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Abstract: The gait recognition of exoskeletons includes motion recognition and gait phase recognition
under various road conditions. The recognition of gait phase is a prerequisite for predicting exoskele-
ton assistance time. The estimation of real-time assistance time is crucial for the safety and accurate
control of lower-limb exoskeletons. To solve the problem of predicting exoskeleton assistance time,
this paper proposes a gait recognition model based on inertial measurement units that combines
the real-time motion state recognition of support vector machines and phase recognition of long
short-term memory networks. A recognition validation experiment was conducted on 30 subjects
to determine the reliability of the gait recognition model. The results showed that the accuracy of
motion state and gait phase were 99.98% and 98.26%, respectively. Based on the proposed SVM-LSTM
gait model, exoskeleton assistance time was predicted. A test was conducted on 10 subjects, and the
results showed that using assistive therapy based on exercise status and gait stage can significantly
improve gait movement and reduce metabolic costs by an average of more than 10%.

Keywords: soft lower-limb exoskeleton; gait recognition; long short-term memory (LSTM); support
vector machine (SVM); assistance parameter planning

1. Introduction

Soft exoskeletons have been widely studied for their advantages of being lightweight,
comfortable, and easy to wear and take off [1,2]. During walking, they obtain motion
information through wearable sensors and apply assistance based on gait styles and phases
estimated from the motion information. If the exoskeleton assistance does not match the
intention of human movement, the exoskeleton will hinder human movement and even
cause instability, leading to falls. Therefore, gait recognition is crucial for the control of a
soft exoskeleton.

In terms of sensor system design, commonly used sensors include inertial sensors
(IMUs) [3–5], plantar pressure sensors [6], surface electromyography electrodes [7,8], and
electroencephalogram electrodes [9]. IMUs are widely used in gait motion recognition
for their high portability, low cost, and environmental friendliness [10–14]. At present,
many studies on gait recognition using different sensor configurations have been proposed.
These studies are based on threshold methods for identifying gait events, which are prede-
termined based on experience. Because gait features are unique, each person’s threshold
may vary. The threshold adjustment process is manual and time-consuming. With the
development of statistical methods, various neural networks have been applied to gait
recognition in an attempt to solve this problem.
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There are two main types of exoskeleton recognition for human motion intention:
one is the recognition of motion status under different road conditions, and the other
is the recognition of gait phase. The motion state and gait phase are important bases
for the time and magnitude of the auxiliary force applied by the exoskeleton [15]. By
adjusting the timing and magnitude of the assistance force, the exoskeleton can match
the gait characteristics of the wearer well, thereby improving adaptability and efficiency.
However, the adjustment is usually based on experience, resulting in poor adaptability of
the exoskeleton and poor auxiliary effects [16–18]. To solve this problem, human-in-the-
loop (HIL) optimization [19,20], which is the method of optimizing control parameters
for individualized assistance within soft exosuits, has attracted increasing attention. HIL
optimization is an effective method for identifying optimal control parameters based on
feedback from human gait information, and is particularly suitable for the personalized
customization of auxiliary parameters for users [21–23]. The effectiveness of the HIL
optimization strategy depends on the accuracy of human gait information recognition.
At present, research mainly focuses on the accuracy of gait recognition and assistance
prediction itself, with relatively little application in the control of lower-limb exoskeleton
assistance force to analyze the application effect of recognition.

In order to predict the auxiliary time of an exoskeleton, we build a gait recognition
model that can be applied to exoskeletons. The contributions of this paper are as follows:
Firstly, a hip-assisted exoskeleton gait recognition method based on five inertial sensors is
proposed, including SVM motion state recognition and LSTM phase recognition. Secondly,
considering the coupling relationship between the two legs, the model proposes a rule-
based gait event labeling method that can recognize both the left and right leg assist times.
Finally, the gait recognition model is applied for the prediction of exoskeleton assisting time,
and the effectiveness and reliability of the gait recognition model are proved by analyzing
the assisting effect.

2. Related Works

In terms of motion state recognition, different recognition models were studied ac-
cording to different applications, and certain recognition effects were achieved [24,25]. For
example, Semwal et al. used a CNN to identify six different motion states [26], Weiland et al.
used a classification artificial neural network (ANN) to recognize horizontal walking, uphill
climbing, and uphill movement states [27], and Liu et al. placed four IMUs on the front of
the thighs and the front of the calves of both legs and used an SVM to identify the current
motion state [28]. The identifications in these studies are mostly typical of movement states,
such as standing, horizontal walking, going up and down slopes, and going up and down
stairs, while basic human movements include turning left and right, and so on. In addition,
different motion states require different assistance planning techniques, and most of these
motion recognition studies focus on recognition, and have not been well applied to the
control of exoskeletons.

On the other hand, the phase recognition of the human gait is also a hot topic [29].
Zhang et al. proposed a multi-degree-of-freedom gait-detection method based on the
kinematic information collected by IMUs on the dorsum of the foot, ankle, and thigh,
and pursued the real-time recognition of the five phase features in a gait cycle [30]. Luo
et al. identified the swinging and standing phases using a quadratic discriminant analysis
classifier [31] based on the information of IMUs located on the thigh and shank. Pazar et al.
proposed an LSTM model based on the information of IMUs and knee strains to recognize
gait phases [32]. The above studies are focused on gait recognition itself; less attention has
been paid to its application in the assistance force control of lower-limb exoskeletons.

There is an increasing amount of research on HIL. Koller et al. used a one-dimensional
gradient descent method to determine the optimal assist parameters for ankle-assisted
exoskeletons. At a walking speed of 1.2 m per second, the algorithm process for each
subject took 50 min [33]. Kim et al. used the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) to determine three optimal parameters: peak time, offset time, and
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force magnitude. Eight participants walked on the treadmill at a speed of 1.25 m/s, and
the iterative optimization process took an average of two hours per participant. The
research results indicate that metabolism significantly decreases under moderate intensity
and optimal time [34]. Ye et al. proposed a Bayesian optimization algorithm that uses
minimum metabolic cost as an indicator to conduct parameter optimization, minimizing
the metabolic cost for humans walking on a 1.25 m/s treadmill [23]. The disadvantage of
this method is that the devices used for optimizing parameters are not convenient to carry
and travel with, so it is important to propose an assistance time recognition method based
on a wearable sensor. In the above studies, the required time is relatively long and cannot
meet the requirements of real-time online adjustment during walking.

3. Materials and Methods

This section will provide a detailed introduction to the proposed approach, including
platform design, data acquisition and preprocessing, feature extraction, the gait recognition
model, the experiment, and other modules.

3.1. The Soft Lower-Limb Exoskeleton Platform

We proposed a belt-type soft hip-assist exoskeleton, as shown in Figure 1. The ex-
oskeleton consists of two actuation units, a control unit, a power supply unit, a waist brace,
a knee brace, a pair of shoulder straps, and two belts for transmitting the assistant forces to
the legs of the wearer. A load cell is fixed to each of the belts for measuring the assistant
forces. The actuation units are tied to the front of the waist brace (each unit has a motor).
The assist forces are transmitted by the belts from the actuation units to the knee joints,
generating driving torques to the hip joint. Five IMUs are used to measure the motions
of the lower limbs and the trunk of the wearer. The IMUs are 9-axis ones consisting of
accelerometers, magnetometers, and gyroscopes. Only gyroscopes and accelerometers are
used in this work, as magnetic sensors are susceptible to environmental influences. The
placement diagram for the IMUs is shown in Figure 1. The IMUs are connected to the
main control board inside the back shell of the exoskeleton by a long wire (transmission
rate: 500 KHZ, sampling frequency: 200 Hz). All electronic devices of the exoskeleton are
powered by a 0.55 kg power supply unit equipped with lithium-ion batteries (36 V, 3 Ah).
The weight of the exoskeleton is approximately 2.7 kg.
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Figure 1. The soft lower-limb exoskeleton.

The soft hip-assist exoskeleton we proposed provides hip flexion assistance force with
two belts by imitating the function of the rectus femoris muscle, which is the main hip flexor
in human walking. The force of the rectus femoris muscle has the form of Equation (1) [34].
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Thus, it is reasonable for us to suppose that the profile of the assistive force takes a similar
form. So, the assistance force is expressed as

F = A sin
(

π

Ta
t + α sin

(
π

Ta
t
))

+ f , (1)

where F and A represent the assistance force and its magnitude; t represents time; α, the
phase shift factor; Ta, the swing period; and f , the force offset to prevent the belts getting
loose along the thigh of the swing leg without influencing hip extension.

Imitating the muscle force of the rectus femoris, we set the start time of the assistance
force as the gait event of toe off, and the end time as the gait event of heel strike in a
gait cycle. The time corresponding to the peak of the assistance is set as the gait event of
hip max.

3.2. Data Collection and Preprocessing

We collected gait data from 25 healthy experimenters during standing (SD), level
walking (LW), going up stairs (US), going down stairs (DS), going up slopes (USL), going
down slopes (DSL), turning left (TL), turning right (TR), left steering (LS), and right steering
(RS). Walking characteristics such as pace, stride length, and height were carried out in
full accordance with the wishes of the experimenter for the whole walking process. After
the exoskeleton powered on, the experimenter stood up first, and after one minute, began
to complete 9 motion states: level walking, going up stairs, going down stairs, going up
slopes, going down slopes, turning left, turning right, left steering, and right steering. Level
walking is walking for approximately 100 m under the VICON motion capture system
(Oxford Metrology Limited, Oxford, UK). Going up and down stairs involves walking the
height of two floors in each direction. Walking up and down slopes occurs for about 50 m.
The left and right turns were tested for 2 min, respectively, and 50 left and right turns were
completed, respectively. Each of the 25 participants performed a complete experiment, and
the entire experiment was performed 25 times. The details of the dataset are shown in
Table 1. A total of 4,414,627 sample points were collected, including 299,922 SD samples,
497,373 LW samples, 595,492 US samples, 594,342 DS samples, 287,584 USL samples,
288,389 DSL samples, 584,770 TL samples, 583,571 TR samples, 343,127 LS samples, and
340,057 RS samples.

The human walk exhibits a periodic pattern known as a gait cycle [35]. Each gait
cycle has a series of gait events that occur chronologically at specific time points, which
are important for determining the starting point of applying assistance force. According to
the exoskeleton assistance strategy, the gait times that need to be recognized during a gait
cycle are left heel strike (L-HS), right toe off (R-TO), right hip max (R-HMax), right heel
strike (R-HS), left toe off (L-TO), and left hip max (L-HMax) (Figure 2).
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Figure 2. Gait event division within a gait cycle.

We selected a dataset of horizontal walking in various road conditions as the dataset
for gait phase recognition. The verification of motion status is based on the division of
each gait cycle by the VICON system. We used IMU information to identify gait events,
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but also used the VICON optical motion capture system to measure the motion of the
human body during walking for calibration and verification. The IMU inertial system and
the VICON system have their own hardware and software. They are synchronized based
on velocity information. In the sagittal plane of the VICON system, the lowest vertical
position of the heel is the HS event, the highest elevation of the toe from the lowest is the
TO event, and the highest hip joint angle is the HMax event. The details of the dataset are
shown in Table 2. A total of 497,373 sample points were collected, including 57,214 L-HS
samples, 117,840 R-TO samples, 71,250 R-HMax samples, 56,790 R-HS samples, 119,590
L-TO samples, and 74,689 L-HMax samples.

Table 1. Dataset for different road conditions.

Trials SD LW US DS USL DSL TL TR LS RS

1 12,000 19,850 23,768 23,819 11,685 11,625 23,584 22,926 13,835 12,244
2 12,000 19,760 23,818 23,862 11,323 11,347 23,691 23,768 12,847 13,745
3 11,998 19,863 23,633 23,784 11,569 11,572 23,396 23,294 14,354 12,961
4 11,999 19,968 23,897 23,990 11,353 11,190 23,281 22,543 14,242 14,485
5 12,000 19,852 23,778 23,778 11,992 11,670 23,030 23,849 13,372 13,656
6 11,994 19,931 23,895 23,692 11,509 11,309 23,577 22,741 14,561 13,304
7 12,000 19,931 23,951 23,586 11,776 11,740 23,888 23,645 13,112 14,472
8 12,002 19,803 23,743 23,541 11,456 11,466 23,132 23,560 12,997 14,447
9 12,000 19,984 23,953 23,900 11,187 11,270 23,503 23,865 12,783 12,652

10 11,986 19,818 23,845 23,596 11,178 11,859 23,701 22,740 14,815 14,413
11 12,000 19,872 23,788 23,898 11,912 11,620 23,942 23,899 12,435 12,133
12 11,985 19,900 23,934 23,733 11,238 11,552 23,852 23,308 14,132 14,659
13 12,000 19,914 23,869 23,671 11,123 11,392 22,737 22,588 12,579 13,929
14 11,995 19,940 23,793 23,835 11,607 11,929 23,176 22,976 13,502 12,503
15 11,998 19,807 23,811 23,889 11,255 11,973 23,062 23,569 14,577 14,488
16 12,000 19,863 23,591 23,760 11,928 11,356 23,924 22,872 13,954 14,751
17 12,000 19,945 23,851 23,579 11,689 11,244 23,040 23,845 12,975 13,747
18 11,997 19,948 23,916 23,851 11,524 11,278 23,060 23,926 12,986 12,885
19 12,002 19,894 23,655 23,951 11,279 11,721 23,052 22,989 13,762 14,419
20 12,000 19,937 23,889 23,916 11,807 11,199 22,793 23,953 14,409 12,288
21 11,986 19,889 23,500 23,553 11,113 11,823 23,767 23,397 13,892 13,534
22 12,000 19,975 23,982 23,678 11,873 11,216 23,679 23,269 13,458 14,566
23 11,985 19,889 23,693 23,799 11,595 11,769 22,976 23,759 14,776 13,311
24 12,000 19,971 24,012 23,701 11,224 11,435 22,951 22,834 14,380 13,768
25 11,995 19,869 23,927 23,980 11,389 11,834 23,976 23,456 14,392 12,697

Total 299,922 497,373 595,492 594,342 287,584 288,389 584,770 583,571 343,127 340,057

Table 2. Dataset of gait phase recognition for horizontal walking.

Trials LW L-HS R-TO R-HMax R-HS L-TO L-HMax

1 19,850 2504 4817 2981 2202 4615 2731
2 19,760 2129 4702 2769 2358 4876 2926
3 19,863 2391 4676 2783 2091 4895 3027
4 19,968 2213 4956 2796 2315 4983 2705
5 19,852 2318 4484 2980 2250 4640 3180
6 19,931 2242 4465 2791 2380 5054 2999
7 19,931 2457 5060 2791 2271 4952 2400
8 19,803 2220 4453 2874 2219 4951 3086
9 19,984 2188 4599 2997 2166 4953 3081
10 19,818 2367 4527 2776 2444 5059 2645
11 19,872 2466 5084 2783 2208 4578 2753
12 19,900 2044 4756 2787 2387 4898 3028
13 19,914 2117 4798 3088 2258 4634 3019
14 19,940 2440 4502 2892 2515 4657 2934
15 19,807 2355 4572 2874 2202 4976 2828
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Table 2. Cont.

Trials LW L-HS R-TO R-HMax R-HS L-TO L-HMax

16 19,863 2048 4592 2782 2377 4873 3191
17 19,945 2311 4644 2792 2113 4854 3231
18 19,948 2199 5023 2793 2156 4603 3174
19 19,894 2597 4627 2786 2299 4863 2722
20 19,937 2290 4622 3091 2142 4664 3128
21 19,889 2082 4790 2785 2367 4592 3273
22 19,975 2459 5077 2696 2155 4618 2970
23 19,889 2043 4439 2785 2211 4637 3774
24 19,971 2280 5067 2896 2321 4586 2821
25 19,869 2454 4508 2882 2383 4579 3063

Total 497,373 57,214 117,840 71,250 56,790 119,590 74,689

3.3. Feature Extraction

In terms of input feature selection, features with different gait types are selected
because, for example, the hip angle curve when descending stairs is different from other
gaits, and the angle curve of the ankle joint differs significantly from other gaits when
going uphill and downhill. The standard deviation of the combined acceleration of the
center of mass is almost zero when people are at rest, but it changes greatly when they are
moving. The center of mass acceleration standard deviation reflects the discrete path of the
acceleration data.

The information from IMUs in different positions was used for the identification and
comparison of the input feature quantities: 3 IMUs were based on the waist and foot,
3 IMUs were based on the waist and thigh, and 5 IMUs were based on the waist, foot, and
thigh. After the experiment, it was found that the three IMUs of the waist and foot could
not classify going up and going down. Based on the 3 IMUs on the waist and thigh, the
recognition rate of level walking and turning was low (about 45%). Therefore, a total of
30 feature vectors, including the angular velocity and acceleration information of 5 IMUs of
the waist, thigh, and foot, were used as input feature vectors for the gait recognition model.

For the feature extraction method of gait phase recognition, we consider the coupled
relationship between legs, and propose a rule-based feature labeling method. HS: As shown
in Figure 3A,D, when event HS occurs, the ankle reaches the maximum dorsiflexion angle.
It can be detected by the zero-crossing detection rule. TO: As shown in Figure 3A,C,E,
when event TO occurs, the ankle reaches the maximum rate of plantar flexion. It can be
detected by a peak detection rule. HMax: As shown in Figure 3B,C,F, when event HMax
occurs, the hip reaches the maximum flexion angle. It can be detected by the zero-crossing
detection rule.

3.4. Gait Recognition Model

We use an SVM to recognize motion states from the motion information measured
by the IMUs, as it requires fewer samples and exhibits strong generalization ability. A
radial basis function (RBF) kernel is used to transform the low dimensional data into a
high-dimensional space [36], and a gait classification hyperplane is constructed in the
high-dimensional space. This hyperplane can separate non-linear and non-separable data
into linearly separable data. The classification hyperplane is defined as

f (x) = ωT φ(x) + b, (2)

in which ω is the hyperplane normal vector, φ(x) is the input feature vector, and b is the
intercept.



Bioengineering 2024, 11, 275 7 of 18Bioengineering 2024, 11, x FOR PEER REVIEW 7 of 19 
 

 
Figure 3. (A) The angular velocity of the Z-axis of the IMU located on the foot. (B) The angular 
velocity of the Z-axis of the IMU located on the thigh. (C) The specific force of the Z-axis of the IMU 
located on the right foot and thigh. (D) The vertical position of the heel obtained from VICON. (E) 
The vertical position of the toe obtained from VICON. (F) The hip angle obtained from VICON. 

3.4. Gait Recognition Model 
We use an SVM to recognize motion states from the motion information measured 

by the IMUs, as it requires fewer samples and exhibits strong generalization ability. A 
radial basis function (RBF) kernel is used to transform the low dimensional data into a 
high-dimensional space [36], and a gait classification hyperplane is constructed in the 
high-dimensional space. This hyperplane can separate non-linear and non-separable data 
into linearly separable data. The classification hyperplane is defined as 

( ) ( )Tf x x bω ϕ= + , (2) 

in which ω  is the hyperplane normal vector, ( )xϕ  is the input feature vector, and b is 
the intercept. 

Then, gait classification can be transformed into a problem of finding the maximum 
distance between walking styles, and this distance is expressed as 

Figure 3. (A) The angular velocity of the Z-axis of the IMU located on the foot. (B) The angular
velocity of the Z-axis of the IMU located on the thigh. (C) The specific force of the Z-axis of the
IMU located on the right foot and thigh. (D) The vertical position of the heel obtained from VICON.
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Then, gait classification can be transformed into a problem of finding the maximum
distance between walking styles, and this distance is expressed as

maxdis = max
w

2 × y(ωT φ(x) + b)

∥w∥2 , (3)

where yi(ω
T φ(x) + b) = 1, ∀yi ∈ {−1, 1}. Thus, the problem of solving the optimal gait

classification surface via SVM can be reduced to a quadratic programming problem, as
shown by Equation (4). Introduce slack variables ξ to transform the inequality constraints
in Equation (4) to an equality constraint, as shown in Equation (5). We can build a Lagrange
function, as shown in Equation (6).

mindis = min
w

∥w∥2

2

∥w∥ =
√

w1
2 + w22 + · · ·+ wn2

y
(
ωT φ(x) + b

)
≥ 1, ∀i = 1, 2, · · · , n

, (4)
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hi(w, ξi) = 1 − yi(wT φ(x) + b) + ξi (5)

L(w, b, ξ, λ, µ) =
1
2
∥w∥2 + C

m

∑
i=1

ξi+
n

∑
i=1

(λihi − µiξi) (6)

where λ and µ are Lagrange multipliers, w and b are optimization parameters, and C
represents the penalty factor. Taking the derivatives of the optimization parameters in
Equation (6), we obtain the gait classification hyperplane as

f (x) = sign(
N

∑
i=1

wiξiK(xi, x) + bi) (7)

By training the model using a multi-classification method with binary tree structures,
we can recognize the walking styles. Figure 4 gives the framework of the recognition.
The data collected by the IMUs are the accelerations and angular velocities of the waist
and right and left legs, represented by

[
a f r, v f r, a f l , v f l , atr, vtr, atl , vtl , aw, vw

]
. The penalty

factor C is 2. Choose Gaussian (RBF) as the kernel function based on the characteristics of
the data, and gamma is set to scale. It automatically calculates the value of gamma based
on the scale of the input data.

We take the kinematic data of walking motion as a periodic time series and employ
long short-term memory (LSTM) to identify gait phase. The cell state of the LSTM allows for
the retention or addition of input information to the cell state, enabling a better integration
of historical information for the recognition of gait phase at the current time point [9,37,38].
The LSTM cell consists of oblivion gate ft, input gate it, output gate ot, and cell state Ct.

ft = σ(W f · [ht−1, xt] + b f ) (8)

it = σ(Wi · [ht−1, xt] + bi) (9)

ot = σ(Wo · [ht−1, xt] + bo) (10)

Ct = ft · Ct−1 + it · tanh(Wc · [ht−1, xt] + bc) (11)

ht = ot · tanh(Ct) (12)

where σ is the sigmoid function, W represents the weight matrices of each gate, and b, the
bias vectors of each gate.

The network model used for gait phase recognition is shown in Figure 2. The input to
the network is the time series X = [x1, x2, · · · , xn−1, xn], where xn is the vector consisting
of the standardized IMU inertial raw data and n is the sequence length, which is 5. The
epochs of the model are 200, and the number of samples in each training batch is 64. The
gait phase recognition model consists of an LSTM layer and a fully connected (FC) layer
followed by softmax. The input feature dimension is 30, the LSTM layer has 128 neurons,
and the FC layer has 32 neurons. The output represents the probabilities of 6 different gait
phases. This model runs on a notebook PC. The notebook PC receives the gait data sent
by the robot, uses a trained LSTM model to obtain gait classification results, and finally
sends the results to the exoskeleton through Wi-Fi. The artificial neural network training is
implemented using Python 3.7.1 and TensorFlow 2.5.0.



Bioengineering 2024, 11, 275 9 of 18

Bioengineering 2024, 11, x FOR PEER REVIEW 9 of 19 
 

tanh( )t t th o C= ⋅  (12)

where σ  is the sigmoid function, W  represents the weight matrices of each gate, and 
b, the bias vectors of each gate. 

The network model used for gait phase recognition is shown in Figure 2. The input 
to the network is the time series 𝑋 = 𝑥 , 𝑥 ,∙∙∙, 𝑥 , 𝑥 , where 𝑥  is the vector consisting 
of the standardized IMU inertial raw data and 𝑛 is the sequence length, which is 5. The 
epochs of the model are 200, and the number of samples in each training batch is 64. The 
gait phase recognition model consists of an LSTM layer and a fully connected (FC) layer 
followed by softmax. The input feature dimension is 30, the LSTM layer has 128 neurons, 
and the FC layer has 32 neurons. The output represents the probabilities of 6 different gait 
phases. This model runs on a notebook PC. The notebook PC receives the gait data sent 
by the robot, uses a trained LSTM model to obtain gait classification results, and finally 
sends the results to the exoskeleton through Wi-Fi. The artificial neural network training 
is implemented using Python 3.7.1 and TensorFlow 2.5.0. 

 
Figure 4. The gait recognition framework. The red curve represents the turning, with the arrow 
direction clockwise indicating the turning left (TL) and counter clockwise indicating the turning 
right (TR); The red straight line represents the steering, with the arrow direction to the right indi-
cating the left steering (LS) and the direction to the left indicating the right steering (RS). 

4. Experiment 
4.1. Subjects 

The dataset for the gait recognition experiments was obtained from 25 healthy adults 
(age = 27.5 ± 2.4 years, height = 173.6 ± 5.9 cm, and weight = 69.5 ± 3.6 kg). The experiment 
was approved by the Ethics Committee of Hebei University of Technology, and each sub-
ject was asked to read and provide written informed consent before the test (Ethics Com-
mittee name: the Biomedical Ethics Committee of Hebei University of Technology; ap-
proval code: HEBUThMEC2023017).  
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direction clockwise indicating the turning left (TL) and counter clockwise indicating the turning right
(TR); The red straight line represents the steering, with the arrow direction to the right indicating the
left steering (LS) and the direction to the left indicating the right steering (RS).

4. Experiment
4.1. Subjects

The dataset for the gait recognition experiments was obtained from 25 healthy adults
(age = 27.5 ± 2.4 years, height = 173.6 ± 5.9 cm, and weight = 69.5 ± 3.6 kg). The experiment
was approved by the Ethics Committee of Hebei University of Technology, and each subject
was asked to read and provide written informed consent before the test (Ethics Committee
name: the Biomedical Ethics Committee of Hebei University of Technology; approval code:
HEBUThMEC2023017).

4.2. Protocol
4.2.1. Gait Classification and Gait Phase Recognition

For the recognition verification of multiple road conditions, the data of the first
20 people in the dataset in Table 1 were used to train the SVM model, and the data of the
last 5 people were used to test the performance of the model. For gait phase recognition
validation, the data of the first 22 individuals in the dataset in Table 2 were used to train the
LSTM model, while the data of the last 3 individuals were used to test the performance of
the model. In this paper, we use accuracy (ACC), F1 scores, and the Matthews correlation
coefficient (MCC) to evaluate the performance of the model. Different recognition models
were trained offline using Python 3.7.1 and TensorFlow 2.5.0 software. The performance
of the motion state and gait phase recognition algorithm was validated using a five-fold
cross validation.

4.2.2. Assistance Effect Experiment

Ten subjects were randomly selected from the twenty-five subjects to test the assistance
effect of the assist policy based on the proposed gait classification and gait phase recognition.
The exoskeleton’s assist time predicts the time difference in the gait event from the previous
step of gait recognition. In order to verify the effectiveness of the gait recognition model, a
metabolic power experiment for the exoskeleton-assisted effect experiment based on BP
neural network gait phase recognition was added.
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Each subject wore specially designed sportswear under the soft exoskeleton so that
reflective markers could be pasted to them for the VICON system (Oxford Metrology
Limited, Oxford, UK) to capture walking motions. Figure 5A presents the locations of
the 16 markers in total that were pasted symmetrically to the left and right of the human
body [39,40]. Each subject participated in two different speed walking experiments on
a treadmill. Before the test, each subject was instructed to familiarize themselves with
treadmill walking. To confirm the effect of the assist, power-off (P-OFF) tests were also
carried out before the test with the assist (P-ON) for each walking speed. Figure 6 gives the
test conditions.
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Besides measuring the kinematic parameters in the assisted walking test, change
in metabolic cost was also estimated using a portable respiratory measurement device
(Cosmed, K4b2, Rome, Italy) worn by the subjects (Figure 5B). All the subjects were asked
not to consume food or beverages 2 h before the test so that the metabolic cost could be
estimated accurately.

4.3. Data Collection

Data were collected at 100 Hz using the VICON Motion system (Oxford Metrics,
Oxford, UK) with 10 cameras (model: VANTAGE-V5-VS-5299). Real marker trajectory data
were filtered with a quintic spline filter based on the code by Herman Woltring [41]. The
position information of each subject’s joints was directly obtained. The angles of the hip,
knee, and ankle joints were obtained using the plug-in gait model in Vicon Nexus software
v1.8.5 [42–44]. All the joint angles were calculated from the YXZ Cardan angles, derived
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by comparing the relative orientations of the two segments [42]. Using Vicon Polygon
(Oxford Metrics Group, Oxford, UK) [42] software, kinematic data were extracted to a C3D
file or an ASCII file, which was then input into MATLAB software (MATLAB 23.2.0) for
post-processing.

The respiratory data, oxygen consumption (VO2 [L/min]) data, and respiratory quo-
tient (RER) were averaged across the latter half of the one-minute intervals for each sam-
pling parameter condition. The net metabolic cost was calculated by subtracting the resting
metabolic cost from the walking metabolic cost, and then normalized according to the
weight of each subject.

4.4. Statistical Analysis

Means and standard deviations for each test condition were calculated. Statistical
analysis was performed using the SPSS statistical software system (SPSS Inc., Chicago, IL,
USA; version 22.0). One-way repeated-measures analyses of variance with three conditions
(No-Exo, P-Off, P-On) were used to verify the effect of the hip assistance on metabolic
reduction. Pairwise comparisons with Bonferroni post hoc tests were conducted to identify
the differences between conditions when a statistically significant main effect was identified
with the one-way repeated-measures analyses of variance. A paired t-test was performed
to assess the difference between the different conditions for metabolic reduction. p < 0.05
represented a significant difference.

5. Results
5.1. Accuracy of Motion State Recognition

We compared the accuracy of four motion recognition models—KNN, Random Forest,
Decision Tree, and SVM—as shown in Table 3. It can be seen that SVM has the highest
recognition rate of 99.98%. Table 4 shows the confusion matrix of the motion state recog-
nition, which shows the recognition results of the ten walking styles. It can be seen from
Table 4 that a small portion of standing periods were identified as steering. The reason
is that there were a few similar features between the two walking styles. The recognition
rate of level walking was high. This is worth noting because we are more interested in
assisting in level walking for frail, older individuals, and thus in removing assistance for
other walking styles for safety.

Table 3. Evaluation of motion state recognition models.

Method Model ACC 1 (%) F1 Score MCC

KNN 98.72 0.9878 0.9880
Random Forest 99.31 0.9942 0.9935
Decision Tree 98.95 0.9894 0.9901

SVM 99.98 0.9985 0.9987
1 Accuracy refers to correctly determined motion state.

Table 4. Confusion matrix of the trained SVM.

SD LW US DS USL DSL TL TR LS RS

SD 0.99 0 0 0 0 0 0 0 0 0
LW 0 1.00 0 0 0 0 0 0 0 0
US 0 0 1.00 0 0 0 0 0 0 0
DS 0 0 0 1.00 0 0 0 0 0 0

USL 0 0 0 0 1.00 0 0 0 0 0
DSL 0 0 0 0 0 1.00 0 0 0 0
TL 0 0 0 0 0 0 1.00 0 0 0
TR 0 0 0 0 0 0 0 1.00 0 0
LS 0.01 0 0 0 0 0 0 0 0.99 0
RS 0 0 0 0 0 0 0 0 0.01 1.00
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5.2. Accuracy of Gait Phase Recognition

Table 5 compares the recognition rates of the different gait phases in a gait cycle.
Table 3 shows the performance indicators of the different phase recognition models. It can
be seen that, compared with NN, RBF and BP, LSTM has the highest recognition rate, which
is 98.26%. The confusion matrix displays the recognition results of six gait phases, where
the sample between two consecutive gait events is marked as the starting event. From
Table 6 and Figure 7, it can be seen that the recognition rate of HS gait events (L-HS: 0.975,
R-HS: 0.970) is lower than those of TO (L-TO: 0.991, R-TO: 0.995) and HMax (L-Hax: 0.983,
R-Hax: 0.991) events. The reason is that the feature used to mark HS gait events was the
zero-crossing detection rule of the Z-axis angular velocity of the foot IMU. Before the HS
event, the Z-axis angular velocity of the foot IMU rapidly decreased in a short time. There
was a certain error in finding the zero point during this rapid descent process. Although
the recognition rate of HS was relatively low, the recognition accuracy was sufficient to
apply to the assistance of the exoskeleton.

Table 5. Evaluation of gait phase recognition models.

Method Model ACC 1 (%) F1 Score MCC

NN 96.36 0.9635 0.9612
RBF 96.78 0.9675 0.9680
BP 97.55 0.9752 0.9748

LSTM 98.26 0.9821 0.9825
1 Accuracy refers to correctly determined gait phase.

Table 6. Confusion matrix of the trained LSTM.

L-HS R-TO R-HMax R-HS L-TO L-HMax

L-HS 0.975 0 0 0 0 0.017
R-TO 0.010 0.995 0 0 0 0

R-HMax 0 0.005 0.991 0.010 0 0
R-HS 0 0 0.009 0.970 0 0
L-TO 0 0 0 0.020 0.991 0

L-HMax 0.015 0 0 0 0.009 0.983

5.3. Kinematic Effect of the Assistance

The accuracy of gait recognition and the prediction of assistance parameters directly
affects the effectiveness of wearing exoskeleton assistance, and the direct representation of
this on the human body is the changes in the joints of the lower limbs during walking. The
highest hip joint swing angle value during exoskeleton-assisted walking was significantly
higher than that without exoskeleton walking. At speeds of 3.6 km/h and 5.5 km/h, the
maximum swing angle of the hip joint increased by 5–6 degrees (Figure 8A,B). This indicates
that setting the peak assist at the moment of maximum hip joint swing angle is effective and
reasonable. Exoskeleton assistance generates torque on the hip joint. Although there is no
torque generated on the knee joint, the force of the exoskeleton acts on the knee joint, and
the angle of the knee joint also changes significantly. As shown in Figure 8E,F, at speeds
of 3.6 km/h and 5.5 km/h, wearing an exoskeleton for assistance increases the maximum
knee joint swing angle by 9 degrees and 7 degrees, respectively, compared to not wearing
an exoskeleton.
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Figure 8. (A) The typical gait characteristics of the hip angle. Point A represents the typical point
with the highest hip angle and point B represents the typical point with the lowest hip angle.
(B) Changes in point A angles of the hip joint. (C) Changes in point B angles of the hip joint. (D) The
typical gait characteristics of the knee angle. Point C represents the typical point with the highest
knee angle during the swing period and point D represents the typical point with the highest knee
angle during the support period. (E) Changes in point C angles of the hip joint. (F) Changes in point
D angles of the hip joint. (G) The typical gait characteristics of the ankle angle. Point E represents the
typical point with the lowest ankle angle and point F represents the typical point with the lowest
ankle angle. (H) Changes in point E angles of the ankle joint. (I) Changes in point F angles of the
ankle joint.
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As shown in Figure 8G–I, in toe off (point F, Figure 8I), there was a significant change in
ankle plantar flexion, with an increase of 3–5 degrees. At the end of the assistance, there was
a significant change in ankle dorsiflexion and an increase of 3 degrees in the angle (point E,
Figure 8H). The changes in ankle joint plantar flexion and dorsiflexion corresponded to
toe rocker and heel rocker, with an increased angle indicating better rolling effect and a
better performance of human ankle rolling. This indicates that starting assistance at TO
and ending assistance at HS is effective and reasonable. The changes in ankle joint plantar
flexion and dorsiflexion can affect the ground clearance position of the heel and toe, and
can be used to further analyze the changes in foot ground clearance distance. The position
of the heel and toe (Figure 9A,C,D) and the position of the toe (Figure 9A,B) when the foot
swings to the neutral position are both elevated under the assistance of exoskeletons. The
elevation of the heel and toe positions reduces the risk of tripping over obstacles, which is
one of the main purposes of hip joint assistance.
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Figure 9. (A) The typical gait characteristics of the heel and toe during a gait cycle. Point G represents
the highest point of the vertical position of the heel during the swing period. Point H and point K
respectively represent the highest point of the vertical position of the toes during the swing period
and before the foot lands on the ground. (B) Vertical position of point K at the toe under different
conditions. (C) Vertical position of point G at the heel under different conditions. (D) Vertical position
of point H at the toe under different conditions.

The combined result of changes in the swing angles of the human hip joint, knee, and
lower limbs is an increase in step size, as shown in Figure 10. At two different walking
speeds, there was an increase of 5–10 cm under assisted conditions. At the walking speed
of 5.5 km/h, the step length increases even more, by about 10 cm. When walking speed is
high, the more obvious the assist effect.
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5.4. Metabolic Effect of Assistance

Figure 11 shows the average metabolic cost of ten subjects walking on a treadmill at
a walking speed of 3.6 km/h and 5.5 km/h. Compared to not wearing an exoskeleton,
wearing an exoskeleton at two different walking speeds reduced the metabolic power of
the ten individuals by 10.98% (0.405 w/kg) and 14.28% (0.621 w/kg), respectively. The
higher the speed, the more the metabolic power decreased, indicating that the assistance
effect of exoskeletons is significant. As can be seen from Figure 11, the metabolic power of
gait phase recognition based on a BP neural network for assist time prediction decreased by
6.3% (0.213 w/kg) and 8%,2% (0.357 w/kg), respectively. The metabolic power reduction
in the SVM and LSTM recognition models proposed in this paper was significantly more
than in the BP neural network, indicating that the proposed gait recognition model can be
applied to exoskeleton-assisted control. This demonstrates the effect of the gait event based
on assistance policies. When the respiratory exchange rate (RER) is less than 1, the subject
is in an aerobic breathing state. When RER ≥ 1, the subject is in a respiratory state in which
aerobic and anaerobic respiration work together. An increase in RER to some extent reflects
an increase in exercise intensity and changes in the respiratory substrates of the body’s
energy supply system. The RER of the ten experimenters was less than 1 under all three
conditions, and the RER was the lowest under the assistance condition.
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6. Discussion

With regard to kinematic analysis, there are still some issues worth discussing. We
believe the slight improvement in point B (Figure 8A,C) is the result of alternating leg
assistance. When the left leg is at the hip joint angle feature, point B and has not yet entered
the assist phase, and the right leg has just completed the swing phase. Before the left
leg enters the swing phase, potential energy is converted into kinetic energy to drive the
movement of the left leg. Therefore, although assistance has not yet begun at point B, due
to the conversion between kinetic energy and potential energy, the hip joint angle will
also increase.
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It should also be noted that, in the test, with the assistance of the exoskeleton, the
step length significantly increased. Because the test was conducted at a constant speed
on a treadmill, as the step length increased, the cadence inevitably decreased. Another
possibility is that the human body autonomously changes its walking style, increasing step
length and reducing step frequency.

When walking at asynchronous speeds, the balance system of the human body adjusts
the relationship between step length and cadence to ensure an efficient walk, i.e., from the
viewpoint of an efficient walk, an optimum relationship exists between step length and
cadence. This is similar to the walking ratio (the ratio of step length to cadence) proposed
by Murakami [45,46]. That is why the concept of walk ratio is usually used when walk
efficiency is discussed. The metabolic consumption test demonstrated that the assistance
did bring metabolic reduction. From the metabolic consumption test, it can be seen that
the wearer’s metabolic cost did indeed decrease under assist conditions, ruling out the
possibility that the increase in step length may not be the assisting effect.

At present, we have identified and perceived the gait phase of horizontal walking
based on an assistance strategy for horizontal walking. However, there are significant
differences in the walking characteristics of the human body under different road conditions.
For example, in uphill and downhill movements, the main movement of the lower-limb hip
joints is flexion, and the flexion angle is relatively small compared to horizontal walking
as a whole. During the process of going up stairs, the flexion angle of the hip joint varies
greatly. The assistance strategy of exoskeletons varies under different road conditions, and
the effective implementation of assistance strategies requires an accurate perception of
human motion intentions. Therefore, our plan for our next work is to study the perception
and assistance strategies of gait phase under different road conditions.

7. Conclusions

Firstly, this paper proposed a gait recognition method using the information measured
by five IMUs fixed on a soft exoskeleton. It distinguishes walk styles with the algorithm of
a support vector machine (SVM) and gait phases with long and short-term memory (LSTM).
Tests on 12 subjects demonstrated high accuracies of 99.98% and 98.06%, respectively.
Secondly, a method for determining assistance parameters for the soft exoskeleton based on
gait event and gait phase was proposed. Tests were conducted on three subjects to confirm
its effect. The results showed that the assistance could significantly improve gait motion
and reduce metabolic cost by an average of over 10%.
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Sensor. In Proceedings of the 2022 7th International Conference on Computer Science and Engineering (UBMK), Diyarbakir,
Turkey, 14–16 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

33. Koller, J.R.; Gates, D.H.; Ferris, D.P.; Remy, C.D. ‘Body-in-the-Loop’ Optimization of Assistive Robotic Devices: A Validation
Study. In Proceedings of the Robotics: Science and Systems, Ann Arbor, MI, USA, 18–22 June 2016; pp. 1–10.

34. Kim, J.; Quinlivan, B.T.; Deprey, L.-A.; Arumukhom Revi, D.; Eckert-Erdheim, A.; Murphy, P.; Orzel, D.; Walsh, C.J. Reducing the
energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit. Sci. Rep. 2022,
12, 11004. [CrossRef] [PubMed]

35. Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Incorporated: Thorofare, NJ, USA, 2010.
36. Chandra, M.A.; Bedi, S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [CrossRef]
37. Lu, L.J.; Liu, S.Y.; Zhou, Z.Y.; Sun, J.T.; Melendez-Calderon, A.; Guo, Z. Continuous Gait Phase Recognition and Prediction Using

LSTM Network across Walking Speeds and Inclinations. In Proceedings of the 7th IEEE International Conference on Advanced
Robotics and Mechatronics, Guilin, China, 9–11 July 2022; IEEE: Guilin, China, 2022; pp. 101–106.

38. Kolaghassi, R.; Al-Hares, M.K.; Sirlantzis, K. Systematic Review of Intelligent Algorithms in Gait Analysis and Prediction for
Lower Limb Robotic Systems. IEEE Access 2021, 9, 113788–113812. [CrossRef]

39. Vicon Documentation. Available online: https://docs.vicon.com/display/Nexus25/Plug-in+Gait+kinematic+variables (accessed
on 20 March 2020).

40. Pfister, A.; West, A.M.; Bronner, S. Comparative Abilities of Microsoft Kinect and Vicon 3D Motion Capture for Gait Analysis.
J. Med. Eng. Technol. 2014, 38, 274–280. [CrossRef]

41. Van, D.B.T. Practical Guide to Data Smoothing and Filtering. Study Mater. 1996, pp. 1–6. Available online: http://isbweb.org/
software/sigproc/bogert/filter.pdf (accessed on 31 October 1996).

42. Schwartz, M.H.; Trost, J.P.; Wervey, R.A. Measurement and Management of Errors in Quantitative Gait Data. Gait Posture 2004, 20,
196–203. [CrossRef]

43. Wright, C.; Seitz, A.L.; Arnold, B.L. Repeatability of Ankle Joint Kinematic Data at Heel Strike Using the Vicon Plug-In Gait
Model. Available online: https://www.researchgate.net/publication/268380486 (accessed on 16 January 2011).

44. Webber, J.T.; Raichlen, D.A. The Role of Plantigrady and Heel-Strike in the Mechanics and Energetics of Human Walking with
Implications for the Evolution of the Human Foot. J. Exp. Biol. 2016, 219, 3729–3737. [CrossRef] [PubMed]

45. Murakami, R.; Otaka, Y. Estimated lower speed boundary at which the walk ratio constancy is broken in healthy adults. J. Phys.
Ther. Sci. 2017, 29, 722–725. [CrossRef] [PubMed]

46. Rota, V.; Perucca, L.; Simone, A.; Tesio, L. Walk ratio (step length/cadence) as a summary index of neuromotor control of gait:
Application to multiple sclerosis. Int. J. Rehabil. Res. 2011, 34, 265–269. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TMECH.2018.2836934
https://doi.org/10.1109/JSEN.2022.3175823
https://doi.org/10.1038/s41598-022-14784-9
https://www.ncbi.nlm.nih.gov/pubmed/35768486
https://doi.org/10.1007/s41870-017-0080-1
https://doi.org/10.1109/ACCESS.2021.3104464
https://docs.vicon.com/display/Nexus25/Plug-in+Gait+kinematic+variables
https://doi.org/10.3109/03091902.2014.909540
http://isbweb.org/software/sigproc/bogert/filter.pdf
http://isbweb.org/software/sigproc/bogert/filter.pdf
https://doi.org/10.1016/j.gaitpost.2003.09.011
https://www.researchgate.net/publication/268380486
https://doi.org/10.1242/jeb.138610
https://www.ncbi.nlm.nih.gov/pubmed/27903628
https://doi.org/10.1589/jpts.29.722
https://www.ncbi.nlm.nih.gov/pubmed/28533617
https://doi.org/10.1097/MRR.0b013e328347be02
https://www.ncbi.nlm.nih.gov/pubmed/21629125

	Introduction 
	Related Works 
	Materials and Methods 
	The Soft Lower-Limb Exoskeleton Platform 
	Data Collection and Preprocessing 
	Feature Extraction 
	Gait Recognition Model 

	Experiment 
	Subjects 
	Protocol 
	Gait Classification and Gait Phase Recognition 
	Assistance Effect Experiment 

	Data Collection 
	Statistical Analysis 

	Results 
	Accuracy of Motion State Recognition 
	Accuracy of Gait Phase Recognition 
	Kinematic Effect of the Assistance 
	Metabolic Effect of Assistance 

	Discussion 
	Conclusions 
	References

