stage-A) Segmentation based on annotations
and generating image patches from the tissue regions of the WSIs. (Stage-B) Patches are encoded into
a set of radiomic features (i.e., GLCM, GLCM, GLRLM, and GLSZM). The LASSO operation was
applied to determine optimal sub-features from each radiomic feature. These features are passed
separately, and in a fused form to the classifier with respective labels to train various machine learning
classifiers, and based on the best classifier, the best patches and metric scores are retrieved. (Stage-C) For
segmentation, the set of best retrieved images and masks are inputted to different segmentation models
to learn individual variants of nuclei which are used to perform the final diagnostic segmentation.
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The proposed module created patches by reading each tiff slide image and the binary
mask values of the individual nuclei tissue regions, which are computed based on the nuclei
type provided in the XML file by the organizers. The approximate contours of the detected
foreground objects were then filtered based on an area threshold, and the segmentation
mask for each slide was stored and saved in the same format as that of the original slide.
To create patches, we adopted a sliding window operation with two crucial parameters,
namely step size and patch size, which controlled the patching criteria. We used a patch
size of 128 × 128 and a step size of 200 to store the stacks of image patches according to the
nucleus class types using the normal jpg format. The sliding window operation was used
because it creates overlapped regions as all nuclei sizes are so small that overlapping region
information is required to obtain more samples for each type of nucleus. Depending on
the size of the nuclei in WSIs, the number of patches extracted from each slide varied from
hundreds to hundreds of thousands. The number of extracted patches for each nucleus
class was saved in separate folders using the respective class-wise label information.

While training, our aim was not only to select the best classifier from different classi-
fiers but also to analyze characteristics of the nucleus class with improved time and space
complexity, so we used 28 × 128 patch size because it produces faster processing results
with our GPU processing memory. We tried different sizes during our experiments but this
patch size works perfectly. The image patch size and number of training samples together
have a complex influence on the performance of the classification. Step size is variant but
with some observations of created patches using various values, a step size of 200 value
provides more samples for each type of nucleus, and with less overlapped regions for all
nuclei sizes.

3.2. (Stage-B) Patch Retrieval Module

This module of the framework retrieves the best nuclei patches by training various
machine learning classifiers that distinguish the four types of nuclei based on different
radiomics (single or combination) features. We applied LASSO operation on each radiomics
before training classifiers to increase the training efficiency time and selection of the best
sub-features.

3.2.1. Representation of Radiomics Features

After extracting patches from WSIs, we obtained a set of five radiomics features of
these patches to learn the overall and discriminative variants between nuclear region types,
such as shape, texture, and distances between regions. We used four radiomics techniques,
namely GLCM (RC), GLDM (RD), GLRLM (RL), GLSZM (RZ). These four features
help learn variants of information, especially for problems in which tissue heterogeneity
in the nuclei regions of WSIs plays a crucial role because of the relationships between
neighboring pixels [36]. This procedure was repeated for each organ of the body patch
sample to generate nuclei-wise input data X = Radiomics(RX) and respective nuclei
class labels Y = NuceliType(RY). The radiomics features used in our framework are
summarized in Table 1. Most of these features provide useful information based on
matrixes derived from the intensity and correlation relationships between different pixels
in a given 2D image.

1. Gray Level Co-occurrence Matrix (GLCM): This feature describes the spatial distri-
bution of gray-level pixel intensities within a 2D image [37]. Features extracted from
GLCM are calculated based on two predefined parameters Θ and d, where Θ ∈ 0◦, 45◦,
90◦, and 180◦, and d is any integer distance admissible within the image dimensions.

2. Gray Level Run Length Matrix (GLRLM): This feature calculates the number of pixels
with the same gray and characterize the gray-level run lengths of different gray-level
intensities in any direction [38].
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3. Gray Level Size Zone Matrix (GLSZM): This feature quantifies the gray-level zones,
that is the number of connected pixels that share the same gray-level intensity, in a 2D
image [39].

4. Gray Level Dependence Matrix (GLDM): This feature includes the number of con-
nected pixels within a distance dependent on the center pixel [40].

Because some extracted radiomic features can be irrelevant to nuclei types, many
features in the semantic feature maps are highly redundant, which may negatively affect
the classification or prediction results; therefore, we applied an additional operator, as
explained in Section 3.2.2.

Table 1. Radiomics features used to classify the types of nuclei in the patch retrieval module.

GLCM (24) GLDM (14) GLRLM (16) GLSZM (16)

Autocorrelation Dependence Entropy Gray Level Non-Uniformity Gray Level Non-Uniformity

Cluster Prominence Dependence Non-Uniformity Gray Level Non-Uniformity
Normalized

Gray Level Non-Uniformity
Normalized

Cluster Shade, Joint Entropy Dependence Non-Uniformity
Normalized Gray Level Variance Gray Level Variance

Cluster Tendency,
Joint Average Dependence Variance High Gray Level Run

Emphasis
High Gray Level Zone

Emphasis

Contrast, Joint Energy Gray Level Non-Uniformity Long Run High Gray Level
Emphasis Large Area Emphasis

Correlation, Inverse Variance Gray Level Variance Long Run Low Gray Level
Emphasis

Large Area High Gray Level
Emphasis

Difference Average,
Sum Average High Gray Level Emphasis Low Gray Level Run

Emphasis
Large Area Low Gray Level

Emphasis

Difference Entropy,
Sum Entropy Large Dependence Emphasis Run Entropy Low Gray Level Zone

Emphasis

Difference Variance,
Maximum Probability

Large Dependence High Gray
Level Emphasis Run Length Non-Uniformity Size Zone Non-Uniformity

Inverse Difference Large Dependence Low Gray
Level Emphasis

Run Length Non-Uniformity
Normalized

Size Zone Non-Uniformity
Normalized

Inverse Difference Moment,
Sum Squares Low Gray Level Emphasis Run Percentage Small Area Emphasis

Inverse Difference Moment
Normalized Small Dependence Emphasis Run Variance Small Area High Gray Level

Emphasis

Inverse Difference
Normalized

Small Dependence High Gray
Level Emphasis Short Run Emphasis Small Area Low Gray Level

Emphasis

Informational Measure of
Correlation 1

Small Dependence Low Gray
Level Emphasis

Short Run High Gray Level
Emphasis Zone Entropy

Informational Measure of
Correlation 2 - Short Run Low Gray Level

Emphasis Zone Percentage

Maximal Correlation
Coefficient - Long Run Emphasis Zone Variance
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3.2.2. LASSO Operator

Conventionally, 70 features are extracted from each type of radiomic feature RX to learn
the respective discriminative features for each input patch. However, because of the distinct
nature of each nuclei cell type from different sources of WSIs, we adapted the LASSO
operation to select the best set of sub-features from each individual or combined radiomic
feature. Table 1 presents a set of different sub-features in each radiomic feature; for example,
if we select any radiomic feature RX, it includes a different number of characteristics,
represented as RX = {Featuresi(x)}n

i=1, where Featuresi(x) represents the sub-features
corresponding to the respective radiomic features selected. To select relevant sub-features
for a particular nuclei type from the entire radiomic feature, we applied the LASSO operator,
which exhibits particular distributions or characteristics, rendering the model easier to
handle by shrinking data values toward a central point, such as the mean of pixel values.
Because of this characteristic, this property was the backbone of our patch retrieval module.
Therefore, we defined the LASSO operator as follows:

LO = {Radiomics (RX)} = {Features1(x), Features2(x), . . . , Featuresn(x)} (1)

The LASSO operator (LO) model was trained using five-fold cross-validations, and
grid search (BF) to select the best feature sets. This phenomenon generated a refined
subset of radiomics features RX for each nuclear type: RC, RD, RL, RZ, and RA. Generally,
pathologists study nuclei regions from various orientations, and many variation factors and
acquisition conditions exist. We applied various radiomics combinations to learn realistic
variations for pathological examination. These features, with their respective labels, were
used to train the next part of the patch retrieval module, which was used to distinguish the
four types of nuclei. The same procedure was repeated for each radiomic feature.

3.2.3. Training Different Classifiers

To retrieve the best patches from the original patches, we used the best sub-features
selected by the lasso operator of each radiomic to train four machines learning classifiers
(such as decision tree: C1, KNeighbors: C2, Bagging: C3, gradient boost C4). So, for training

each classifier, C =
{

Rθi
Xi

}n

i=1
, parameterized by θi ∈ Θ, where Θ is the set of hyperparam-

eters for each classifier model, and RXi represents each radiomic feature. In the following
section, we suppress the parameters from the notation of each classifier to simplify the
explanation. The objective of each classifier is to predict input RXi = {Featuresi(x)}n

i=1
and learn the effective nuclei characteristics based on the subset of each radiomics feature
with the respective labels. During the training of each classifier, we minimized the loss
function, which can supervise the relevance of the learned features and enhance their
expressive ability.

3.2.4. Selection of the Best Classifier

We used four types of metrics, and the results revealed that the features learned with
these classifiers achieved the best classification performance, as discussed in Section 6.1.
These training parameters were learned through back-propagation of the training phase and
a cross-validation technique. In the final stage of this module, based on the performance
metrics of the classifiers, we selected the best classifier, CN which shows the highest
metrics score, and the learning capability for each nuclei types, irrespective number of
patch samples.

For each type of radiomic, the respective test subset of a refined subset of radiomics
features X = Radiomics (RXi ), and the labels Y = NuceliType (RYi ) were passed to the best
classifier to classify the nuclei type-wise samples. We also saved the best (correct) sample
indices and neglected the incorrect samples based on learned characteristics. We then
compared these best indices with the original patches extracted from the WSIs to retrieve
the best patches for use as inputs for the segmentation models. Details regarding our
experimental setup are presented in Section 5. Our model has a loosely coupled architecture
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that allows switching between various classifiers without relearning the LASSO operator
(LO) learned subfeature representation for each radiomic for training and retrieving the
best image patches from the classifiers.

3.3. (Stage-C) Segmentation Module
3.3.1. User-Defined Selection of Model

This module of the proposed framework segments the variants of nuclei-type patches
and adapts the mapping of masks with data augmentation (if required) applied to the
patches X = Images (IX) and respective masks retrieved based on indices information
Y = Mask(MY) retrieved from the previous module results. The segmentation model
was selected by the user from the following two modules (such as U-Net: S1, SegNet: S2),
and five cross-validation techniques using grid search (BP) were applied to select the best
hyperparameters and layers for training each model separately for each radiomic case and
for different kinds of nuclei.

3.3.2. Training Different Segmentation Models

When we passed the set of patch results retrieved from the previous module of each
nucleus as inputs to the segmentation model SN, which helped the model learn and extract
complex and obscure features in the nuclei patched images and prevented the model
overfitting (OF). This module learns the importance of each nuclei type and suppresses
the features that are less important to our nuclei segmentation task for particular nuclei
types by minimizing the loss functions that improve segmentation performance. However,
both these models in the literature exhibited the capability to learn well and significantly
reduce the model complexity by improving the experimental performance, as presented in
Section 6.2.

4. Dataset

The following public digital pathology dataset was used as the reference standard for
training and validating the performance of the proposed framework. This dataset contains
variants of nuclei from different organs. The MoNuSAC2020 [41] (publicly available at
https://monusac-2020.grand-challenge.org; accessed on 10 April 2023) dataset includes
two subsets, namely training and testing datasets. The training subset includes the WSIs of
46 patients from 32 hospitals downloaded from the (TCGA) data portal (The cancer genome
atlas (tcga), http://cancergenome.nih.gov/; accessed on 10 April 2023). The WSIs were
scanned by contributors at 40× magnification. Cropped WSIs ensured that the annotations
were diverse and of high quality because we could sample more slides and nucleus-rich
regions. Nucleus boundary annotations and class labels of each nucleus were adopted as
previously established protocol and as described in [42]. The testing subset was prepared
using the same procedure as the training subset described in [42]. Furthermore, the test
data contained annotations of ambiguous regions. We used our processing WSIs module
to generate patch-wise images from each WSI based on the nuclei-wise annotations of
WSIs and categorized them into one of four classes, namely (1) epithelial, (2) lymphocytes,
(3) neutrophils, and (4) macrophages, where the assigned class labels corresponded to a
predominant nuclei type in the respective WSI, as displayed in Figure 2.

The objective of this dataset was to develop and compare robust algorithms for nuclear
instance segmentation and classification into four nuclear classes. The distribution of
nuclear types and organs is presented in Table 2. Since the number of nuclei information
varies due to the structure of WSIs which are gathered from different sources, in every WSI
the samples of epithelial, and lymphocyte types are approximately 10 times larger than the
number of patches in the other two classes, and there was serious data imbalance. This
imbalance in the dataset affected the performance largely for other classes. Therefore, we
performed experiments on different WSIs and selected a random number of labeled WSIs,
from which we generated a distinct number of patch samples for each organ of the body.

https://monusac-2020.grand-challenge.org
http://cancergenome.nih.gov/
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Type of Organs

Breast Kidney Lung Prostate

Images

Masks

Figure 2. MoNuSAC2020 dataset samples: Sub-images, and annotations with boundaries of various
types of nuclei shown with different colors: Epithelial cells in red, Lymphocyte in yellow, Macrophage
in blue, Neutrophil in green, and Background in black.

Table 2. Composition of the MoNuSAC2020 dataset by organ and nuclei type. N: The number of WSIs
is presented in bold, and the number of patches is shown in italics. A random number of selected
WSIs, and generated patch samples for our experiments are shown in brackets. We used a patch size
of 128 × 128.

Nuclei Type
Training Subset

Breast Kidney Lung Prostate

N = 10 (7) N = 12 (11) N = 10 (12) N = 14 (8)
670 (2055) 566 (2477) 506 (2647) 570 (1021)

Epithelial 4566 (540) 3547 (1501) 2981 (474) 3445 (575)
Lymphocytes 4689 (946) 4126 (259) 3018 (916) 3821 (275)
Macrophoges 147 (37) 102 (354) 186 (887) 152 (70)
Neutrophils 105 (43) 149 (250) 142 (281) 235 (55)

Testing Subset

N = 5 (4) N = 7 (3) N = 7 (3) N = 6 (3)
220 (725) 310 (860) 220 (670) 260 (610)

Epithelial 1377 (415) 2248 (510) 1489 (478) 2099 (274)
Lymphocytes 1833 (258) 2141 (256) 1674 (128) 2158 (191)
Macrophoges 49 (32) 84 (56) 53 (42) 121 (106)
Neutrophils 26 (20) 56 (38) 36 (22) 54 (39)

5. Experimental Setup
5.1. Performance Evaluation Criteria

We evaluated the performance of the proposed framework from two aspects: classify-
ing nuclei samples based on radiomics and comparing them with literature segmentation
models, as described in Section 6. The framework using five-fold cross-validation on a
subset of samples was used to determine the best hyperparameters for each framework and
module. We used multiple solid-state drives and hard drive storage to store the raw files of
the digital WSIs. To perform patching, learning, and segmentation of WSIs, we used Intel
Xeon CPUs, and feature extraction and learning were performed using an NVIDIA Quadro
RTX 5000 on local workstations with 128 GB RAM. The proposed framework pipeline
was implemented in Python 3.6, and uses image-processing libraries such as OpenSlide,
OpenCV, and NumPy. We used the Keras deep learning library to load the data and train
our framework. The source code is available at https://github.com/AIMILab/Radiomics,
accessed on 26 February 2024).

https://github.com/AIMILab/Radiomics
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5.2. Best Hyperparameters

The proposed framework comprises three modules. For the WSI processing module,
three hyperparameters, namely patch size, step size, and area threshold value, were applied.
The following hyperparameters were tuned for the classifier in the patch retrieval module:
number of epochs, learning rate, batch size, and optimizer. The best-selected parameters
of the classifier obtained using the cross-validation technique are listed in Table 3. For
feature extraction from radiomics, we used the following four radiomics features with
different hyperparameters that demonstrated the best results. These radiomics techniques
help our patch retrieval module learn and classify input patch samples accurately with
substantial information.

Table 3. Best hyperparameters of best classifier for various types of nuclei.

Classifier Parameters
Radiomics

GLCM GLDM GLRLM GLSZM All

Bagging Classifier
N Estimators 50 50 25 25 50
Max Samples 1.0 1.0 1.0 1.0 1.0
Max Features 1.0 0.5 0.5 0.5 1.0

For the segmentation of various types of nuclei after retrieval of the best patches from
the retrieval module, we used the 11 hyperparameters for tuning different segmentation
models, and the best-selected parameters of each segmentation model obtained using the
cross-validation technique are listed in Table 4. An additional parameter that was common
to all settings was the mapping of masks on each nuclei type. The following different con-
figurations of each model demonstrated the best results with and without radiomic feature
samples. These segmentation models help to learn and segment the overall structures of
different input patch samples of nuclear types accurately with substantial information.

Table 4. Best hyper-parameters of the segmentation models for the MoNuSAC2020 dataset.

Models Parameters
Radiomics

All Without-RadiomicsGLCM GLDM
GLRLM GLSZM

U-Net

Number of layers 41
Epochs 20 15 15

Optimizer Nadam
Batch Size 16 16 32
Kernel Size 3, 3

Filters 16, 32, 64, 128, 256
# of Parameters 1.9 M

Kernel Regularizer He Normal
Activation Map Sigmoid, Relu
Dropout Rate 0.5
Learning Rate 10−4 10−3 10−3

Seg-Net

Number of layers 62
Epochs 15 20 15

Optimizer Nadam
Batch Size 16 16 32
Kernel Size 3, 3

Filters 64, 128, 256, 512
# of Parameters 11 M

Kernel Regularizer He Normal
Activation Map Sigmoid, Relu
Dropout Rate 0.5
Learning Rate 10−4 10−3 10−4
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Table 4. Cont.

Models Parameters
Radiomics

All Without-RadiomicsGLCM GLDM
GLRLM GLSZM

MultiResU-Net

Number of layers 239
Epochs 15 20 20

Optimizer Adamax
Batch Size 16 32 32
Kernel Size 3, 3

Filters 32, 64, 128, 256, 512
# of Parameters 7.2 M

Kernel Regularizer l2
Activation Map Sigmoid, Elu
Dropout Rate 0.5
Learning Rate 10−3 10−3 10−3

Refine-Net

Number of layers 480
Epochs 20 15 15

Optimizer Adamax
Batch Size 32 16 16
Kernel Size 3, 3

Filters 64, 128, 256, 512, 256, 1024, 2048
# of Parameters 42 M

Kernel Regularizer l1
Activation Map Sigmoid, Elu
Dropout Rate 0.6
Learning Rate 10−3 10−4 10−4

5.3. Performance Evaluation Metrics

The performance of the proposed framework was evaluated using several metrics, in-
cluding accuracy, sensitivity, precision, IoU score, and dice-coefficient. Equations (2)–(6) were
used to compute these metrics, where the true positive (TP) is the number of correctly pre-
dicted samples as the positive class. False positive (FP) represents the number of incorrectly
predicted samples as the positive class, and true negative (TN) represents the number of
correctly predicted samples as the negative class. False negatives (FN) represent the number
of incorrectly predicted samples as a negative class.

Accuracy =
TP + TN

TN + FP + FN + TP
(2)

Sensitivity =
TP

TP + FN
(3)

Precision =
TN

TN + FP
(4)

IoUScore =
TP

TP + FP + FN
(5)

Dice − Coe f f icient =
2×TP

2×TP + FP + FN
(6)

6. Performance Results and Discussions
6.1. Comparison of Different Classifiers

Table 5 presents the results of multiclass nuclei classification using the four SOTA
classifier models for the MoNuSAC2020 dataset. The reported results revealed that radiomic
features were added before each classifier learned the discriminative features, retrieved
the best patches of each nuclei type, and demonstrated the highest metrics, regardless
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of the number of variants of samples and the shape of nuclei cells. The accuracy of
the MoNuSAC2020 dataset increased to 82.1% when only the fused radiomic feature
combination (All) was considered, and the gradient boost classifier performed significantly
better than other classifiers for the MoNuSAC2020 dataset.

Table 5. Composition of the MoNuSAC2020 dataset.

Radiomics Feature Classifier
Metrics

Accuracy Sensitivity Precision

GLCM

Decision Tree 0.756 0.757 0.759
KNeighbors 0.760 0.760 0.769

Bagging 0.776 0.778 0.784
GradientBoost 0.779 0.779 0.788

GLDM

Decision Tree 0.772 0.774 0.779
KNeighbors 0.794 0.793 0.799

Bagging 0.808 0.804 0.814
GradientBoost 0.810 0.809 0.816

GLRLM

Decision Tree 0.780 0.789 0.781
KNeighbors 0.803 0.801 0.808

Bagging 0.805 0.809 0.807
GradientBoost 0.819 0.810 0.825

GLSZM

Decision Tree 0.763 0.764 0.767
KNeighbors 0.782 0.781 0.785

Bagging 0.795 0.796 0.802
GradientBoost 0.796 0.797 0.803

All

Decision Tree 0.780 0.781 0.783
KNeighbors 0.803 0.802 0.807

Bagging 0.816 0.817 0.821
GradientBoost 0.821 0.820 0.826

Without-Radiomics

Decision Tree 0.774 0.787 0.749
KNeighbors 0.796 0.759 0.765

Bagging 0.785 0.736 0.742
GradientBoost 0.784 0.691 0.764

The gradient boost classifier for each radiomic feature also demonstrated the highest
results for all other metrics when compared with other classifiers. The bagging classifier
achieved the second-best classification results when the four classes were considered.
Moreover, the fused radiomics feature combination (All) learns and classifies precise patches
of nuclei that are more appropriate for diagnosing the types of nuclei, as demonstrated
in our experimental results using each classifier. The metrics were not higher than 80%
because in each WSI, the numbers of samples of macrophages and neutrophil classes were
low, which affected feature learning from the classifier, and the distinction between classes
was not sufficiently balanced. Another important challenge in radiomics is that a strategy
for choosing the optimum architecture for a classifier is yet to be developed. Therefore,
from the metric results, we can select the best classifier based on the highest metric score
that is more efficient than other classifiers.

6.2. Comparison with Different Deep Learning Segmentation Models

We demonstrated the experimental results for the MoNuSAC2020 WSI dataset using
the segmentation of nuclei samples, with and without radiomic features as shown in
the Figures 3–6. We used four different segmentation models, namely U-Net [34], Seg-
Net [35], MultiResU-Net [43], and Refine-Net [44]. Figure 3 demonstrates the accuracy
metric results of the proposed framework for different, combined, and without radiomic
feature samples with four types of segmentation models, which demonstrates an improved
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performance score by incorporating the patch retrieval module before the segmentation
module, regardless of the variants of patch sample.
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Figure 3. Comparison of accuracy score for multiclass nuclei segmentation of the MoNuSAC2020
dataset (best viewed in color).

The accuracy increased to almost 77.0%, 75.0%, 78.0%, and 77.0% for all radiomic
feature cases for the U-Net, Seg-Net, MultiResU-Net, and Refine-Net models, respectively,
and 98.1% for the MoNuSAC2020 dataset. Similarly, the second highest accuracy is for
the GLDM case for all segmentation models. Moreover, our proposed framework helps
to retrieve and classify the robust patches because of the classifier techniques used with
the LASSO operator. Therefore, the accuracy metric demonstrates that our framework can
achieve much higher results from using any type of segmentation model regardless of the
model structure. The reported results are improved because of the patch retrieval module
added before each segmentation module to retrieve the best discriminative patches of each
variant of nuclei subtype, regardless of the number of magnification levels of samples and
the variants of nuclei subtypes. The accuracy of the dataset increased from 73.0% to 78.0%
when all combined radiomic feature samples were considered, and the GLDM and GLSZM
features performed notably better than other radiomic features.

Similarly, Figure 4 demonstrated the sensitivity metric results for the MoNuSAC2020
dataset using four different segmentation models. Our experiments show that higher scores
are achieved for all radiomic feature samples as compared to the without radiomic samples,
which exhibit the capability of our framework which introduced the patch retrieval module
to correctly retrieve the best patches from the classifiers of each nucleus subtype with
their respective classes. It should be observed that to make the patch retrieval module
more functional we employed a lasso operator to improve the learning process than later
simple applying classifiers for WSIs classification. From our results, we observed that the
MultiResU-Net segmentation model assists efficiently in segmenting the best nuclei for
the MoNuSAC2020 dataset and further improves the performance of performance each
class type.
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Figure 4. Comparison of sensitivity score for multiclass nuclei segmentation of the MoNuSAC2020
dataset (best viewed in color).

For the Refine-Net model, the segmentation results vary slightly too much due to the
kernel regularizer parameter. In contrast, the results of the U-Net, and Seg-Net models are
more accurately firm and consistent with and without the radiomic samples. The sensitivity
metric results show that the nuclei subtype variants are classified well based on the retrieval
module. The selection of patches depends on classifier training so few classes consist of
more nuclei subtype regions respective to other classes in different magnification levels
so, such variations affect the classifier selection criteria results. Regardless, the overall
sensitivity metric results show that results can be improved with more hyper-parameter
tuning of classifiers for selecting more approximate good sample patches with an even
number of nuclei samples in WSIs to further enhance segmentation performance, indicating
that the relevant patch retrieval for WSIs data is very effective.

In Figures 5 and 6 the Refine-Net model demonstrated the highest IoU score, and dice-
coefficient results for most radiomics cases, and even without radiomics cases. The Refine-
Net model experiments consistently obtained higher scores than the other segmentation
models, which demonstrated that the MultiResU-Net model learning capability is better
for nuclei from complex regions and microstructure attributes, and correctly segments
the nuclei images with their respective classes. We can state that using radiomic features
with classifiers enhances the generalization capability and its independence from expert
supervision, which is suitable for clinical pathology and for addressing the segmentation
of each nuclei-type task within WSIs. The performance of each radiomics feature was
compared with that of the segmentation model.
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Figure 5. Comparison of IoU Score metric for multiclass nuclei segmentation of the MoNuSAC2020
dataset with different radiomic feature samples and without radiomic feature samples (best viewed
in color).
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Figure 6. Comparison of Dice-Coefficient metrics for multiclass nuclei segmentation of the
MoNuSAC2020 dataset with different radiomic feature samples and without radiomic feature sam-
ples (best viewed in color).
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We replaced the conventional segmentation mechanism with training models using
the best patches retrieved from the best classifier, which were trained on different radiomic
features in the patch retrieval module. The accuracy of all experiments was reported using
five-fold cross-validation. The maximum accuracies were obtained after fine-tuning the
hyperparameters of the segmentation models. Thus, the numerical results of macrophages
and neutrophils were low because the complex pathological data samples were neither
sufficient in each WSI nor improved the performance results when using individual ra-
diomics. The use of radiomics with segmentation obtained higher metrics than those
without radiomics features learned for the MoNuSAC2020 dataset. The proposed patch
retrieval module with the radiomic learning of the nuclei region is more effective than
simple learning from direct nuclei regions in images.

The behavior of all models for multiclass nuclei segmentation was thoroughly studied,
with a special emphasis on factors affecting performance. The types of radiomic inputs
to the segmentation models significantly affected performance. Figures 5 and 6 reveal
the performance improved on passing different types of inputs to the classifiers in the
form of radiomic features for the MoNuSAC2020 dataset. The input fused radiomic
feature combination (All) shows the highest metrics, which indicates that each radiomic
helps to learn different nuclei characteristics for segmentation. This phenomenon can
affect the learning procedure by the given input radiomics. A single input of radiomics
considerably degrades the results, as indicated by the input radiomic features. Performance
can be improved using more radiomics as inputs, which boosts the metrics and classifies
the samples more efficiently. Based on our experiments, we concluded that our results
align with the design of using different radiomics feature combinations as inputs to the
segmentation models, and the retrieval of sample patches from classifiers based on different
radiomics features for segmenting the different variants of nuclei from the WSIs is more
effective. We believe that these results can be applied in general medical imaging. From our
observation, the results show that Refine-Net works best as compared to other segmentation
models for our proposed framework.

6.3. Visualization of Segmented Samples

Figure 7 displays a visual illustration of the segmented patches of various types of
nuclei learned from the two segmentation models when we used a fused radiomic feature
combination (All) for the training models. These representations result from the different
WSI patches, which indicate the effectiveness of using radiomics techniques for learning
the unique characteristics of nuclei that help to learn individual kinds of nuclei. The
visualization results revealed that each model makes a very accurate and meaningful
segmentation of various variants of nuclei, irrespective of their morphology (size, shape,
and structure), texture, and staining features of the nuclei regions. In each row, the first
column represents patch images, the second column represents the original masks, and the
final column shows the predicted masks with segmented nuclei regions for each class type,
indicating excellent differentiation between each nuclei type with different colors.

We analyzed and observed that the results of the MultiResU-Net model were more
appropriate than other segmentation models, the learning capability of microstructure
attributes of the nuclei from the complex regions and different organs of the body, and
correctly segmented the nuclei images with their respective classes. The Refine-Net model
enhanced performance capability, which is more suitable for clinical pathology and ad-
dressing multitasking problems associated with WSIs. Therefore, the visualization results
revealed that the U-Net model was more efficient than the other conventional segmenta-
tion models.
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Figure 7. Best segmented patches of the MoNuSAC2020 dataset according to four kinds of nuclei
when we pass the fused radiomic feature combination (All) for the training of different well-known
segmentation models. Given the image on the left, we segmented the nuclei type to visualize a
nuclei-affected or unaffected region (best viewed in color).
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6.4. Ablation Studies

We demonstrated ablation studies using the proposed framework to yield deeper
insights into the performance improvements associated with the different components
within the framework. The problem of multi-class nuclei segmentation classification has
been precisely observed, with a special emphasis on why we used radiomic features and
effects on different segmentation models in our proposed framework. Figures 8 and 9 show
the results of the ablation studies, using Dice-Coefficient, and IoU metrics and different
radiomic features-based patch samples.

6.4.1. Effect of Lasso Operator

Figure 8 study shows that dice-coefficient metric variation with and without applying
the lasso operator for the segmentation models, where we used different radiomic features
(i.e., GLCM, GLDM, GLRLM, GLSZM, All, Without-Radiomics) patch samples retrieved
from various machine learning classifiers and later used in segmentation models to dis-
tinguish the four types of nuclei patch samples of WSIs. For experiments, we compared
the performance of our framework using four state-of-the-art segmentation models such
as U-Net [34], Seg-Net [35], MultiResU-Net [43], and Refine-Net [44], because it yields the
best performance in the literature. The results of our performance showed that training the
models with different radiomic samples has significantly improved the overall performance
compared to those without radiomic sample patches. The MultiResU-Net and Refine-Net
models obtained the highest metric results while maintaining a stable segmentation using
a fused radiomic feature combination (All).

Moreover, our results demonstrate that our method learns radiomic-based patch
samples that are robust when we apply an additional lasso operator to select the best sub-
set features of each radiomic input, as demonstrated by our results of different radiomic
combinations. In contrast, all model experiment without a lasso operator shows that the
metric results are reduced, which are much lower even for any kind or combination of
radiomic samples as compared when we applied a lasso operator. We also observed a trend
can be seen in that our method without a lasso operator does not perform well for Seg-Net,
and U-Net by selecting radiomic sample patches, which yields lower metric results.

We believe that, in general, fused radiomic feature combination (All) patch samples
can improve the model performance because it allows the trained model to have variant
information of different kinds from different combinations of radiomic inputs. By increasing
radiomic types, we can further increase the performance, so each model can accurately
segment the nuclei sample regions. Please note that more combinations of radiomic inputs
introduce variations for learning nuclei information, by introducing the number of diversity
characteristics of data. Hence, by incorporating the patch and segmentation modules, each
model demonstrates enhanced functionality to distinguish between the nuclei samples of
different types, which are in general close enough to the realistic samples. The experimental
results of the effect of the lasso operator show the validity of our framework utilizing
different modules, which improves the metrics when we use the traditional segmentation
method with the basic flat input without radiomic samples.

6.4.2. Variants Effect of Radiomic Features Combinations

Figure 9 demonstrates the results obtained using variant combinations of radiomic feature
samples to retrieve the best nuclei patches, and later used in segmentation models to distin-
guish the four types of nuclei patch samples of WSIs with different multi-segmentation models.
The radiomics used are, i.e., RC (GLCM), RD (GLDM), RL (GLRLM), and RZ (GLSZM). For
example, RX − x or RX − xxx, represents that we used only RZ (GLSZM) or RD, RL, RZ
(GLDM, GLRLM, and GLSZM), respectively.
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Figure 8. Results of ablation studies on the MoNuSAC2020 dataset using four multi-segmentation
models, and by applying variants of radiomic feature samples with & without lasso operator (best
viewed in color).

We observed that almost all models achieved better metric performance when we
used two or more different radiomic feature samples in combined form, which helped in
segmenting nuclei samples more accurately using rich information learned by patches,
compared with the scenario in which only individual radiomic samples is employed, as
shown in Figure 9. The MultiResU-Net model shows better performance than compared
with other multi-class segmentation models, with an overall average score of over 80%.
We also observed that there is a trend in IoU metric scores there are several changes for
each type of nuclei and type of segmentation model when fewer combinations of radiomic
samples are employed. This is due to the following factors: radiomics with fewer than
two combinations are not very useful for nuclei segmentation in WSIs because of large
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combinations of intra-class variations in nuclei information, which also affect the capability
of classification models in retrieving patches with their respective classes.

Nevertheless, our framework still achieves a comparable performance with different
segmentation models when we use combinations of radiomic feature-based patches with
more than pair combinations. Hence, we can say that the segmentation models when used
with more combinations of radiomic feature patches are more suitable and accurate for
nuclei segmentation and addressing WSIs multi-class nuclei problems. However, from the
experiments, we can state that the selection of radiomic feature-based patches affects the
results in various ways, but as already explained, in general, there is an improvement with
higher combinations.
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Figure 9. Results of ablation studies on the MoNuSAC2020 dataset using different multi-segmentation
models by applying variants of radiomic feature samples. We select a different combination of ra-
diomics to retrieve the best nuclei patches, i.e., RX − x, representing pairs, triplets, quadruplets,
and individual concatenated of different radiomic features. For example: RX − x or RX − xxx, repre-
sents that we used only RC (GLCM) or RC, RD, RL (GLCM, GLDM, and GLRLM), respectively ((best
viewed in color).

7. Conclusions

In this study, the proposed framework improved segmentation performance for the
nuclei types of distinct categories from different organs of the body by using a radiomics
technique. Four variants of radiomics features that learn quantitative information about each
type of nuclei were used. Next, based on radiomic information, we trained different classi-
fiers. Subsequently, we passed the outputs of the best classifier to different segmentation
models to learn and segment the nuclei. We used the MoNuSAC2020 dataset and achieved
SOTA segmentation performance using two models for each type of nucleus extracted from
the WSIs. We also analyzed the efficiency of the results when we did not apply radiomics
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features. The experimental results demonstrated that the framework achieved promising
performance and can play a critical role in the diagnosis of any type of nuclei region from
WSIs. The proposed framework can use any number of independent radiomics, which
enhances the model’s generalized adaptability to learn variants of nuclei from different WSIs.

The limitation of the proposed framework is the size of the patches, which can affect the
training efficiency of classifiers; a larger patch size requires larger memory for conversion
into radiomic features and subsequent training in the retrieval and learning stages. In the
future, we intend to develop a robust patch retrieval module by adding deep learning
models (such as self-supervision or transfer learning) for feature extraction from WSI
patches. We will investigate the performance of the proposed framework on other radiomic
features that provide variant comparisons and other datasets that provide diverse nuclei
cases. The proposed system can be adapted to diverse tasks associated with the domain of
WSI-based diagnosis with relevance to clinical settings.
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