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Abstract

:

The gait recognition of exoskeletons includes motion recognition and gait phase recognition under various road conditions. The recognition of gait phase is a prerequisite for predicting exoskeleton assistance time. The estimation of real-time assistance time is crucial for the safety and accurate control of lower-limb exoskeletons. To solve the problem of predicting exoskeleton assistance time, this paper proposes a gait recognition model based on inertial measurement units that combines the real-time motion state recognition of support vector machines and phase recognition of long short-term memory networks. A recognition validation experiment was conducted on 30 subjects to determine the reliability of the gait recognition model. The results showed that the accuracy of motion state and gait phase were 99.98% and 98.26%, respectively. Based on the proposed SVM-LSTM gait model, exoskeleton assistance time was predicted. A test was conducted on 10 subjects, and the results showed that using assistive therapy based on exercise status and gait stage can significantly improve gait movement and reduce metabolic costs by an average of more than 10%.
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1. Introduction


Soft exoskeletons have been widely studied for their advantages of being lightweight, comfortable, and easy to wear and take off [1,2]. During walking, they obtain motion information through wearable sensors and apply assistance based on gait styles and phases estimated from the motion information. If the exoskeleton assistance does not match the intention of human movement, the exoskeleton will hinder human movement and even cause instability, leading to falls. Therefore, gait recognition is crucial for the control of a soft exoskeleton.



In terms of sensor system design, commonly used sensors include inertial sensors (IMUs) [3,4,5], plantar pressure sensors [6], surface electromyography electrodes [7,8], and electroencephalogram electrodes [9]. IMUs are widely used in gait motion recognition for their high portability, low cost, and environmental friendliness [10,11,12,13,14]. At present, many studies on gait recognition using different sensor configurations have been proposed. These studies are based on threshold methods for identifying gait events, which are predetermined based on experience. Because gait features are unique, each person’s threshold may vary. The threshold adjustment process is manual and time-consuming. With the development of statistical methods, various neural networks have been applied to gait recognition in an attempt to solve this problem.



There are two main types of exoskeleton recognition for human motion intention: one is the recognition of motion status under different road conditions, and the other is the recognition of gait phase. The motion state and gait phase are important bases for the time and magnitude of the auxiliary force applied by the exoskeleton [15]. By adjusting the timing and magnitude of the assistance force, the exoskeleton can match the gait characteristics of the wearer well, thereby improving adaptability and efficiency. However, the adjustment is usually based on experience, resulting in poor adaptability of the exoskeleton and poor auxiliary effects [16,17,18]. To solve this problem, human-in-the-loop (HIL) optimization [19,20], which is the method of optimizing control parameters for individualized assistance within soft exosuits, has attracted increasing attention. HIL optimization is an effective method for identifying optimal control parameters based on feedback from human gait information, and is particularly suitable for the personalized customization of auxiliary parameters for users [21,22,23]. The effectiveness of the HIL optimization strategy depends on the accuracy of human gait information recognition. At present, research mainly focuses on the accuracy of gait recognition and assistance prediction itself, with relatively little application in the control of lower-limb exoskeleton assistance force to analyze the application effect of recognition.



In order to predict the auxiliary time of an exoskeleton, we build a gait recognition model that can be applied to exoskeletons. The contributions of this paper are as follows: Firstly, a hip-assisted exoskeleton gait recognition method based on five inertial sensors is proposed, including SVM motion state recognition and LSTM phase recognition. Secondly, considering the coupling relationship between the two legs, the model proposes a rule-based gait event labeling method that can recognize both the left and right leg assist times. Finally, the gait recognition model is applied for the prediction of exoskeleton assisting time, and the effectiveness and reliability of the gait recognition model are proved by analyzing the assisting effect.




2. Related Works


In terms of motion state recognition, different recognition models were studied according to different applications, and certain recognition effects were achieved [24,25]. For example, Semwal et al. used a CNN to identify six different motion states [26], Weiland et al. used a classification artificial neural network (ANN) to recognize horizontal walking, uphill climbing, and uphill movement states [27], and Liu et al. placed four IMUs on the front of the thighs and the front of the calves of both legs and used an SVM to identify the current motion state [28]. The identifications in these studies are mostly typical of movement states, such as standing, horizontal walking, going up and down slopes, and going up and down stairs, while basic human movements include turning left and right, and so on. In addition, different motion states require different assistance planning techniques, and most of these motion recognition studies focus on recognition, and have not been well applied to the control of exoskeletons.



On the other hand, the phase recognition of the human gait is also a hot topic [29]. Zhang et al. proposed a multi-degree-of-freedom gait-detection method based on the kinematic information collected by IMUs on the dorsum of the foot, ankle, and thigh, and pursued the real-time recognition of the five phase features in a gait cycle [30]. Luo et al. identified the swinging and standing phases using a quadratic discriminant analysis classifier [31] based on the information of IMUs located on the thigh and shank. Pazar et al. proposed an LSTM model based on the information of IMUs and knee strains to recognize gait phases [32]. The above studies are focused on gait recognition itself; less attention has been paid to its application in the assistance force control of lower-limb exoskeletons.



There is an increasing amount of research on HIL. Koller et al. used a one-dimensional gradient descent method to determine the optimal assist parameters for ankle-assisted exoskeletons. At a walking speed of 1.2 m per second, the algorithm process for each subject took 50 min [33]. Kim et al. used the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to determine three optimal parameters: peak time, offset time, and force magnitude. Eight participants walked on the treadmill at a speed of 1.25 m/s, and the iterative optimization process took an average of two hours per participant. The research results indicate that metabolism significantly decreases under moderate intensity and optimal time [34]. Ye et al. proposed a Bayesian optimization algorithm that uses minimum metabolic cost as an indicator to conduct parameter optimization, minimizing the metabolic cost for humans walking on a 1.25 m/s treadmill [23]. The disadvantage of this method is that the devices used for optimizing parameters are not convenient to carry and travel with, so it is important to propose an assistance time recognition method based on a wearable sensor. In the above studies, the required time is relatively long and cannot meet the requirements of real-time online adjustment during walking.




3. Materials and Methods


This section will provide a detailed introduction to the proposed approach, including platform design, data acquisition and preprocessing, feature extraction, the gait recognition model, the experiment, and other modules.



3.1. The Soft Lower-Limb Exoskeleton Platform


We proposed a belt-type soft hip-assist exoskeleton, as shown in Figure 1. The exoskeleton consists of two actuation units, a control unit, a power supply unit, a waist brace, a knee brace, a pair of shoulder straps, and two belts for transmitting the assistant forces to the legs of the wearer. A load cell is fixed to each of the belts for measuring the assistant forces. The actuation units are tied to the front of the waist brace (each unit has a motor). The assist forces are transmitted by the belts from the actuation units to the knee joints, generating driving torques to the hip joint. Five IMUs are used to measure the motions of the lower limbs and the trunk of the wearer. The IMUs are 9-axis ones consisting of accelerometers, magnetometers, and gyroscopes. Only gyroscopes and accelerometers are used in this work, as magnetic sensors are susceptible to environmental influences. The placement diagram for the IMUs is shown in Figure 1. The IMUs are connected to the main control board inside the back shell of the exoskeleton by a long wire (transmission rate: 500 KHZ, sampling frequency: 200 Hz). All electronic devices of the exoskeleton are powered by a 0.55 kg power supply unit equipped with lithium-ion batteries (36 V, 3 Ah). The weight of the exoskeleton is approximately 2.7 kg.



The soft hip-assist exoskeleton we proposed provides hip flexion assistance force with two belts by imitating the function of the rectus femoris muscle, which is the main hip flexor in human walking. The force of the rectus femoris muscle has the form of Equation (1) [34]. Thus, it is reasonable for us to suppose that the profile of the assistive force takes a similar form. So, the assistance force is expressed as


  F = A sin    π   T a    t + α sin    π   T a    t     + f ,  



(1)




where  F  and  A  represent the assistance force and its magnitude;  t  represents time;  α , the phase shift factor;    T a   , the swing period; and  f , the force offset to prevent the belts getting loose along the thigh of the swing leg without influencing hip extension.



Imitating the muscle force of the rectus femoris, we set the start time of the assistance force as the gait event of toe off, and the end time as the gait event of heel strike in a gait cycle. The time corresponding to the peak of the assistance is set as the gait event of hip max.




3.2. Data Collection and Preprocessing


We collected gait data from 25 healthy experimenters during standing (SD), level walking (LW), going up stairs (US), going down stairs (DS), going up slopes (USL), going down slopes (DSL), turning left (TL), turning right (TR), left steering (LS), and right steering (RS). Walking characteristics such as pace, stride length, and height were carried out in full accordance with the wishes of the experimenter for the whole walking process. After the exoskeleton powered on, the experimenter stood up first, and after one minute, began to complete 9 motion states: level walking, going up stairs, going down stairs, going up slopes, going down slopes, turning left, turning right, left steering, and right steering. Level walking is walking for approximately 100 m under the VICON motion capture system (Oxford Metrology Limited, Oxford, UK). Going up and down stairs involves walking the height of two floors in each direction. Walking up and down slopes occurs for about 50 m. The left and right turns were tested for 2 min, respectively, and 50 left and right turns were completed, respectively. Each of the 25 participants performed a complete experiment, and the entire experiment was performed 25 times. The details of the dataset are shown in Table 1. A total of 4,414,627 sample points were collected, including 299,922 SD samples, 497,373 LW samples, 595,492 US samples, 594,342 DS samples, 287,584 USL samples, 288,389 DSL samples, 584,770 TL samples, 583,571 TR samples, 343,127 LS samples, and 340,057 RS samples.



The human walk exhibits a periodic pattern known as a gait cycle [35]. Each gait cycle has a series of gait events that occur chronologically at specific time points, which are important for determining the starting point of applying assistance force. According to the exoskeleton assistance strategy, the gait times that need to be recognized during a gait cycle are left heel strike (L-HS), right toe off (R-TO), right hip max (R-HMax), right heel strike (R-HS), left toe off (L-TO), and left hip max (L-HMax) (Figure 2).



We selected a dataset of horizontal walking in various road conditions as the dataset for gait phase recognition. The verification of motion status is based on the division of each gait cycle by the VICON system. We used IMU information to identify gait events, but also used the VICON optical motion capture system to measure the motion of the human body during walking for calibration and verification. The IMU inertial system and the VICON system have their own hardware and software. They are synchronized based on velocity information. In the sagittal plane of the VICON system, the lowest vertical position of the heel is the HS event, the highest elevation of the toe from the lowest is the TO event, and the highest hip joint angle is the HMax event. The details of the dataset are shown in Table 2. A total of 497,373 sample points were collected, including 57,214 L-HS samples, 117,840 R-TO samples, 71,250 R-HMax samples, 56,790 R-HS samples, 119,590 L-TO samples, and 74,689 L-HMax samples.




3.3. Feature Extraction


In terms of input feature selection, features with different gait types are selected because, for example, the hip angle curve when descending stairs is different from other gaits, and the angle curve of the ankle joint differs significantly from other gaits when going uphill and downhill. The standard deviation of the combined acceleration of the center of mass is almost zero when people are at rest, but it changes greatly when they are moving. The center of mass acceleration standard deviation reflects the discrete path of the acceleration data.



The information from IMUs in different positions was used for the identification and comparison of the input feature quantities: 3 IMUs were based on the waist and foot, 3 IMUs were based on the waist and thigh, and 5 IMUs were based on the waist, foot, and thigh. After the experiment, it was found that the three IMUs of the waist and foot could not classify going up and going down. Based on the 3 IMUs on the waist and thigh, the recognition rate of level walking and turning was low (about 45%). Therefore, a total of 30 feature vectors, including the angular velocity and acceleration information of 5 IMUs of the waist, thigh, and foot, were used as input feature vectors for the gait recognition model.



For the feature extraction method of gait phase recognition, we consider the coupled relationship between legs, and propose a rule-based feature labeling method. HS: As shown in Figure 3A,D, when event HS occurs, the ankle reaches the maximum dorsiflexion angle. It can be detected by the zero-crossing detection rule. TO: As shown in Figure 3A,C,E, when event TO occurs, the ankle reaches the maximum rate of plantar flexion. It can be detected by a peak detection rule. HMax: As shown in Figure 3B,C,F, when event HMax occurs, the hip reaches the maximum flexion angle. It can be detected by the zero-crossing detection rule.




3.4. Gait Recognition Model


We use an SVM to recognize motion states from the motion information measured by the IMUs, as it requires fewer samples and exhibits strong generalization ability. A radial basis function (RBF) kernel is used to transform the low dimensional data into a high-dimensional space [36], and a gait classification hyperplane is constructed in the high-dimensional space. This hyperplane can separate non-linear and non-separable data into linearly separable data. The classification hyperplane is defined as


  f ( x ) =  ω T  φ ( x ) + b ,  



(2)




in which  ω  is the hyperplane normal vector,   φ ( x )   is the input feature vector, and  b  is the intercept.



Then, gait classification can be transformed into a problem of finding the maximum distance between walking styles, and this distance is expressed as


  max dis =   max  w    2 ×   y (  ω T  φ ( x ) + b )      w   2    ,  



(3)




where    y i  (  ω T  φ ( x ) + b ) = 1 , ∀  y i  ∈   − 1 , 1    . Thus, the problem of solving the optimal gait classification surface via SVM can be reduced to a quadratic programming problem, as shown by Equation (4). Introduce slack variables  ξ  to transform the inequality constraints in Equation (4) to an equality constraint, as shown in Equation (5). We can build a Lagrange function, as shown in Equation (6).


         min  ⁡  d i s   =   m i n   w         w     2     2         w   =      w   1     2   +     w   2     2   + ⋯ +     w   n     2        y (   ω   T   φ ( x ) + b ) ≥ 1 , ∀ i = 1,2 , ⋯ , n      ,  



(4)






   h i  ( w ,  ξ i  ) = 1 −  y i  (  w T  φ ( x ) + b ) +  ξ i   



(5)






  L ( w , b , ξ , λ , μ ) =  1 2     w   2  + C   ∑  i = 1  m    ξ i  +     ∑  i = 1  n   (  λ i   h i  −  μ i   ξ i  )    



(6)




where  λ  and  μ  are Lagrange multipliers,  w  and  b  are optimization parameters, and  C  represents the penalty factor. Taking the derivatives of the optimization parameters in Equation (6), we obtain the gait classification hyperplane as


  f ( x ) = s i g n (   ∑  i = 1  N    w i   ξ i  K (  x i  , x ) +  b i    )  



(7)







By training the model using a multi-classification method with binary tree structures, we can recognize the walking styles. Figure 4 gives the framework of the recognition. The data collected by the IMUs are the accelerations and angular velocities of the waist and right and left legs, represented by      a  f r   ,  v  f r   ,  a  f l   ,  v  f l   ,  a  t r   ,  v  t r   ,  a  t l   ,  v  t l   ,  a w  ,  v w     . The penalty factor  C  is 2. Choose Gaussian (RBF) as the kernel function based on the characteristics of the data, and gamma is set to scale. It automatically calculates the value of gamma based on the scale of the input data.



We take the kinematic data of walking motion as a periodic time series and employ long short-term memory (LSTM) to identify gait phase. The cell state of the LSTM allows for the retention or addition of input information to the cell state, enabling a better integration of historical information for the recognition of gait phase at the current time point [9,37,38]. The LSTM cell consists of oblivion gate    f t   , input gate    i t   , output gate    o t   , and cell state    C t   .


   f t  = σ (  W f  ⋅    h  t − 1   ,  x t    +  b f  )  



(8)






   i t  = σ (  W i  ⋅    h  t − 1   ,  x t    +  b i  )  



(9)






   o t  = σ (  W o  ⋅    h  t − 1   ,  x t    +  b o  )  



(10)






   C t  =  f t  ⋅  C  t − 1   +  i t  ⋅ tanh (  W c  ⋅    h  t − 1   ,  x t    +  b c  )  



(11)






   h t  =  o t  ⋅ tanh (  C t  )  



(12)




where  σ  is the sigmoid function,  W  represents the weight matrices of each gate, and  b , the bias vectors of each gate.



The network model used for gait phase recognition is shown in Figure 2. The input to the network is the time series   X =     x   1   ,   x   2   , ⋯ ,   x   n − 1   ,   x   n      , where     x   n     is the vector consisting of the standardized IMU inertial raw data and   n   is the sequence length, which is 5. The epochs of the model are 200, and the number of samples in each training batch is 64. The gait phase recognition model consists of an LSTM layer and a fully connected (FC) layer followed by softmax. The input feature dimension is 30, the LSTM layer has 128 neurons, and the FC layer has 32 neurons. The output represents the probabilities of 6 different gait phases. This model runs on a notebook PC. The notebook PC receives the gait data sent by the robot, uses a trained LSTM model to obtain gait classification results, and finally sends the results to the exoskeleton through Wi-Fi. The artificial neural network training is implemented using Python 3.7.1 and TensorFlow 2.5.0.





4. Experiment


4.1. Subjects


The dataset for the gait recognition experiments was obtained from 25 healthy adults (age = 27.5 ± 2.4 years, height = 173.6 ± 5.9 cm, and weight = 69.5 ± 3.6 kg). The experiment was approved by the Ethics Committee of Hebei University of Technology, and each subject was asked to read and provide written informed consent before the test (Ethics Committee name: the Biomedical Ethics Committee of Hebei University of Technology; approval code: HEBUThMEC2023017).




4.2. Protocol


4.2.1. Gait Classification and Gait Phase Recognition


For the recognition verification of multiple road conditions, the data of the first 20 people in the dataset in Table 1 were used to train the SVM model, and the data of the last 5 people were used to test the performance of the model. For gait phase recognition validation, the data of the first 22 individuals in the dataset in Table 2 were used to train the LSTM model, while the data of the last 3 individuals were used to test the performance of the model. In this paper, we use accuracy (ACC),    F 1    scores, and the Matthews correlation coefficient (MCC) to evaluate the performance of the model. Different recognition models were trained offline using Python 3.7.1 and TensorFlow 2.5.0 software. The performance of the motion state and gait phase recognition algorithm was validated using a five-fold cross validation.




4.2.2. Assistance Effect Experiment


Ten subjects were randomly selected from the twenty-five subjects to test the assistance effect of the assist policy based on the proposed gait classification and gait phase recognition. The exoskeleton’s assist time predicts the time difference in the gait event from the previous step of gait recognition. In order to verify the effectiveness of the gait recognition model, a metabolic power experiment for the exoskeleton-assisted effect experiment based on BP neural network gait phase recognition was added.



Each subject wore specially designed sportswear under the soft exoskeleton so that reflective markers could be pasted to them for the VICON system (Oxford Metrology Limited, Oxford, UK) to capture walking motions. Figure 5A presents the locations of the 16 markers in total that were pasted symmetrically to the left and right of the human body [39,40]. Each subject participated in two different speed walking experiments on a treadmill. Before the test, each subject was instructed to familiarize themselves with treadmill walking. To confirm the effect of the assist, power-off (P-OFF) tests were also carried out before the test with the assist (P-ON) for each walking speed. Figure 6 gives the test conditions.



Besides measuring the kinematic parameters in the assisted walking test, change in metabolic cost was also estimated using a portable respiratory measurement device (Cosmed, K4b2, Rome, Italy) worn by the subjects (Figure 5B). All the subjects were asked not to consume food or beverages 2 h before the test so that the metabolic cost could be estimated accurately.





4.3. Data Collection


Data were collected at 100 Hz using the VICON Motion system (Oxford Metrics, Oxford, UK) with 10 cameras (model: VANTAGE-V5-VS-5299). Real marker trajectory data were filtered with a quintic spline filter based on the code by Herman Woltring [41]. The position information of each subject’s joints was directly obtained. The angles of the hip, knee, and ankle joints were obtained using the plug-in gait model in Vicon Nexus software v1.8.5 [42,43,44]. All the joint angles were calculated from the YXZ Cardan angles, derived by comparing the relative orientations of the two segments [42]. Using Vicon Polygon (Oxford Metrics Group, Oxford, UK) [42] software, kinematic data were extracted to a C3D file or an ASCII file, which was then input into MATLAB software (MATLAB 23.2.0) for post-processing.



The respiratory data, oxygen consumption (   V   O 2      [L/min]) data, and respiratory quotient (RER) were averaged across the latter half of the one-minute intervals for each sampling parameter condition. The net metabolic cost was calculated by subtracting the resting metabolic cost from the walking metabolic cost, and then normalized according to the weight of each subject.




4.4. Statistical Analysis


Means and standard deviations for each test condition were calculated. Statistical analysis was performed using the SPSS statistical software system (SPSS Inc., Chicago, IL, USA; version 22.0). One-way repeated-measures analyses of variance with three conditions (No-Exo, P-Off, P-On) were used to verify the effect of the hip assistance on metabolic reduction. Pairwise comparisons with Bonferroni post hoc tests were conducted to identify the differences between conditions when a statistically significant main effect was identified with the one-way repeated-measures analyses of variance. A paired t-test was performed to assess the difference between the different conditions for metabolic reduction. p < 0.05 represented a significant difference.





5. Results


5.1. Accuracy of Motion State Recognition


We compared the accuracy of four motion recognition models—KNN, Random Forest, Decision Tree, and SVM—as shown in Table 3. It can be seen that SVM has the highest recognition rate of 99.98%. Table 4 shows the confusion matrix of the motion state recognition, which shows the recognition results of the ten walking styles. It can be seen from Table 4 that a small portion of standing periods were identified as steering. The reason is that there were a few similar features between the two walking styles. The recognition rate of level walking was high. This is worth noting because we are more interested in assisting in level walking for frail, older individuals, and thus in removing assistance for other walking styles for safety.




5.2. Accuracy of Gait Phase Recognition


Table 5 compares the recognition rates of the different gait phases in a gait cycle. Table 3 shows the performance indicators of the different phase recognition models. It can be seen that, compared with NN, RBF and BP, LSTM has the highest recognition rate, which is 98.26%. The confusion matrix displays the recognition results of six gait phases, where the sample between two consecutive gait events is marked as the starting event. From Table 6 and Figure 7, it can be seen that the recognition rate of HS gait events (L-HS: 0.975, R-HS: 0.970) is lower than those of TO (L-TO: 0.991, R-TO: 0.995) and HMax (L-Hax: 0.983, R-Hax: 0.991) events. The reason is that the feature used to mark HS gait events was the zero-crossing detection rule of the Z-axis angular velocity of the foot IMU. Before the HS event, the Z-axis angular velocity of the foot IMU rapidly decreased in a short time. There was a certain error in finding the zero point during this rapid descent process. Although the recognition rate of HS was relatively low, the recognition accuracy was sufficient to apply to the assistance of the exoskeleton.




5.3. Kinematic Effect of the Assistance


The accuracy of gait recognition and the prediction of assistance parameters directly affects the effectiveness of wearing exoskeleton assistance, and the direct representation of this on the human body is the changes in the joints of the lower limbs during walking. The highest hip joint swing angle value during exoskeleton-assisted walking was significantly higher than that without exoskeleton walking. At speeds of 3.6 km/h and 5.5 km/h, the maximum swing angle of the hip joint increased by 5–6 degrees (Figure 8A,B). This indicates that setting the peak assist at the moment of maximum hip joint swing angle is effective and reasonable. Exoskeleton assistance generates torque on the hip joint. Although there is no torque generated on the knee joint, the force of the exoskeleton acts on the knee joint, and the angle of the knee joint also changes significantly. As shown in Figure 8E,F, at speeds of 3.6 km/h and 5.5 km/h, wearing an exoskeleton for assistance increases the maximum knee joint swing angle by 9 degrees and 7 degrees, respectively, compared to not wearing an exoskeleton.



As shown in Figure 8G–I, in toe off (point F, Figure 8I), there was a significant change in ankle plantar flexion, with an increase of 3–5 degrees. At the end of the assistance, there was a significant change in ankle dorsiflexion and an increase of 3 degrees in the angle (point E, Figure 8H). The changes in ankle joint plantar flexion and dorsiflexion corresponded to toe rocker and heel rocker, with an increased angle indicating better rolling effect and a better performance of human ankle rolling. This indicates that starting assistance at TO and ending assistance at HS is effective and reasonable. The changes in ankle joint plantar flexion and dorsiflexion can affect the ground clearance position of the heel and toe, and can be used to further analyze the changes in foot ground clearance distance. The position of the heel and toe (Figure 9A,C,D) and the position of the toe (Figure 9A,B) when the foot swings to the neutral position are both elevated under the assistance of exoskeletons. The elevation of the heel and toe positions reduces the risk of tripping over obstacles, which is one of the main purposes of hip joint assistance.



The combined result of changes in the swing angles of the human hip joint, knee, and lower limbs is an increase in step size, as shown in Figure 10. At two different walking speeds, there was an increase of 5–10 cm under assisted conditions. At the walking speed of 5.5 km/h, the step length increases even more, by about 10 cm. When walking speed is high, the more obvious the assist effect.




5.4. Metabolic Effect of Assistance


Figure 11 shows the average metabolic cost of ten subjects walking on a treadmill at a walking speed of 3.6 km/h and 5.5 km/h. Compared to not wearing an exoskeleton, wearing an exoskeleton at two different walking speeds reduced the metabolic power of the ten individuals by 10.98% (0.405 w/kg) and 14.28% (0.621 w/kg), respectively. The higher the speed, the more the metabolic power decreased, indicating that the assistance effect of exoskeletons is significant. As can be seen from Figure 11, the metabolic power of gait phase recognition based on a BP neural network for assist time prediction decreased by 6.3% (0.213 w/kg) and 8%,2% (0.357 w/kg), respectively. The metabolic power reduction in the SVM and LSTM recognition models proposed in this paper was significantly more than in the BP neural network, indicating that the proposed gait recognition model can be applied to exoskeleton-assisted control. This demonstrates the effect of the gait event based on assistance policies. When the respiratory exchange rate (RER) is less than 1, the subject is in an aerobic breathing state. When RER  ≥  1, the subject is in a respiratory state in which aerobic and anaerobic respiration work together. An increase in RER to some extent reflects an increase in exercise intensity and changes in the respiratory substrates of the body’s energy supply system. The RER of the ten experimenters was less than 1 under all three conditions, and the RER was the lowest under the assistance condition.





6. Discussion


With regard to kinematic analysis, there are still some issues worth discussing. We believe the slight improvement in point B (Figure 8A,C) is the result of alternating leg assistance. When the left leg is at the hip joint angle feature, point B and has not yet entered the assist phase, and the right leg has just completed the swing phase. Before the left leg enters the swing phase, potential energy is converted into kinetic energy to drive the movement of the left leg. Therefore, although assistance has not yet begun at point B, due to the conversion between kinetic energy and potential energy, the hip joint angle will also increase.



It should also be noted that, in the test, with the assistance of the exoskeleton, the step length significantly increased. Because the test was conducted at a constant speed on a treadmill, as the step length increased, the cadence inevitably decreased. Another possibility is that the human body autonomously changes its walking style, increasing step length and reducing step frequency.



When walking at asynchronous speeds, the balance system of the human body adjusts the relationship between step length and cadence to ensure an efficient walk, i.e., from the viewpoint of an efficient walk, an optimum relationship exists between step length and cadence. This is similar to the walking ratio (the ratio of step length to cadence) proposed by Murakami [45,46]. That is why the concept of walk ratio is usually used when walk efficiency is discussed. The metabolic consumption test demonstrated that the assistance did bring metabolic reduction. From the metabolic consumption test, it can be seen that the wearer’s metabolic cost did indeed decrease under assist conditions, ruling out the possibility that the increase in step length may not be the assisting effect.



At present, we have identified and perceived the gait phase of horizontal walking based on an assistance strategy for horizontal walking. However, there are significant differences in the walking characteristics of the human body under different road conditions. For example, in uphill and downhill movements, the main movement of the lower-limb hip joints is flexion, and the flexion angle is relatively small compared to horizontal walking as a whole. During the process of going up stairs, the flexion angle of the hip joint varies greatly. The assistance strategy of exoskeletons varies under different road conditions, and the effective implementation of assistance strategies requires an accurate perception of human motion intentions. Therefore, our plan for our next work is to study the perception and assistance strategies of gait phase under different road conditions.




7. Conclusions


Firstly, this paper proposed a gait recognition method using the information measured by five IMUs fixed on a soft exoskeleton. It distinguishes walk styles with the algorithm of a support vector machine (SVM) and gait phases with long and short-term memory (LSTM). Tests on 12 subjects demonstrated high accuracies of 99.98% and 98.06%, respectively. Secondly, a method for determining assistance parameters for the soft exoskeleton based on gait event and gait phase was proposed. Tests were conducted on three subjects to confirm its effect. The results showed that the assistance could significantly improve gait motion and reduce metabolic cost by an average of over 10%.
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Figure 1. The soft lower-limb exoskeleton. 
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Figure 2. Gait event division within a gait cycle. 
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Figure 3. (A) The angular velocity of the Z-axis of the IMU located on the foot. (B) The angular velocity of the Z-axis of the IMU located on the thigh. (C) The specific force of the Z-axis of the IMU located on the right foot and thigh. (D) The vertical position of the heel obtained from VICON. (E) The vertical position of the toe obtained from VICON. (F) The hip angle obtained from VICON. 
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Figure 4. The gait recognition framework. The red curve represents the turning, with the arrow direction clockwise indicating the turning left (TL) and counter clockwise indicating the turning right (TR); The red straight line represents the steering, with the arrow direction to the right indicating the left steering (LS) and the direction to the left indicating the right steering (RS). 
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Figure 5. Testing assistance effect. (A) Kinematic test. (B) Metabolic test. 
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Figure 6. Test conditions. 
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Figure 7. Actual data and recognition results for six gait cycles. 
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Figure 8. (A) The typical gait characteristics of the hip angle. Point A represents the typical point with the highest hip angle and point B represents the typical point with the lowest hip angle. (B) Changes in point A angles of the hip joint. (C) Changes in point B angles of the hip joint. (D) The typical gait characteristics of the knee angle. Point C represents the typical point with the highest knee angle during the swing period and point D represents the typical point with the highest knee angle during the support period. (E) Changes in point C angles of the hip joint. (F) Changes in point D angles of the hip joint. (G) The typical gait characteristics of the ankle angle. Point E represents the typical point with the lowest ankle angle and point F represents the typical point with the lowest ankle angle. (H) Changes in point E angles of the ankle joint. (I) Changes in point F angles of the ankle joint. 
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Figure 9. (A) The typical gait characteristics of the heel and toe during a gait cycle. Point G represents the highest point of the vertical position of the heel during the swing period. Point H and point K respectively represent the highest point of the vertical position of the toes during the swing period and before the foot lands on the ground. (B) Vertical position of point K at the toe under different conditions. (C) Vertical position of point G at the heel under different conditions. (D) Vertical position of point H at the toe under different conditions. 
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Figure 10. Changes in step length under different conditions. 
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Figure 11. Changes in metabolic cost under different conditions. 
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Table 1. Dataset for different road conditions.
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	Trials
	SD
	LW
	US
	DS
	USL
	DSL
	TL
	TR
	LS
	RS





	1
	12,000
	19,850
	23,768
	23,819
	11,685
	11,625
	23,584
	22,926
	13,835
	12,244



	2
	12,000
	19,760
	23,818
	23,862
	11,323
	11,347
	23,691
	23,768
	12,847
	13,745



	3
	11,998
	19,863
	23,633
	23,784
	11,569
	11,572
	23,396
	23,294
	14,354
	12,961



	4
	11,999
	19,968
	23,897
	23,990
	11,353
	11,190
	23,281
	22,543
	14,242
	14,485



	5
	12,000
	19,852
	23,778
	23,778
	11,992
	11,670
	23,030
	23,849
	13,372
	13,656



	6
	11,994
	19,931
	23,895
	23,692
	11,509
	11,309
	23,577
	22,741
	14,561
	13,304



	7
	12,000
	19,931
	23,951
	23,586
	11,776
	11,740
	23,888
	23,645
	13,112
	14,472



	8
	12,002
	19,803
	23,743
	23,541
	11,456
	11,466
	23,132
	23,560
	12,997
	14,447



	9
	12,000
	19,984
	23,953
	23,900
	11,187
	11,270
	23,503
	23,865
	12,783
	12,652



	10
	11,986
	19,818
	23,845
	23,596
	11,178
	11,859
	23,701
	22,740
	14,815
	14,413



	11
	12,000
	19,872
	23,788
	23,898
	11,912
	11,620
	23,942
	23,899
	12,435
	12,133



	12
	11,985
	19,900
	23,934
	23,733
	11,238
	11,552
	23,852
	23,308
	14,132
	14,659



	13
	12,000
	19,914
	23,869
	23,671
	11,123
	11,392
	22,737
	22,588
	12,579
	13,929



	14
	11,995
	19,940
	23,793
	23,835
	11,607
	11,929
	23,176
	22,976
	13,502
	12,503



	15
	11,998
	19,807
	23,811
	23,889
	11,255
	11,973
	23,062
	23,569
	14,577
	14,488



	16
	12,000
	19,863
	23,591
	23,760
	11,928
	11,356
	23,924
	22,872
	13,954
	14,751



	17
	12,000
	19,945
	23,851
	23,579
	11,689
	11,244
	23,040
	23,845
	12,975
	13,747



	18
	11,997
	19,948
	23,916
	23,851
	11,524
	11,278
	23,060
	23,926
	12,986
	12,885



	19
	12,002
	19,894
	23,655
	23,951
	11,279
	11,721
	23,052
	22,989
	13,762
	14,419



	20
	12,000
	19,937
	23,889
	23,916
	11,807
	11,199
	22,793
	23,953
	14,409
	12,288



	21
	11,986
	19,889
	23,500
	23,553
	11,113
	11,823
	23,767
	23,397
	13,892
	13,534



	22
	12,000
	19,975
	23,982
	23,678
	11,873
	11,216
	23,679
	23,269
	13,458
	14,566



	23
	11,985
	19,889
	23,693
	23,799
	11,595
	11,769
	22,976
	23,759
	14,776
	13,311



	24
	12,000
	19,971
	24,012
	23,701
	11,224
	11,435
	22,951
	22,834
	14,380
	13,768



	25
	11,995
	19,869
	23,927
	23,980
	11,389
	11,834
	23,976
	23,456
	14,392
	12,697



	Total
	299,922
	497,373
	595,492
	594,342
	287,584
	288,389
	584,770
	583,571
	343,127
	340,057
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	Trials
	LW
	L-HS
	R-TO
	R-HMax
	R-HS
	L-TO
	L-HMax





	1
	19,850
	2504
	4817
	2981
	2202
	4615
	2731



	2
	19,760
	2129
	4702
	2769
	2358
	4876
	2926



	3
	19,863
	2391
	4676
	2783
	2091
	4895
	3027



	4
	19,968
	2213
	4956
	2796
	2315
	4983
	2705



	5
	19,852
	2318
	4484
	2980
	2250
	4640
	3180



	6
	19,931
	2242
	4465
	2791
	2380
	5054
	2999



	7
	19,931
	2457
	5060
	2791
	2271
	4952
	2400



	8
	19,803
	2220
	4453
	2874
	2219
	4951
	3086



	9
	19,984
	2188
	4599
	2997
	2166
	4953
	3081



	10
	19,818
	2367
	4527
	2776
	2444
	5059
	2645



	11
	19,872
	2466
	5084
	2783
	2208
	4578
	2753



	12
	19,900
	2044
	4756
	2787
	2387
	4898
	3028



	13
	19,914
	2117
	4798
	3088
	2258
	4634
	3019



	14
	19,940
	2440
	4502
	2892
	2515
	4657
	2934



	15
	19,807
	2355
	4572
	2874
	2202
	4976
	2828



	16
	19,863
	2048
	4592
	2782
	2377
	4873
	3191



	17
	19,945
	2311
	4644
	2792
	2113
	4854
	3231



	18
	19,948
	2199
	5023
	2793
	2156
	4603
	3174



	19
	19,894
	2597
	4627
	2786
	2299
	4863
	2722



	20
	19,937
	2290
	4622
	3091
	2142
	4664
	3128



	21
	19,889
	2082
	4790
	2785
	2367
	4592
	3273



	22
	19,975
	2459
	5077
	2696
	2155
	4618
	2970



	23
	19,889
	2043
	4439
	2785
	2211
	4637
	3774



	24
	19,971
	2280
	5067
	2896
	2321
	4586
	2821



	25
	19,869
	2454
	4508
	2882
	2383
	4579
	3063



	Total
	497,373
	57,214
	117,840
	71,250
	56,790
	119,590
	74,689










 





Table 3. Evaluation of motion state recognition models.
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	Method Model
	ACC 1 (%)
	    F 1     Score
	MCC





	KNN
	98.72
	0.9878
	0.9880



	Random Forest
	99.31
	0.9942
	0.9935



	Decision Tree
	98.95
	0.9894
	0.9901



	SVM
	99.98
	0.9985
	0.9987







1 Accuracy refers to correctly determined motion state.













 





Table 4. Confusion matrix of the trained SVM.
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	SD
	LW
	US
	DS
	USL
	DSL
	TL
	TR
	LS
	RS





	SD
	0.99
	0
	0
	0
	0
	0
	0
	0
	0
	0



	LW
	0
	1.00
	0
	0
	0
	0
	0
	0
	0
	0



	US
	0
	0
	1.00
	0
	0
	0
	0
	0
	0
	0



	DS
	0
	0
	0
	1.00
	0
	0
	0
	0
	0
	0



	USL
	0
	0
	0
	0
	1.00
	0
	0
	0
	0
	0



	DSL
	0
	0
	0
	0
	0
	1.00
	0
	0
	0
	0



	TL
	0
	0
	0
	0
	0
	0
	1.00
	0
	0
	0



	TR
	0
	0
	0
	0
	0
	0
	0
	1.00
	0
	0



	LS
	0.01
	0
	0
	0
	0
	0
	0
	0
	0.99
	0



	RS
	0
	0
	0
	0
	0
	0
	0
	0
	0.01
	1.00










 





Table 5. Evaluation of gait phase recognition models.
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	Method Model
	ACC 1 (%)
	    F 1     Score
	MCC





	NN
	96.36
	0.9635
	0.9612



	RBF
	96.78
	0.9675
	0.9680



	BP
	97.55
	0.9752
	0.9748



	LSTM
	98.26
	0.9821
	0.9825







1 Accuracy refers to correctly determined gait phase.













 





Table 6. Confusion matrix of the trained LSTM.
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	L-HS
	R-TO
	R-HMax
	R-HS
	L-TO
	L-HMax





	L-HS
	0.975
	0
	0
	0
	0
	0.017



	R-TO
	0.010
	0.995
	0
	0
	0
	0



	R-HMax
	0
	0.005
	0.991
	0.010
	0
	0



	R-HS
	0
	0
	0.009
	0.970
	0
	0



	L-TO
	0
	0
	0
	0.020
	0.991
	0



	L-HMax
	0.015
	0
	0
	0
	0.009
	0.983
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