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Abstract: In this paper, we propose a dense multi-scale adaptive graph convolutional network
(DMA-GCN) method for automatic segmentation of the knee joint cartilage from MR images. Under
the multi-atlas setting, the suggested approach exhibits several novelties, as described in the following.
First, our models integrate both local-level and global-level learning simultaneously. The local
learning task aggregates spatial contextual information from aligned spatial neighborhoods of nodes,
at multiple scales, while global learning explores pairwise affinities between nodes, located globally
at different positions in the image. We propose two different structures of building models, whereby
the local and global convolutional units are combined by following an alternating or a sequential
manner. Secondly, based on the previous models, we develop the DMA-GCN network, by utilizing
a densely connected architecture with residual skip connections. This is a deeper GCN structure,
expanded over different block layers, thus being capable of providing more expressive node feature
representations. Third, all units pertaining to the overall network are equipped with their individual
adaptive graph learning mechanism, which allows the graph structures to be automatically learned
during training. The proposed cartilage segmentation method is evaluated on the entire publicly
available Osteoarthritis Initiative (OAI) cohort. To this end, we have devised a thorough experimental
setup, with the goal of investigating the effect of several factors of our approach on the classification
rates. Furthermore, we present exhaustive comparative results, considering traditional existing
methods, six deep learning segmentation methods, and seven graph-based convolution methods,
including the currently most representative models from this field. The obtained results demonstrate
that the DMA-GCN outperforms all competing methods across all evaluation measures, providing
DSC = 95.71% and DSC = 94.02% for the segmentation of femoral and tibial cartilage, respectively.

Keywords: knee cartilage osteoarthritis (KOA); magnetic resonance imaging (MRI) segmentation;
multi-atlas; graph neural networks (GNNs); deep learning; graph learning; semi-supervised
learning (SSL)

1. Introduction

Osteoarthritis (OA) is one of the most prevalent joint diseases worldwide, causing pain
and mobility issues, reducing the ability to lead an independent lifestyle, and ultimately
decreasing the quality of life in patients. It primarily manifests among populations of
advanced age, with an estimated 10% of people over the age of 55 dealing with this
condition. That percentage is likely to noticeably increase in the coming years, especially in
the developing parts of the world where life expectancy is steadily on the rise [1].

Among the available imaging modalities, magnetic resonance imaging (MRI) consti-
tutes a valuable tool in the characterization of the knee joint, providing a robust quantitative
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and qualitative analysis for detecting anatomical changes and defects in the cartilage tis-
sue. Unfortunately, manual delineations performed by human experts are resource- and
time-consuming, while also suffering from unacceptable levels of inter- and intrarater vari-
ability. Thus, there is an increasing demand for accurate and time-efficient fully automated
methods for achieving reliable segmentation results.

During the past decades, a considerable amount of research has been conducted to
achieve the above goals. However, the thin cartilage structure, as well as the great variabil-
ity in and intensity inhomogeneity of MR images have posed significant challenges. Several
methods are proposed to address those issues, ranging from more traditional image process-
ing ones such as statistical shape models and active appearance models, to more automated
ones employing classical machine learning and deep learning techniques. A comprehensive
review of such automated methods for knee articular segmentation can be found in [2].

1.1. Statistical Shape Methods

A wide variety of methods that fall under the statistical shape model (SSM) and
active appearance model (AAM) family have been extensively employed in knee joint
segmentation applications in the past. Since the specific shape of the cartilage structure
is quite distinct and characteristic, these methods employ this feature as a stepping stone
towards complete delineation for the whole knee joint [3]. Additionally, SSMs have been
successfully utilized as shape regularizers within more complex segmentation pipelines,
mainly as a final postprocessing step [4]. While conceptually simple, these methods are
highly sensitive to the initial landmark selection process.

1.2. Machine Learning Methods

Under the classical machine learning setting, knee cartilage segmentation is cast as a
supervised classification task, estimating the label of each voxel from a set of handcrafted or
automatically extracted features from the available set of images. Typical examples of such
approaches can be found in [5,6]. These methods are conceptually simple but usually offer
mediocre results, due to their poor generalization capabilities and the utilization of fixed
feature descriptors that may not be well suited to efficiently capture the data variability.

1.3. Multi-Atlas Patch-Based Segmentation Methods

Multi-atlas patch-based methods have long been a staple in medical imaging applica-
tions [7,8]. Utilizing an atlas library A = {Ai,Li}nA

i=1 comprising nA magnetic resonance
images (Ai) and their corresponding label maps Li, these methods operate on a single
target image T at a time, annotating it by propagating voxel labels from the atlas library
A. The implicit assumption in this framework is that the target image T and the corre-
sponding images comprising the atlas library A reside in a common coordinate space. This
assumption is enforced by registering all atlases Ai ∈ A along with their corresponding
labels maps Li to the target image space, via an affine or deformable transformation [9].

Multi-atlas patch-based methods usually consist of the following steps: For all vox-
els x ∈ T , a search volume N(x) of size Ns = (n × n × n) centered around x is formed,
and every corresponding voxel y ∈ N(x) in the spatially adjacent locations in the regis-
tered atlases yields a patch library PL = pAi (y), ∀y ∈ N(x) for all atlases i = 1, · · · , nA.
An optimization problem such as sparse coding (SC) is then used to reconstruct the target
patch as a linear combination of its corresponding atlas library. Established methods of
this category of segmentation algorithms are presented in [7,8]. Despite being capable of
achieving appreciable results, these methods do not scale well to large datasets due to the
intense computational demands of constructing a patch library and solving an optimization
problem for each voxel of every target image.

1.4. Deep Learning Methods

The recent resurgence of deep learning has had a great impact on medical imaging
applications, with an increasing number of works reporting the use of deep architectures
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in various applications pertaining to that field. Initially restricted to 2D models due to
the large computational load imposed by the 3D structure of magnetic resonance images,
the recent advancements in processing power have allowed for a wide variety of fully 3D
models to be proposed, offering markedly better performance with respect to the more
traditional methods [10,11]. In our study, we compare our proposed method against a series
of representative deep architectures, with applications ranging from semantic segmentation
to point-cloud classification and medical image segmentation. In particular, we consider the
SegNet [12], DenseVoxNet [13], VoxResNet [14], PointNet [15], CAN3D [13], and KCB-Net [16]
architectures (Section 9.4.2).

1.5. Graph Convolutional Neural Networks

Recently, intensive research has been conducted in the field of graph convolutional
networks, owing to their efficiency in handling non-Euclidean data [17]. These models
can be distinguished into two general categories, namely, the spectral-based [18,19] and
the spatial-based methods [20–24]. The spectral-based networks rely on the graph signal
processing principles, utilizing filters to define the node convolutions. The ChebNet in [18]
approximates the convolutional filters by Chebyshev polynomials of the diagonal matrix of
eigenvalues while the GCN model in [19] performs a first-order approximation of ChebNet.

Spatial-based graph convolutions, on the other hand, update a central node’s represen-
tation by aggregating the representations of its neighboring nodes. The message-passing
neural network (MPNN) [20] considers graph convolutions as a message-passing process,
whereby information is traversed between nodes via the graph edges. GraphSAGE [25]
applies node sampling to obtain a fixed number of neighbors for each node’s aggregation.
A graph attention network (GAT) [24] assumes that the contribution of the neighboring
nodes to the central one is determined according to a relative weight of importance, a task
achieved via a shared attention mechanism across nodes with learnable parameters.

During the last years, GCNs have found extensive use in a diverse range of applica-
tions, including citation and social networks [19,26], graph-to-sequence learning tasks in
natural language processing [27], molecular/compound graphs [28], and action recogni-
tion [29]. Considerable research has been conducted on the classification of remotely sensed
hyperspectral images [30–32], mainly due to the capabilities of GCNs to capture both the
spatial contextual information of pixels, as well as the long-range relationships of distant
pixels in the image. Another domain of application is the forecasting of traffic features in
smart transportation networks [33,34]. To capture the varying spatio-temporal relation-
ships between nodes, integrated models are developed in these works, which combine
graph-based spatial convolutions with temporal convolutions.

Finally, to confront the gradient vanishing effect faced by traditional graph-based
models, deep GCN networks have recently been suggested [35,36]. Particularly, in [35],
a densely connected graph convolutional network (DCGCN) is proposed for graph-to-
sequence learning, which can capture both local and nonlocal features. In addition, Ref. [36]
presents a densely connected block of GCN layers, which is used to generate effective shape
descriptors from 3D meshes of images.

1.6. Outline of Proposed Method

The existing patch-based methods exhibit several drawbacks which can potentially
degrade their segmentation performance. First, for each target voxel, these methods
construct a local patch library at a specific spatial scale, comprising neighboring voxels
from atlas images. Then, classifiers are developed by considering pairwise similarities
between voxels in that local region. This suggests that target labeling is accomplished by
relying solely on local learning while disregarding the global contextual information among
pixels. Hence, long-range relationships among distant voxels in the region of interest are
ignored, although these voxels may belong to the same class but with a different textural
appearance. Secondly, previous methods in the field resort to inductive learning to produce
voxel segmentation, which implies that the features of the unlabeled target voxels are
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not leveraged during the labeling process. Finally, some recent segmentation methods
employ graph-based approaches allowing a more effective description of voxel pairwise
affinities via sparse code reconstructions [8,37]. Despite the better data representation,
the target voxel labeling is achieved using linear aggregation rules for transferring the atlas
voxel’s labels, such as the traditional label propagation (LP) mechanism via the graph edges.
Such first order methods may fail to adequately capture the full scope of dependencies
among the voxel representations. The labeling of each voxel proceeds by aggregating
spectral information strictly from its immediate neighborhood, failing to exploit long-term
dependencies with potentially more similar patches in distant regions of the image, thus
ultimately yielding suboptimal segmentation results.

To properly address the above shortcomings, in this paper we present a novel method
for the automatic segmentation of knee articular cartilage, based on recent advances in
the field of graph-based neural networks. More concretely, we propose the dense multi-
scale adaptive graph convolutional network (DMA-GCN) method, which constructively
integrates local spatial-level learning and global-level contextual learning concurrently. Our
goal is to generate, via automatic convolutional learning, expressive node representations
by merging pairwise importance at multiple spatial scales with long-range dependencies
among nodes for enhanced volume segmentation. We approach the segmentation task as
a multi-class classification problem with the five classes: background: 0; femoral bone: 1;
femoral cartilage: 2; tibial bone: 3; tibial cartilage: 4. Recognizing the more crucial role of
the cartilage structure in the assessment of the knee joint and considering the increased
difficulty for its automatic segmentation as contrasted with that of bones, our efforts are
primarily devoted to that issue. Figure 1 depicts a schematic framework of the proposed
approach. The main properties and innovations of the DMA-GCN model are described
as follows:

Figure 1. Outline of the proposed knee cartilage segmentation approach. It comprises the atlas
subset selection (a), the graph construction part (b), a specific form of graph-based convolutional
model (c), the adaptive graph learning (d), and the MLP network providing the class estimates for
the segmentation of the target image. Black dots correspond to central nodes and colored nodes to
neighboring ones, respectively. The encircled C symbol represents an aggregation function.

Multi-atlas setting: Our scheme is tailored to the multi-atlas approach, whereby label
information from atlas images (labeled) is transferred to segment the target image (unla-
beled). To this end, at the preliminary stage, images are aligned using a cost-effective affine
registration. Subsequently, for each target image T , we generate its corresponding atlas
library {A,L} according to a similarity criterion (Figure 1a).

Graph construction: This part refers to the way in which images are represented in terms
of nodes and the organization of node data to construct the overall graph (Figure 1b). Here,
the graph node corresponds to a generic patch of size 5 × 5 × 5 around a central voxel, while
the node feature vector is provided by a 3D-HOG feature descriptor. Accordingly, the image
is represented as a collection of spatially stratified nodes, covering adequately all classes



Bioengineering 2024, 11, 278 5 of 31

across the region of interest. Following the multi-atlas setting, we construct sequences of
aligned data, comprising target nodes and those for the atlases at spatially correspondent
locations. Given the node sequences, we further generate the sequence libraries which are
composed of neighboring nodes at various spatial scales. The collection of all node libraries
forms the overall graph structure, whereby both local (spatially neighboring) and global
(spatially distant) node relationships are incorporated.

Semi-supervised learning (SSL): Following the SSL scenario, the input graph data com-
prise both labeled nodes from the atlas library and unlabeled ones from the target image
to be segmented. In that respect, contrary to some existing methods, the features of un-
labeled data are leveraged via learning to compute the node embbeddings and label the
target nodes.

Local–global learning: As can be seen from Figure 1c, graph convolutions over the
layers proceed along two directions, namely, the local spatial level and the global level,
respectively. The local spatial branch includes the so-called local convolutional (Lconv)
units which operate on the subgraph of aligned neighborhoods of nodes (sequence libraries).
The node embeddings generated by these units incorporate the contextual information
between nodes at a local spatial level. To further improve local search, we integrate local
convolutions at multiple scales, so that the local context around nodes is captured more
efficiently. On the other hand, the global branch includes global convolution (Gconv) units.
These units provide the global node embeddings by taking into consideration the pairwise
affinities of distant nodes distributed over the entire region of interest of the cartilage
volume. The final node representations are then obtained by aggregating the embeddings
computed at the local spatial and the global levels, respectively.

Convolutional building models: An important issue is how the local and global hidden
representations of nodes are combined across the convolution layers. In this context, we
propose two different structures: the cross-talk building model (CT-BM) and the sequen-
tial building model (SEQ-BM). Both models comprise four convolutional units overall,
specifically, two Lconv and two Gconv units, undertaking local and global convolutions,
respectively. The CT-BM (Figure 1c) performs intertwined local–global learning, with skip
connections and aggregators. The links indicate the cross-talks between the two paths.
The SEQ-BM, on the other hand, adopts a sequential learning scheme. In particular,
local spatial learning is completed first, followed by the respective convolutions at the
global level.

Adaptive graph learning (AGL): Considering fixed graphs with predetermined adjacency
weights among nodes can degrade the segmentation results. To confront this drawback,
every Lconv and Gconv unit is equipped here with an AGL mechanism, which allows us to
automatically learn the proper graph structure at each layer. At the local spatial level, AGL
adaptively designates the connectivity relationships between nodes via learnable attention
coefficients. Hence, Lconv can concentrate and aggregate features from relevant nodes in
the local search region. Further, at the global level we propose a different AGL scheme for
Gconv units, whereby graph edges are learned from the input features of each layer.

Densely connected GCN: The proposed CT-BM and SEQ-BM can be utilized as stan-
dalone models to undertake the graph convolution task. Nevertheless, their depth is
confined to two local–global layers, since an attempt to deepen the networks is hindered by
the gradient-vanishing effect. To circumvent this deficiency, we finally propose a densely
connected convolutional network, the DMA-GCN model. The DMA-GCN considers CT-BM
or SEQ-BM as the building block of the deep structure. It exhibits a deep architecture with
skip connections whereby each layer in the block receives feature maps from all previous
layers and transmits its outputs to all subsequent layers. Overall, the DMA-GCN shares
some salient qualities, such as a deep structure with an enhanced performance rate and
better information flow, local–global level convolutions, and adaptive graph learning.

In summary, the main contributions of this paper are described as follows.
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• A novel multi-atlas approach is presented for knee cartilage segmentation from MRI
images based on graph convolutional networks which operates under the semi-
supervised learning paradigm.

• With the aim to generate expressive node representations, we propose a new learning
scheme that integrates graph information at both local and global levels concurrently.
The local branch exploits the relevant spatial information of neighboring nodes at
multiple scales, while the global branch incorporates global contextual relationships
among distant nodes.

• We propose two convolutional building models, the CT-BM and SEQ-BM. In the CT-BM,
the local and global learning tasks are intertwined along the layer convolutions, while
the SEQ-BM follows a sequential mode.

• Both local and global convolutional units, at each layer, are equipped with suitable
attention mechanisms, which allows the network to automatically learn the graph
connective relationships among nodes during training.

• Using the proposed CT-BM and SEQ-BM as block units, we finally present a novel
densely connected model, the DMA-GCN. The network exhibits a deeper structure
which leads to more enhanced segmentation results, while at the same time, it shares
all salient properties of our approach.

• We have devised a thorough experimental setup to investigate the capabilities of the
suggested segmentation framework. In this setting, we examine different test cases
and provide an extensive comparative analysis with other segmentation methods.

The remainder of this paper is organized as follows. Section 2 reviews some rep-
resentative forms of graph convolutional networks related to our work and involved in
the experimental analysis. Section 3 presents the image preprocessing steps and the atlas
selection process. In Section 4, we discuss the node feature descriptor, as well as the graph
construction of the images. Section 5 elaborates on the proposed local and global convo-
lutional units, along with their attention mechanisms. Section 6 describes the suggested
convolutional building blocks, while Section 7 presents our densely connected network.
Section 8 discusses the transductive vs. inductive learning and the full-batch vs. mini-batch
learning in our approach. In Sections 9 and 10, we provide the experimental setup and
respective comparative results of the proposed methodology, while Section 11 concludes
this study.

2. Related Work

In this section, we review some representative models in the field of graph convolu-
tional networks that are related to our work and are also included in the experiments.

Definition 1. A graph G is defined as G = (V , E , X) where V denotes the set of N nodes vi ∈ V ,
and E is the set of edges connecting the nodes (vi, vj) ∈ E . X ∈ RN×F is a matrix subsuming the
node feature descriptors xi ∈ RD, i = 1, . . . N with F denoting the feature vector dimensionality.
The graph is associated with an adjacency matrix A ∈ RN×N (binary or weighted), which includes
the connection links between nodes. A larger entry Aij > 0 suggests the existence of a strong
relationship between nodes (vi, vj), while Aij = 0 signifies the lack of connectivity. The graph
Laplacian matrix L ∈ R(N×N) is defined as L = D − A, where D is the diagonal degree matrix
with Dii = ∑N

j=1 Aij, i = 1, . . . , N. Finally, the normalized graph adjacency matrix with the
added self-connections is denoted by Ã = A + IN , with the corresponding degree matrix given by
D̃ii = ∑N

j=1 Ãij

2.1. Graph Convolutional Network (GCN)

The GCN proposed in [19] is a spectral convolutional model. It tackles the node
classification task under the semi-supervised framework, i.e., where labels are available



Bioengineering 2024, 11, 278 7 of 31

only for a portion of the nodes in the graph. Under this setting, learning is achieved by
enforcing a graph Laplacian regularization term with the aim of smoothing the node labels:

L = L0 + λLreg (1)

Lreg = ∑
i

∑
j

Aij∥ f (xi)− f (xj)∥ = f (X)T L f (X) (2)

where L0 represents the supervised loss measured on the labeled nodes of the graph, f (X, A)
is a differentiable function implemented by a graph neural network, λ is a regularization
term balancing the supervised loss in regard to the overall smoothness of the graph, X is
the node feature matrix, and L is the graph Laplacian.

In a standard multilayer graph-based neural network framework, information flows
across the nodes by applying the following layerwise propagation rule:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(3)

where σ(·) denotes the LeakyReLU(·) activation function, W(l) is a layer-specific trainable
weight matrix, and H(l) is the matrix of activation functions in the lth layer, with H(0) = X.
The authors in [19] show that the propagation rule in Equation (3) provides a first-order
approximation of localized spectral filters on graphs. Most importantly, we can construct
multilayered graph convolution networks by stacking several convolutional layers of the
form in Equation (3). For instance, a two-layered GCN can be represented by

Z = f (X, A) = so f tmax
(

ÂReLU(ÂXW(0))W(1)
)

(4)

where Z is the network’s output, so f tmax(·) is the output layer activation function for
multi-class problems, and Â = D̃− 1

2 ÃD̃− 1
2 is the normalized adjacency matrix. The weight

matrices W(0) and W(1) are trained using some variant of gradient descent with the aid of a
loss function.

2.2. Graph Attention Network (GAT)

A salient component in GATs [24] is an attention mechanism incorporated in the
aggregation of the graph attention layers (GALs), with the aim to automatically capture
valuable relationships between neighboring nodes. Let H = {h1, . . . , hN}, hi ∈ RD and
H̃ = {h̃1, . . . , h̃N}, h̃i ∈ RD̃ denote the inputs and outputs of a GAL, where N is the
number of nodes, while D and D̃ are the corresponding dimensionalities of the node
feature vectors. The convolution process entails three distinct issues: the shared node
embeddings, the attention mechanism, and the update of node representations. As an
initial step, a learnable transformation parameterized by the weight matrix W ∈ RD̃×D

is applied on nodes, with the goal of producing expressive feature representations. Next,
for every node pair, a shared attention mechanism is performed on the transformed features,

gij = αT ·
(
Whi ∥Whj

)
(5)

where gij signifies the importance between nodes hi and hj, α is a learnable weight vector,
and ∥ denotes the concatenation operator. To make the above mechanism effective, the com-
putation of the attention coefficients is confined between each node −i and its neighboring
nodes −j, j ∈ Ni. In the GAT framework, the attention mechanism is implemented by a
single-layer feed-forward neural network, parameterized by LeakyReLU nonlinearities,
which provide the normalized attention coefficients:

aij =
exp

(
LeakyReLU

(
αT · [Whi||Whj]

))
∑k∈Ni

exp(LeakyReLU(αT · [Whi||Whk]))
(6)
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Given the attention coefficients, the node feature representations at the output of the
GAT are updated via a linear aggregation of neighboring nodes’ features

h̃i = σ

(
∑

j∈Ni

αijWhj

)
(7)

To stabilize the learning procedure, the previous approach is extended in a GAT by
considering multiple attention heads. In that case, the node features are computed by

h̃i =
K
∥

k=1
σ

(
∑

j∈Ni

α
(k)
ij W(k)hj

)
(8)

where K is the number of independent attention heads applied, while α
(k)
ij and W(k) denote

the normalized attention coefficients associated with the kth attention head and its corre-
sponding embedding matrix, respectively. In this work, we exploit the principles of the
GAT-based attention mechanism in the proposed local convolutional units, with the goal to
aggregate valuable contextual information from local neighborhoods, at multiple search
scales (Section 5.1).

2.3. GraphSAGE

The GraphSAGE network in [25] tackles the inductive learning problem, where labels
must be generated for previously unseen nodes, or even entirely new subgraphs. Graph-
SAGE aims to learn a set of aggregator functions AGGRk, k = 1, . . . , K, which are used to
aggregate information from each node’s local neighborhood. Node aggregation is carried
out at multiple spatial scales (hops). Among the different schemes proposed in [25], in our
experiments, we consider the max-pooling aggregator, where each neighbor’s vector is
independently supplied to a fully connected neural network:

hk
Nv

= AGGRpool
k = max

({
σ
(

Wpoolh
k
ui
+ b

)
, ∀ui ∈ N (v)

})
(9)

where max(·) denotes the element-wise max operator, Wpool is the weight matrix of learn-
able parameters, b is the bias vector, and σ(·) is a nonlinear activation function. Further,
hk
N (v) denotes the result obtained after a max-pooling aggregation on the neighboring

nodes of node v. GraphSAGE then concatenates the current node’s representation hk−1
v with

the aggregated neighborhood feature vector hk−1
N (v) to compute, via a fully connected layer,

the updated node feature representations:

hk
v = σ

(
Wk ·

(
hk−1

v ∥hk−1
Nv

))
(10)

where Wk is a weight matrix associated with aggregator AGGRpool
k .

2.4. GraphSAINT

GraphSAINT [21] differs from the previously examined architectures in that instead
of building a full GCN on all the available training data, it samples the training graph
itself, creating subsets of the original graph, building and training the associated GCNs
on those subgraphs. For each mini-batch sampled in this iterative process, a subgraph
Gs = (Vs, Es) (where |Vs| ≪ |V|) is used to construct a GCN. Forward and backward
propagation is performed, updating the node representations and the participating edge
weights. An initial preprocessing step is required for the smooth operation of the process,
whereby an appropriate probability of sampling must be assigned to each node and edge
of the initial graph.
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3. Materials

In this section, we present the dataset used in this study, the image preprocessing
steps, and finally, the construction of the atlas library.

3.1. Image Dataset

The MR images used in this study comprise the entirety of the publicly available,
baseline Osteoarthritis Initiative (OAI) repository, for which segmentation masks are avail-
able, consisting of a total of 507 subjects. The specific MRI modality utilized across all the
experiments corresponds to the sagittal 3D dual-echo steady-state (3D-DESS) sequence
with water excitation, with an image size of 384 × 384 × 384 voxels and a voxel size of
0.36 × 0.36 × 0.70 mm. The respective segmentation masks serving as the ground truth are
provided by the publicly available repository assembled by [38], including labels for the
following knee joint structures (classes): background tissue, femoral bone (FB), femoral
cartilage (FC), tibial bone (TB), and tibial cartilage (TC). Figure 2 showcases a typical knee
MRI, in the three standard orthogonal planes (sagittal, coronal, axial).

Figure 2. A typical knee MRI viewed in three orthogonal planes (left to right: sagittal, coronal, axial).

3.2. Image Preprocessing

The primary source of difficulties in automated cartilage segmentation stems from
the similar texture and intensity profile of articular cartilage and background tissues,
as they are depicted in most MRI modalities, a problem further accentuated by the usually
high intersubject variability present in the imaging data. To this end, the images were
preprocessed by applying the following steps:

1. Curvature flow filtering: A denoising curvature flow filter [39] was applied, with the
aim of smoothing the homogeneous image regions, while simultaneously leaving the
surface boundaries intact.

2. Inhomogeneity correction: N3 intensity nonuniform bias field correction [40] was per-
formed on all images, dealing with the issue of intrasubject variability within similar
classes among subjects.

3. Intensity standardization: MRI histograms were mapped to a common template, as de-
scribed in [41], ensuring that all associated structures across the subjects shared a
similar intensity profile.

4. Nonlocal-means filtering: A final filtering process smoothed out any leftover artefacts
and further reduced noise. The method presented in [42] offers a robust performance
and is widely employed in similar medical imaging applications. Finally, the intensity
range of all images was rescaled to [0, 100].

3.3. Atlas Selection and ROI Extraction

The construction of an atlas library for each target image T to be segmented ne-
cessitates the registration of all atlases {Ai}nA

i=1 to the particular target image. An affine
transformation was employed, registering all atlas images in the target image domain
space, accounting for deformations of linear nature, such as rotations, translations, shear-
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ing, scaling, etc. The same transformation was also applied to the corresponding label map
Li of each atlas, resulting in the atlas library {AT

i ,LT
i }NA

i=1 registered to T .
Considering the fact that the cartilage volume accounts for a very small percentage of

the overall image volume, a region of interest (ROI) was defined for every target image,
covering the entire cartilage structure and its surrounding area. A presegmentation mask
was constructed by passing the registered atlas cartilage mask through a majority voting
(MV) filter, and then expanded by a binary morphological dilation filter, yielding the ROI
for the target image. This region corresponded to the sampling volume for the target
image T and its corresponding atlas library {Ai,Li}NA

i=1. This process guaranteed that the
selected ROI enclosed the totality of cartilage tissue both in the target T , as well as in the
corresponding atlas library.

Finally, to simultaneously reduce the computational load and increase the spatial
correspondence between target and atlas images, we included a final atlas selection step.
Measuring the spatial misalignment in the ROI of every pair {T ,Ai}Ti=1 using the mean
squared difference (MSDROI

i ), we only kept the first NA atlases exhibiting the least dis-
agreement in the metric [37].

4. Graph Constructions

In this section, we describe the node representation, the construction of aligned se-
quences of nodes, and the sequence libraries, which lead to the formation of the aligned
image graphs used in the convolutions.

4.1. Node Representation

An important issue to properly address is how an image is transformed to a graph
structure of nodes. In our setting, a node was described by a generic 5 × 5 × 5 patch
pi = p(xi) surrounding a central voxel xi . The image was then represented by a collection
of nodes which were spatially distributed across the ROI volume.

Each node was described by a feature vector xi = fenc(pi) ∈ R20 implemented via
HOG descriptors [43], which aggregated the local information on the node patch. HOG
descriptors constitute a staple feature descriptor in image processing and recognition. Here,
we applied a modification suitable for operating on 3D data [44]. For each voxel xi, we
extracted an HOG feature description by computing the gradient magnitude and direction
along the x − y − z axes for each constituent voxel in the node patch. The resulting values
were binned to a (q = 20)-dimensional feature vector where each entry corresponded to
the vertex of a regular icosahedron, with each bin representing the strength of the gradient
along that particular direction.

Finally, each node was associated with a class indicator vector yi = [yi1 , . . . , yi,c] ∈ Rc,
where yi,c = 1 if voxel xi belongs in class i and 0 otherwise.

4.2. Aligned Image Graphs

The underlying principle of the multi-atlas approach is that the target image T and the
atlas library AT

i are aligned via affine registration, thus sharing a common coordinate space.
This allows the transfer of label information from atlas images towards the target one by
operating upon sequences of spatially correspondent voxels. Complying with the multi-
atlas setting, we applied a two-stage sampling process with the aim to construct a sequence
of aligned graphs, involving the target image and its respective atlases. This sequence
contained the so-called root nodes which were distinguished from the neighboring nodes
introduced in the sequel.

1. Target graph construction: This step used a spatially stratified sampling method to
generate an initial set of target voxels XT

r ∈ RnT ×D, where D denotes the feature
dimensionality. To ensure a uniform spatial covering of all classes in the target ROI, we
performed a spatial clustering step partitioning all contained voxels into nT

r clusters.
After interpolating the cluster centers to the nearest grid point, we obtained the global
dataset XT

r = {xTr (i), i = 1, . . . , nT
r }, which defined a corresponding target graph of
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root nodes GT
r . These target nodes served as reference points from which the aligned

sequences were subsequently generated.
2. Sequences of aligned data: For each xTr (i) ∈ XT

r , we defined a sequence of aligned nodes
S(i), containing the target node xTr (i) and its respective nodes from the atlas library,
located at spatially correspondent positions:

S(i) =
{

xTr (i); xA1
r (i), . . . , x

AnA
r (i)

}
, ∀i = 1, . . . nT (11)

The entire global dataset of root nodes, containing all sampled target nodes and their
associated atlas ones, was defined as the union of all those sequences

Xr =
nT⋃
i=1

S(i) =
[
XT

r , XA
r

]
(12)

where Xr ∈ R(Nr × D) contains a total number of Nr = nT · (nA+1) root nodes, while
XT

r and XA
r denote the datasets of root nodes sampled from the target and atlases,

respectively. Accordingly, this led to a sequence of aligned graphs Gr = {GT
r ; GA1

r ,

. . . GAnA
r }, which is schematically shown in Figure 3. In this figure, we can distinguish

two modes of pairwise relationships among root nodes that should be explored.
Concretely, there are local spatial affinities across the horizontal axis between nodes
belonging to a specific node sequence. On the other hand, there also exist global
pairwise affinities between nodes of each image individually, as well as between
nodes belonging to different images in the sequence. The latter type of search ensures
that nodes of the same class located at different positions in the ROI volume and
with different textural appearance are taken into consideration, thus leading to the
extraction of more expressive node representations of the classes via learning.

Target image Atlas images

Figure 3. Schematic illustration of a sequence of aligned image graphs of root nodes, including the
target graph (left) and the graphs of its corresponding atlases (right). There are local spatial affinities
at aligned positions (horizontal axis), as well as global pairwise similarities between nodes located at
different positions in the ROIs.

4.3. Sequence Libraries

It should be stressed that the cost-effective affine registration used in our method is
not capable of coping with severe image deformations. Hence, it cannot provide sufficiently
accurate alignment between the target and the atlases. To account for this deficiency,
we expanded the domain of local search by considering neighborhoods around nodes.
Specifically, for each node xi, we defined multihop neighborhoods at multiple scales:

Rs(xi) = Rs−1(xi) ∪R1(Rs−1(xi)) (13)

for s = 1, . . . , S, where Rs(xi) denotes the neighborhood at scale s, and S is the number of
scales used. R0(xi) = xi corresponds to the basic patch 5 × 5 × 5 of the node itself. R1(xi)
and R2(xi) are the 1-hop and 2-hop neighborhoods delineated as 9× 9× 9 and 13× 13× 13
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volumes around xi, respectively. In our experiments, we considered two different spatial
scales (S = 2). Figure 4 illustrates the different node neighborhoods.

Figure 4. A generic 5 × 5 × 5 patch (left) representing a node (s = 0). The corresponding 1-hop
(s = 1, middle) and 2-hop neighborhoods (s = 2, right), corresponding to 9 × 9 × 9 and 13 × 13 × 13
hypercubes, respectively. Black dots correspond to root nodes, while colored ones stand for the
neighboring nodes. All nodes are represented by 5 × 5 × 5 patches.

Next, for each sequence S(i) i = 1, · · · , nT , we created the corresponding sequence
libraries by incorporating the local neighborhoods of all root nodes belonging to that
sequence. The sequence library SLs(i) at scales s = 0, 1, · · · , S was defined by

SLs(i) = Rs(xTr (i)) ∪
{
Rs(x

A1
r (i)) ∪ . . . ∪Rs(x

AnA
r (i))

}
(14)

SLs(i) contains (nA + 1) · |Rs| nodes, where |Rs| denotes the size of the spatial neighbor-
hood at scale s. Figure 5 provides a schematic illustration of a sequence library.

Target image Atlas Images

Figure 5. Schematic illustration of a sequence library for a specific scale s = 1, comprising the aligned
neighborhoods from the target and the atlas images. Green arrows indicate the different scopes of the
attention mechanism. For a particular root node, attention is paid to its own neighborhood, as well
as the other neighborhoods in the sequence.

The collection of all SLs forms a global dataset Xs of aligned neighborhoods described
as follows:

Xs =
nT⋃
i=1

SLs(i) = Xr ∪Ns (15)

for s = 1, . . . , S. Xs is formed as union of the dataset Xr of root nodes and the dataset Ns
comprising their neighboring nodes at scale s. Its cardinality is |Xs| = Nr + |Ns|, where Nr
is the number of root nodes, and |Ns| the cardinality of Ns. Further, Xs corresponds to a
subgraph Gs(Vs, Es), with |Vs| = |Xs|. In this subgraph, connective edges are established in
Es along the horizontal axis, namely, between root nodes and the neighboring nodes across
the sequence libraries. Concluding, since the neighborhoods are by definition inclusive as
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the scale increases, the dataset XS contains the maximum number of nodes, forming the
overall dataset X̃:

X̃ = XS =
nT⋃
i=1

SLS(i) (16)

The corresponding graph G comprises an overall total number of N = |Nr|+ |NS| nodes,
including the root and neighboring nodes.

5. Convolutional Units

This section elaborates on the basic convolutional units, namely, the local convolutional
unit Lconv and the global convolutional unit Gconv which serve as structural elements to
devise our proposed models (Figure 6).

Figure 6. Outline of the convolutional units employed. (a) The local convolutional unit (Lconv),
(b) the global convolutional unit (Gconv).

5.1. Local Convolutional Unit

The local convolutional unit undertakes the local spatial learning task, operating
horizontally along the sequence libraries (SLs) of nodes. Instead of confining ourselves to
predefined and fixed weights in the graphs, we opted to apply a local attention mechanism
to adaptively learn the graph structure information at each layer. Specifically, we used
the attention approach suggested in the GAT as a means to capture the local contextual
relationships among nodes in the search area.

A functional outline of Lconv at layer l is shown in Figure 7. It receives an input

V(l−1) ∈ RN×E(l−1)
in from the previous layer and provides its output Q(l) ∈ RN×E(l)

o ,
where E(l−1)

in and E(l)
o denote the dimensionalities of the input and output node features,

respectively.
Figure 7 provides a detailed architecture of Lconv. The model involves S sub-modules,

each one associated with a specific spatial scale of aggregation. The sub-module s acts
upon the subgraph Gs(Vs, Es), s = 0, . . . , S, which subsumes the sequence libraries SLs of

root nodes. Its input is Vs ∈ R|Xs |×E(l−1)
in and after a local convolution at scale s, it provides

its own output Q(l)
s ∈ R|Xs |×E(l)

o . In this context, the structure of Gs is adapted to the local
attention mechanism. Let us assume that a root node xi belongs to the qth sequence library:
xi ∈ SLs(q), q = 1, . . . , nA. Then, node xi pays attention to two pools of neighboring
nodes (Figure 3): (a) it aggregates relevant feature information from nodes xj of its own
neighborhood, xj ∈ Rs(xi) (self-neighborhood attention); (b) it aggregates features of
nodes belonging to the other aligned neighborhoods in SLs(q) pertaining to the atlas
images: xj ∈ SLs(q) \ Rs(xi). For these pairs of nodes, we compute normalized attention
coefficients using Equation (6). Further, pairwise affinities between nodes belonging to
different sequence libraries are disregarded, i.e., αij = 0 when xi ∈ SLs(q) and xj ∈ SLs(p),
p ̸= q. It should be noticed that we are primarily focused on computing comprehensive
feature representations of the root nodes. Nevertheless, neighboring nodes are also updated;
however, in this case, the attention is confined to the neighborhood of the root node
it belongs to.
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Figure 7. Detailed description of the local convolutional unit, which aggregates local contextual
information from node neighborhoods at different spatial scales.

For convenience, let us consider the input node features of the form V(l−1)
s = [v(l−1)

s,1 ,

. . . , v(l−1)
s,|Xs | ], where vs,i ∈ RE(l−1)

in and similarly, Q(l)
s ∈ [q(l)

s,1, . . . , q(l)
s,|Xs |], q(l)

s,i ∈ RE(l−1)
o . The

local-level convolution at scale s of a root node xi ∈ SLs(q), i = 1, . . . ,Nr is obtained by:

q(l)
s,i = σ

 ∑
j∈Rs(xi)

α
(k)
ij W(l)

s,kv(l−1)
s,i + ∑

j∈SLs(q)\Rs

α
(k)
ij W(l)

s,kv(l−1)
s,i

 (17)

The first term in the above equation refers to the self-neighborhood attention, which
aggregates node features from Rs(xi) within the same image. Moreover, the second term
aggregates node information from the other aligned neighborhoods in the sequence. In an
attempt to stabilize the learning process and further enhance the local feature representa-
tions, we followed a multi-head approach, whereby K independent attention mechanisms
are applied. Accordingly, the node convolutions proceed as follows:

q(l)
s,i =

K
∥

k=1
σ

 ∑
j∈Rs(xi)

α
(k)
ij W(l)

s,kv(l−1)
s,i + ∑

j∈SLs(q)\Rs

α
(k)
ij W(l)

s,kv(l−1)
s,i

 (18)

where α
(k)
ij denote the attention coefficients between nodes xi and xj according to the kth

attention head, while W(l)
s,k ∈ RE(l)

in ×E(l−1)
o are the corresponding parameter weights used

for node embeddings. The attention parameters are shared across all nodes in Gs(Vs, Es)
and are simultaneously learned at each layer l and for each spatial scale, individually.
The outputs of the different sub-modules are finally aggregated to yield the overall output
of the Lconv unit:

Q(l) = Q(l)
1 ⊕ · · · ⊕ Q(l)

S (19)

where ⊕ denotes the concatenation operator.
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The multilevel attention-based aggregation of valuable contextual information from
sequence libraries offers some noticeable assets to our approach: (a) it acquires comprehen-
sive node representations which assist in producing better segmentation results, (b) the
graph learning circumvents the inaccuracies caused by affine registration in severe image
deformations which may lead to node misclassification.

5.2. Global Convolutional Unit

The global convolutional unit conducts the global convolution task; it acts upon
the subgraph Gr(Vr, Er) which includes the sequence of root nodes S(i). Gconv aims at
exploring the global contextual relationships among nodes located at different positions
in the target image and the atlases (Figure 3). Accordingly, we established in Er suitable
pairwise connective weights according to spectral similarity Ãij ̸= 0 for nodes xi ∈ S(p),
xj ∈ S(q), p ̸= q. Node pairs belonging to the same sequence are processed by Lconv units;
hence, they are disregarded in this case.

The global convolution at layer l is acquired using the spectral convolutional principles
in GCN:

H(l) = σ
(

Ã(l)S (l−1)W(l)
g

)
(20)

where S (l−1) ∈ R(N×F(l)
in ) and H(l−1) ∈ R(N×F(l)

o ) denote the input and output of Gconv, re-
spectively, whereas F(l−1)

in , F(l)
o are the corresponding dimensionalities. W(l)

g is the learnable
embedding matrix and Ã(l) is the adjacency matrix, as defined in Section 2.1.

Similar to Lconv, we also incorporated the AGL mechanism to Gconv, so that global
affinities could be automatically captured at each layer via learning. More concretely, we
applied an adaptive scheme whereby the connective weights between nodes are determined
from the module’s input signals [45]. The adjacency matrix elements were computed by:

Ã = σ

[(
H̃(l−1)Wϕ

)(
H̃(l−1)Wϕ

)T
]
+ IN×N (21)

where S̃ (l−1) = BN (S (l−1)) is obtained after applying batch-normalization to the inputs,
σ(·) is the sigmoidal activation function applied on an element-wise operation, and Wϕ is
the embedding matrix to be learned, shared across all nodes of Gr(Vr, Er). The adaptation
scheme in Equation (21) assigns greater edge values between nodes with high spectral
similarity and vice-versa.

In the descriptions above, we considered the GCN model equipped with AGL as a
baseline scheme. Nevertheless, in our experimental investigation, we examined several
scenarios whereby the global convolution task was tackled using alternative convolutional
models, including GraphSage, GAT, GraphSAINT, etc.

6. Proposed Convolutional Building Blocks

In this section, we present two alternative building models, namely, the cross-talk
building model (CT-BM) and the sequential building model (SEQ-BM). They are distin-
guished according to the way the local and global convolutional units are blended across
the layers. Every constituent local and global unit within the structures has its individual
embedding matrix of learnable parameters. Further, it is also equipped with its own AGL
mechanism for adaptive learning of the graphs, as described in the previous section.

6.1. Cross-Talk Building Model (CT-BM)

The CT-BM is shown in the outline of our approach in Figure 1. Nevertheless, a more
compact form is depicted in Figure 8. The model comprises two composite layers (l = 1, 2),
each one containing one local and one global unit. As can be seen, convolutions proceed in
an alternating manner across the layers, whereby the local unit transmits its output to the
next global unit, and vice versa. A distinguishing feature of this structure is that there are
also skip connections and aggregators which implement cross-talk links between the local
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and global components. Particularly, in addition to the standard flow from one unit to the
next, each unit’s output is aggregated with the output of the subsequent unit.

Figure 8. Illustration of the proposed cross-talk building model (CT-BM), where local and global
convolutional units are combined following an alternating scheme.

The overall workflow of the CT-BM is outlined below:

1. The first local unit yields

V(0) = X, Q(1) = Lconv(V(0)) (22)

2. The local unit’s output is passed to the first global unit to compute

S(0) = Q(1), H(1) = Gconv(S(0)) (23)

3. The second local unit receives an aggregated signal to provide its output,

V(1) = H(1) + Q(1), Q(2) = Lconv(V(1)) (24)

4. The second global unit produces

S(1) = H(1) + Q(2), H(2) = Gconv(S(1)) (25)

5. The final output of the CT-BM is the obtained by

Z = H(2) + Q(2) (26)

6.2. Sequential Building Model (SEQ-BM)

The architecture of the SEQ-BM is illustrated in Figure 9. This model also contains two
local and two global units. Contrary to the CT-BM, convolutions are conducted in the SEQ-
BM sequentially. Concretely, the local learning task is first completed using the first two
local convolutional units. The outputs of this stage are then transmitted to the subsequent
stage which accomplishes the global learning task, using the two global convolutional units.
The overall output of the SEQ-BM is formed by aggregating the resulting local and global
features of the two stages.

The workflow of the SEQ-BM is outlined as follows:

1. The local learning task is described by

V(0) = X, Q(1) = Lconv(V(0)) (27)

V(1) = Q(1), Q(2) = Lconv(V(1)) (28)
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2. The global learning task is described by

S(0) = Q(2), H(1) = Gconv(S(0)) (29)

S(1) = H(1), H(2) = Gconv(S(1)) (30)

3. The final output of the SEQ-BM is obtained by

Z = Q(2) + H(2) = Zloc + Zglo (31)

The alternating blending of the CT-BM provides a more effective integration between
local and global features at each layer, individually, as compared to the sequential com-
bination in SEQ-BM. This observation is attested experimentally as shown in Section 10.

Figure 9. Illustration of the proposed sequential building model (SEQ-BM), where the local and
global learning tasks are carried out sequentially.

7. Proposed Dense Convolutional Networks

In this section, we present two variants of our main model, the DMA-GCN network.
The motivation behind this design is based on an attempt to further expand the structures
CT-BM and SEQ-BM by including multiple layers of convolutions, to face the gradient
vanishing effect, where the gradients diminish, thus hindering effective learning or even
worsening the results. This is the reason why in the above building blocks, we are restricted
to two-layered local–global convolutions.

To tackle this problem, we resorted to the recent advancements in deep GCNs [36]
and developed the DMA-GCN model with a densely connected convolutional architecture
utilizing residual skip connections, as shown in Figure 10. As can be seen, the model
consists of several blocks arranged across M layers of block convolutions. These blocks
are implemented by either CT-BM or SEQ-BM described in Section 5, which leads to two
different alternative configurations, the DMA-GCN(CT-BM) and DMA-GCN(SEQ-BM),

respectively. Let Z(i)
in ∈ R(N×P(i)

in ) and Z(i)
o ∈ R(N×P(i)

o ) denote the input and output of

the ith block, i = 1, . . . , M, with P(i)
in , P(i)

out being the feature dimensionalities, respectively.
The properties of the suggested DMA-GCN are discussed in the following:

1. The skip connections interconnect the blocks across the layers. Concretely, each block
receives as input the outputs of blocks from all preceding layers:

Z(i)
in = Z(1)

o ⊕ Z(2)
o ⊕ · · · ⊕ Z(i−1)

o (32)

for i = 1, . . . , M, where ⊕ denotes the concatenation operator. This allows the gen-
eration of deeper GCN structures which can acquire more expressive node features.
Overall, the DMA-GCN involves 4M convolutional units. Within each block, two
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layers of local–global convolutions are internally performed; the resulting outputs are
then integrated along the block layers to provide the final output:

Zo = Z(1)
o ⊕ Z(2)

o ⊕ . . . ⊕ Z(M)
o (33)

2. The other beneficial effect of skip connections is that they allow the final output to
have direct access to the outputs of all blocks in the dense network. This assures a
better reverse flow of information and facilitates the effective learning of parameters
pertaining to the blocks. Since block operations are confined to two-layered local–
global convolutions, overall, we can circumvent the gradient vanishing problem.

3. In order to preserve the parametric complexity at a reasonable level, similar to [36],
we define the feature dimensions of each block in DMA-GCN to be the same:

P(1)
o = P(2)

o = · · · = P(M)
o = d (34)

The node feature growth rate caused by the aggregators can be defined as P(i)
in =

(i − 1) · d, i = 1, · · · , M. The input dimensions grow linearly as we proceed to deeper
block layers, with the last block showing the largest increase P(M)

in = (M − 1) · d.
To prevent feature dimensionalities from receiving too large values, we considered
initially a DMA-GCN model with M = 4 blocks. The particular number of blocks in
the above range was then decided after experimental validation (Section 10).

4. Every block in DMA-GCN is supported with its corresponding AGL process to auto-
matically learn the graph connective affinities at each layer. This is accomplished by
applying an attention-based mechanism for local convolutional units (Section 5.1) and
an adaptive construction of adjacency matrices from inputs node features (Section 5.2).

Figure 10. Description of the proposed DMA-GCN model, with densely connected block convolu-
tional structure and residual skip connections.

The output of the DMA-GCN is fed to a two-Layer MLP unit to obtain the label
estimates

Ẑo = softmax(ReLU(W1Z)W2) (35)

We adopted the cross-entropy error to penalize the differences between the model’s output
Ẑo and the corresponding node labels

L = − ∑
l∈YL

C

∑
c=1

YlcZlc (36)
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where YL denotes the subset of labeled nodes. The DMA-GCN network was trained
under either the transductive or the inductive learning methods, as discussed in the
following section.

8. Network Learning

In our setting, we considered transductive learning (SSL) as the basic learning scheme
for training the DMA-GCN models. In this case, both unlabeled data from the target
image to be segmented T and the labeled data from the atlases LB(T ) were used for
the construction of the model. Nevertheless, in the experiments, we also investigated the
inductive (supervised) learning scenario, whereby training was conducted by solely using
labeled data from the atlases.

8.1. Transductive Learning (SSL)

The SSL scheme was adapted to the context of image segmentation task elaborated
here. In regard to the data used in the learning, SSL can be carried out along two different
modes of operation, namely, mini-batch learning and full-batch learning. Next, we detail
mini-batch learning and then conclude with full-batch learning, which is a special case of
the former one.

Mini-batch learning was implemented by following a three-stage procedure. In stage 1,
an initial model was learned and used to label an initial batch of data from T . Stage 2 was
an iterative process, where out-of-sample batches were sequentially sampled from T and
labeled via refreshing learning. Finally, stage 3 labeled the remaining voxels of the target
image using a majority voting scheme.

Stage 1: Learning. In this stage, (t = 0), we started by sampling an initial unla-
beled batch XT

r (0) from the target image. Then, we used the different steps detailed
in Section 4 to construct the corresponding graph of nodes. (a) Given XT

r (0), we cre-
ated the corresponding aligned sequences (Section 4.3), giving rise to the dataset of root
nodes Xr(0) =

[
XT

r (0), XA
r (0)

]
. (b) Next, we incorporated neighborhood information

by generating sequence libraries at multiple scales (Section 4.3), leading to the datasets
Xs(0) = Xr(0) ∪Ns(0), s = 1, . . . S, where Ns(0) denotes the neighboring nodes. (c) Finally,
we considered the overall dataset X̂(0) = XS(0) that corresponded to the graph G0(V0, E0)
containing the root and neighboring nodes at that stage.

The next step was to perform convolutional learning on graph G0(V0, E0) using DMA-
GCN models. Upon completion of the training process, we accomplished the labeling
of XT

r (0),
l
(

XT
r (0)

)
= F(0)

(
X̃(0),W(0)

)
(37)

F(0) denotes the model’s functional mapping, l(·) is the labeling function of the target
nodes, and W(0) stands for the network’s weights, including the learnable parameters of
embedding matrices and attention coefficients, across all layers of the DMA-GCN.

Stage 2: iterative learning. This stage followed an iterative procedure, t = 1, · · · , T,
whereby at each iteration, out-of-sample batches of yet unlabeled nodes were sampled
from T , XT

o (t) of size no. Considering the nodes in XT
o as root nodes, we then applied

steps (a)–(c) of the previous stage, to obtain the datasets Xo,s = Xo(0) ∪ No,s(0), s =
0, . . . , S, and the overall set X̃o(t) = Xo,S(t), which corresponded to a graph of out-of-
sample nodes. In the following, data X̃o(t) were fed to the pretrained model from stage 1,
l(XT

o ) = F(t)(X̃o(t),W(t)). The model was initialized as W(t) = W0 to preserve previously
acquired knowledge. Further, it was subject to several epochs of refreshing convolutional
learning, with the aim of adapting to the newly presented data. The above sequential
process terminated at t = T when all target nodes were labeled.

Stage 3: labeling of remaining voxels. This was the final stage of target image segmen-
tation, entailing the labeling of target voxels not considered during the previous learning
stages. Given that nodes were the central voxels of a generic 5 × 5 × 5 patches, there were
multiple remaining voxels scattered within 3× 3× 3 volumes. Labeling of these voxels was
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accomplished by a voting scheme. Specifically, for each xr, the voting function accounted
for both the spectral and the spatial distance from its surrounding labeled vertices:

l(xr) = ∑
i

wr,il(xi) (38)

wr,i = wspec
r,i × wspat

r,i (39)

where wspec
r,i and wspat

r,i are normalized weighting coefficients denoting the spectral and
spatial proximity, measured by the l2 norm (Euclidean distance) and l1 norm (Manhattan
distance), respectively.

Full-batch learning is a special case of the above mini-batch learning. In that case,
the dataset XT

r (0) is a large body of data, comprising all possible target nodes contained
in the target ROI. Under this circumstance, the iterative stage 2 is disregarded. Full-batch
learning is completed after convolutional learning (stage 1), followed by the labeling of the
rest of target voxels (stage 3).

8.2. Inductive Learning

Under this setting, the target data remain unseen during the entire training phase.
Adapting to the multi-atlas scenario, we devised a supervised learning scheme according
to the following steps. (a) For each target image T , we selected the most similar labeled
image T̂ = NN (T ) from atlases, where NN (·) is a spectral similarity function used to
identify the nearest neighbors of T . (b) The image T̂ along with its corresponding atlas
library LB(T̂ ) were used to learn a supervised model Find(T̂ ) by applying exactly stage 1
of the previous subsection. (c) Finally, the target image T was labeled by means of Find(T̃ ).
As opposed to the SSL scenario, the critical difference was that the developed model relied
solely on labeled data, disregarding target image information.

9. Experimental Setup
9.1. Evaluation Metrics

The overall segmentation accuracy achieved by the proposed methods was evaluated
using the following three, standard volumetric measures: the Dice similarity coefficient
(DSC), the volumetric difference (VD), and the volume overlap error (VOE). Denoting
Y the ground truth labels and Ŷ the estimated ones, the above measures are defined as:

DSC = 100
|Y ∩ Ŷ |
|Y |+ |Ŷ |

(40)

VOE = 100
(

1 − DSC
200 − DSC

)
(41)

VD = 100
|Ŷ | − |Y |

|Y | (42)

Taking into account that the large majority of voxels correspond to either the back-
ground class or the two bone classes, we opted to also include the precision and recall
classification measures, to better evaluate the segmentation performance on each individ-
ual structure. All measures correspond exclusively to the image content delineated by the
respective ROI of each evaluated MRI.

9.2. Hyperparameter Setting and Validation

The overall performance of the proposed method depends on a multitude of preset
parameters, the most prominent of which are the number of atlases NA comprising the atlas
library {A, L}i, i = 1, . . . , NA, the number of heads K utilized in the multi-head attention
mechanism, and the number of scales S corresponding to the different neighborhood scales.
The optimal values of the above hyperparameters, as well as the performance of the DMA-
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GCN(SEQ) and DMA-GCN(CT) segmentation methods, were evaluated through a 5-fold
cross-validation.

9.3. Experimental Test Cases

The proposed methodology comprises several components affecting its overall capac-
ity and performance. We hereby present a series of experimental test cases, aiming to shed
light on those effects.

1. Local vs. global learning: In this scenario, we aimed to observe the effect of performing
local-level learning in addition to global learning. The goal here was to determine the
potential boost in performance facilitated by the inclusion of the attention mechanism
in our models.

2. Transductive vs. inductive learning: The goal here was to ascertain whether the increased
cost accompanying the transductive learning scheme could be justified in terms of
performance, as compared to the less computationally demanding inductive learning.

3. Sparse dense adjacency matrix: Here, we examined the effect of progressively sparsifying
the adjacency matrix Ã(l) at each layer on the overall performance. We examined the
following cases: (1) the default case with a dense Ã(l) and (2) thresholding Ã(l) so that
each node was allowed connections to 5, 10, or 20 spectrally adjacent ones.

4. Global convolution models: Finally, we tested the effect of varying the design of the global
components by examining some prominent architectures, namely, GCN, ClusterGCN,
GraphSAINT, and GraphSAGE

9.4. Competing Cartilage Segmentation Methods

The efficacy of our proposed method was evaluated against several published works
dealing with the problem of automatic knee cartilage segmentation.

9.4.1. Patch-Based Methods

The patch-based sparse coding (PBSC) [8] and patch-based nonlocal-means (PBNLM) [7]
methods are two state-of-the art approaches in medical image segmentation. For consis-
tency reasons, similar to the DMA-GCN, we set the patch size for both these methods to
(5 × 5 × 5) and the corresponding search volume size to (13 × 13 × 13). The remaining
parameters were taken as described in their respective works.

9.4.2. Deep Learning Methods

Here, we opted to evaluate the DMA-GCN against some state-of-the-art deep learning
architectures that were successfully applied in the field of medical image segmentation.

SegNet [12]: A convolutional encoder–decoder architecture, utilizing the state-of-the-
art VGG16 [46] network that is suitable for pixelwise classification. Since we are dealing
with 3D data, we split each input image patch into its constituent planes (−xy,−xz,−yz)
and fed those to the network.

DenseVoxNet [13]: A convolutional network proposed for cardiovascular MRI seg-
mentation. It comprises a downsampling and upsampling sub-component, utilizing skip
connections from each layer to its subsequent ones, enforcing a richer information flow
across the layers. In our experiments, the model was trained using the same initialization
scheme for the parameters’ values as described in the original paper.

VoxResNet [14]: A deep residual network comprising a series of stacked residual
modules, each one performing batch-normalization and convolution, also containing skip
connections from each module’s input to its respective output.

KCB-Net [16]: A recently proposed network that performs cartilage and bone segmen-
tation from volumetric images, by utilizing a modular architecture, where initially, each
one of the three sub-components is trained to process a separate plane (sagittal, coronal,
axial), followed by a 3D component with the task of aggregating the respective outputs
into a single overall segmentation map.
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CAN3D [47]: This network utilizes a successively dilated convolution kernel aiming
to aggregate multi-scale information by performing feature extraction within an increas-
ingly dilating receptive field, facilitating the final voxelwise classification in full resolution.
Additionally, the loss function employed at the final layer consists of a combination of Dice
similarity coefficient DSC and DSF , a variant of the standard DSC used in evaluating seg-
mentation results.

Point-Net [15]: Point-Net is a recently proposed architecture specifically geared towards
point-cloud classification and segmentation. As an initial preprocessing step, it incorporates
a spatial transformer network (STN) [48] that renders the input invariant to permutations
and is used to produce a global feature for the whole point cloud. That global feature
is appended on the output of a standard multilayer perceptron (MLP) that operates on
the initial point-cloud features, and the resulting aggregated features are passed through
another MLP in order to provide the final segmentation map.

9.4.3. Graph-Based Deep Learning Methods

In regard to graph-based convolution models, we compared our DMA-GCN approach
to a series of baseline GCN architectures to carry out the global learning task. In addition, we
considered in the comparisons the multilevel GCN with automatic graph learning (MGCN-
AGL) method [30], used for the classification of hyperspectral remote sensing images.
The MGCN-AGL approach takes a form similar to the one of the SEQ-BM in Figure 9
to combine the local learning via a GAT-based attention mechanism and global learning
implemented by a GCN. A salient feature of this method is that the global contextual
affinities are reconstructed based on the node representations obtained after completion of
the local learning stage.

9.5. Implementation Details

All models presented in this study were developed using the PyTorch Geometric li-
brary (https://github.com/pyg-team/pytorch_geometric, accessed on 1 May 2023), specifi-
cally built upon PyTorch (https://pytorch.org) to handle graph neural networks. For the ini-
tial registration step, we used the elastix toolkit (https://github.com/SuperElastix/elastix,
accessed on 1 May 2023). The code for all models proposed in this study can be found
at (https://gitlab.com/christos_chadoulos/graph-neural-networks-for-medical-image-
segmentation, accessed on 10 March 2024).

Regarding the network and optimization parameters used in our study, we opted
for the following choices: after some initial experimentation, the parameter d controlling
the node feature growth rate (Section 7) was set to d = 128, resulting in the input feature
dimensionality progression 128 → 256 → 384 → 512 for M = 4 dense layers. All models
were trained for 500 epochs using the Adam optimizer, with an early stopping criterion
halting the training process either when no further improvement was detected on the
validation error in the span of 50 epochs, or when the validation error steadily increased
for more than 10 consecutive epochs.

10. Experimental Results
10.1. Parameter Sensitivity Analysis

In this section, we examine the effect of critical hyperparameters in the performance
of the models under examination. The numbers and figures presented for each hyperpa-
rameter correspond to results obtained while the remaining ones assumed their optimal
determined value.

10.1.1. Number of Selected Atlases NA
The number of selected atlases is a crucial parameter for all methods adopting the

multi-atlas framework. Figure 11 shows the effect on the performance of DMA-GCN(CT)
and DMA-GCN(SEQ) by sampling the following values NA = 5, ..., 20.

https://github.com/pyg-team/pytorch_geometric
https://pytorch.org
https://github.com/SuperElastix/elastix
https://gitlab.com/christos_chadoulos/graph-neural-networks-for-medical-image-segmentation
https://gitlab.com/christos_chadoulos/graph-neural-networks-for-medical-image-segmentation
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Figure 11. Cartilage DSC(%) score vs. number of atlases. (a) Femoral cart, (b) tibial cart.

For both methods, the number of atlases has a similar effect on the overall performance.
The highest score in each case is achieved for NA = 10 atlases and slowly diminishes as
that number grows. Constructing the graph by sampling voxels from a small pool of atlases
increases the bias of the model, thus failing to capture the underlying structure of the data.
Increasing that number allows the image graphs to include a greater percentage of nodes
with dissimilar feature descriptions, which enhances the expressive power of features.
Accordingly, a moderate number of aligned atlases seems to provide the best overall rates,
as it achieves a reasonable balance between bias and variance.

10.1.2. Number of Attention Heads

The number of attention heads is arguably one of the most influential parameters
for the local units of our models. Figure 12 demonstrates the effect on performance
for K = 0, 4, 8, 12. The trivial case of K = 0 corresponds to the case where the local
convolutional units are disregarded, i.e., the convolution task is undertaken solely by the
global units.
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Figure 12. Cartilage DSC(%) score vs. number of attention heads. (a) Femoral cart, (b) tibial cart.

The best performance is achieved for K = 8 for either DMA-GCN(CT) or DMA-
GCN(SEQ). Most importantly, in both charts, we can notice a sharp drop in performance
when K = 0. This indicates that discarding the local convolutional units significantly
aggravates the overall efficiency of the DMA-GCN. Particularly, in that case, the model
disregards the local contextual information contained in node libraries, while the node
features are formed by applying graph convolutions at a global level exclusively.

It can also be noted that independent embeddings of the attention mechanism provide
different representations of the local pairwise affinities between nodes, which facilitates
a better aggregation of the local information. Nevertheless, beyond a threshold value,
the results deteriorate, most likely due to overfitting.
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10.1.3. Sparsity of Adjacency Matrix Ã

The adjacency matrix Ã is the backbone of graph neural networks in general, encoding
the graph structure and node connectivity. As mentioned in [30], a densely connected Ã
may have a negative impact on the overall segmentation performance. To this end, we
evaluated a number of thresholds that served as cut-off points, discarding edges that were
not sufficiently strong. A small threshold leaves most edges in the graph intact, while a
larger one creates a sparser Ã by preserving only the most significant edges. Figure 13
summarizes the effects of thresholding Ã at different sparsity levels.
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Figure 13. Cartilage DSC(%) score vs. adjacency threshold. (a) Femoral cart, (b) tibial cart.

As can be seen, large sparsity values considerably reduce the segmentation accuracy,
which suggests that preserving only the strongest graph edges decreases the aggregation
range from neighboring nodes, and hence the expressive power of the resulting models.
On the other hand, similar deficiencies are incurred for low sparsity values with dense
matrices Ã. In that case, the neighborhood’s range is unduly expanded, thus allowing
aggregations between nodes with weak spectral similarity. A moderate sparsity of the
adjacency matrices corresponding to a threshold value of 0.50 attains the best results for
both DMA-GCN(CT) and DMA-GCN(SEQ).

10.1.4. Number of Scales

The number of scales considered in conjunction with the local attention mechanism
plays an important role in the overall performance of the DMA-GCN. It defines the size
of spatial neighborhoods considered in local convolutional units, which greatly affects
the resulting node feature representations. Figure 14 shows the segmentation rates for
different values of scales s = 0, 1, 2. As can be seen, for both DMA-GCN(CT) and the
DMA-GCN(SEQ) models, the incorporation of additional neighborhoods of progressively
larger scales improves the accuracy results, consistently.
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Figure 14. Cartilage DSC(%) score vs. number of scales. (a) Femoral cart, (b) tibial cart.
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In the trivial case of s = 0, each node aggregates local information by paying attention
solely to its aligned root nodes. Due to the restricted attention, we were led to weak local
representations of nodes, and hence degraded overall performance for the models (left
columns). Incorporating the one-hop neighborhoods (s = 1), we expanded the range of
the attention mechanism, which provided more enriched node features. This resulted in
significantly better results compared to the previous case (middle columns). The above
trend was further retained by including the two-hop neighborhoods of nodes (s = 2),
where we could notice an even greater improvement of results (right columns).

10.2. Number of Dense Layers

In this section, we examine the effect of the number M of dense layers used in the DMA-
GCN models (Section 7). It defines the depth of the networks and thus directly impacts the
size, as well as the representational capabilities of the respective models. Figure 15 shows
the results obtained by progressively using up to four dense layers. It should be noticed
that the single layer results refer to the case where DMA-GCN(CT) and DMA-GCN(SEQ)
coincide with their constituent block models, i.e., the CT-BM and SEQ-BM, respectively.
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Figure 15. Cartilage DSC(%) score vs. number of dense layers. (a) Femoral cart, (b) tibial cart.

Figure 15a clearly demonstrates an upwards trend in the obtained rates as the number
of dense layers increases. The lowest performance is unsurprisingly achieved for the
shallow network of a single layer (CT-BM). The best results are achieved for M = 3, while
the inclusion of an additional layer diminishes slightly the accuracy, an effect most likely
attributed to overfitting. A similar pattern of improvements can also be observed for
the case of DMA-GCN(SEQ) model. Concluding, the proposed densely connected block
architectures lead to deeper GCN networks with multiple local–global convolutional layers,
which can acquire more comprehensive node features, and thus offer better results.

10.3. Mini-Batch vs. Full-Batch Training

The goal of this section is twofold. First, we aim to compare the mini-batch against
full-batch learning schemes (Section 8). Secondly, we examine the effect of the batch size on
the performance of the mini-batch learning. Figure 16a,b presents the DSC metrics of the
models DMA-GCN(CT) and DMA-GCN(SEQ), respectively, for varying batch sizes. The first
four columns refer to the mini-batch learning, while the rightmost column represents the
full-batch scenario.

Both figures share a similar pattern of results. Noticeably, in the mini-batch learning,
the best results (DSC = 95%) were achieved for a batch size of 128. This value referred to
the size of the initial batch (XT

0 ) as well as the out-of-sample batches extracted from the
target T . Given these batches, we then proceeded to the formation of the sequences of
aligned nodes and the sequence libraries at multiple scales, to generate the corresponding
graphs of nodes used for convolutional learning. Finally, the full-batch learning provided a
significantly inferior performance (DSC = 81%) compared to the mini-batch scenario.
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Figure 16. Cartilage DSC(%) score vs. batch size. (a) Femoral cart, (b) tibial cart.

10.4. Global Module Architecture

In this section, we examine the effectiveness of some of the popular graph-based net-
works in our approach. Concretely, in the context of DMA-GCN structures, we considered
several model combinations, whereby the GAT-based attention and local information aggre-
gation was used to carry out the local learning task, while the global task was undertaken
by the GCN, SAGE, SAINT and ClustGCN, respectively.

Figure 17 shows the DSC measures for both DMA-GCN(CT) and DMA-GCN(SEQ)
models. Table 1 also provides more detailed results on this issue. As can be seen, for both
models, the utilization of GraphSAGE clearly provided the best performance, possibly due
to its more sophisticated node sampling method. Nevertheless, all the alternatives offered
consistently good results.
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Figure 17. Cartilage DSC(%) score vs. global module architecture. (a) Femoral cart, (b) tibial cart.

Table 1. Summary of segmentation performance measures (means ± stds) of the two cartilage classes
of our proposed method DMA-GCN (CT/SEQ) by varying the global component of the sub-modules
(GCN, SAINT, SAGE, ClustGCN). Best results for each category (CT vs SEQ) with respect to DSC
index are highlighted.

Femoral Cartilage Tibial Cartilage

Module CT SEQ Recall Precision DSC VOE VD Recall Precision DSC VOE VD

GAT-GCN

✓ 88.26% 88.91% 89.23% 22.87% 7.05% 87.02% 85.36% 90.12% 25.36% 7.97%
(±0.076) (±0.041) (±0.074) (±0.058) (±0.048) (±0.032) (±0.022) (±0.038) (±0.078) (±0.055)

✓ 87.13% 88.12% 86.49% 23.06% 7.13% 86.88% 85.03% 84.79% 25.76% 8.01%
(±0.077) (±0.052) (±0.061) (±0.082) (±0.029) (±0.021) (±0.035) (±0.021) (±0.041) (±0.044)
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Table 1. Cont.

Femoral Cartilage Tibial Cartilage

Module CT SEQ Recall Precision DSC VOE VD Recall Precision DSC VOE VD

GAT-SAGE

✓ 96.17% 95.81% 95.71% 13.17% 3.94% 95.31% 94.78% 94.02% 17.98% 4.99%
(±0.021) (±0.019) (±0.039) (±0.055) (±0.091) (±0.029) (±0.045) (±0.036) (±0.047) (±0.022)

✓ 96.13% 95.21% 95.44% 13.21% 3.98% 95.19% 94.41% 93.87% 18.65% 5.03%
(±0.061) (±0.071) (±0.065) (±0.059) (±0.031) (±0.025) (±0.045) (±0.023) (±0.038) (±0.044)

GAT-SAINT

✓ 92.91% 93.43% 92.87% 14.02% 5.21% 88.81% 86.05% 88.03% 25.39% 7.87%
(±0.051) (±0.039) (±0.072) (±0.082) (±0.031) (±0.023) (±0.039) (±0.057) (±0.062) (±0.044)

✓ 87.13% 88.12% 86.49% 23.06% 7.13% 87.92% 86.45% 85.91% 25.32% 7.71%
(±0.066) (±0.045) (±0.061) (±0.071) (±0.049) (±0.028) (±0.056) (±0.032) (±0.033) (±0.034)

GAT-ClustGCN

✓ 93.29% 94.05% 92.18% 19.21% 6.02% 92.81% 93.17% 89.61% 22.13% 7.16%
(±0.075) (±0.043) (±0.071) (±0.062) (±0.039) (±0.027) (±0.041) (±0.026) (±0.033) (±0.049)

✓ 93.16% 93.75% 92.42% 19.09% 6.41% 92.59% 93.08% 89.24% 22.31% 7.63%
(±0.037) (±0.072) (±0.057) (±0.081) (±0.047) (±0.041) (±0.032) (±0.039) (±0.043) (±0.055)

10.5. Transductive vs. Inductive Learning

In this final test case, we investigated the efficacy of the transductive against the
inductive learning schemes (Section 8.1). Table 2 presents detailed results pertaining to
both DMA-GCN(CT/SEQ) structures.

Table 2. Summary of segmentation performance measures (means ± stds) of the two cartilage
classes of our proposed methods DMA-GCN (CT/SEQ) by varying the overall learning paradigm
(transductive vs. inductive). Best results for each category (CT vs SEQ) with respect to DSC index are
highlighted.

Femoral Cartilage Tibial Cartilage

Module SEQ CT Recall Precision DSC VOE VD Recall Precision DSC VOE VD

Inductive

✓ 91.78% 89.61% 89.45% 15.11% 5.98% 86.09% 84.29% 83.81% 26.02% 8.45%
(±0.051) (±0.038) (±0.086) (±0.093) (±0.067) (±0.036) (±0.053) (±0.041) (±0.094) (±0.078)

✓ 85.78% 87.71% 85.87% 23.61% 7.79% 85.92% 84.93% 84.05% 26.15% 8.71%
(±0.045) (±0.033) (±0.056) (±0.069) (±0.041) (±0.049) (±0.071) (±0.046) (±0.029) (±0.027)

Transductive

✓ 96.13% 95.21% 95.44% 13.21% 3.98% 95.19% 94.41% 93.87% 18.65% 5.03%
(±0.121) (±0.183) (±0.022) (±0.045) (±0.089) (±0.031) (±0.027) (±0.024) (±0.034) (±0.023)

✓ 96.17% 95.81% 95.71% 13.17% 3.94% 95.31% 94.78% 94.02% 17.98% 4.99%
(±0.117) (±0.189) (±0.032) (±0.051) (±0.094) (±0.032) (±0.025) (±0.021) (±0.034) (±0.029)

According to the results, transductive learning significantly outperforms the inductive
learning scenario, for both cartilage classes of interest and across all evaluations metrics.
This can be attributed to the following reasons. First, corroborating the well-established
finding of the literature, the superior rates underscore the importance of utilizing the SSL
features of the unlabeled nodes in the training process, combined with those of labeled ones.
Secondly, the refreshing learning stage applied in mini-batch learning (Section 10.3) allows
the network to appropriately adjust to the newly observed out-of-sampling batches. On the
other hand, the inductive model is trained once using the nearest neighbor image. This
network is then used to segment the target image, by classifying the entire set of unlabeled
batches from T .

10.6. Comparative Results

Table 3 presents extensive comparative results, contrasting our DMA-GCN models
with traditional patch-based approaches, and state-of-the-art deep learning architectures
established in the field of medical image segmentation. We also applied six graph-based
convolution networks in the comparisons. These networks were used as standalone models
solely to conduct global learning of the nodes. Finally, we applied the more integrated
MGCCN model [30]. For the DMA-GCN models, we applied the following parameter



Bioengineering 2024, 11, 278 28 of 31

setting: NA = 10 atlases, K = 8 attention heads, S = 2 spatial scales, M = 3 dense layers,
and transductive learning with a mini-batch size of 128.

Based on the results of Table 3, we should notice the more enhanced rates of GAT
and MGCN compared with those of the other graph convolution networks, suggesting
that the attention mechanism combined with a multi-scale consideration of the data can
improve the model’s performance. Furthermore, the proposed deep DMA-GCN(CT) and
DMA-GCN(SEQ) models are both shown to outperform all competing methods in the ex-
perimental setup, achieving DSC f mrl = (95.71%, 95.44%) and DSC tbl = (94.02%, 93.87%),
respectively, across all evaluation metrics and in both femoral and tibial segmentation.
DMA-GCN(CT) provides a slightly better performance compared to the DMA-GCN(SEQ)
indicating that the alternating combination of local–global convolutional units is more effec-
tive. However, both methods may fail to deliver satisfactory results in certain cases where
the cartilage tissue is severely damaged or otherwise deformed. Figure 18 showcases an
example of a successful application of both DMA-GCN(SEQ) and DMA-GCN(CT) models,
along with a marginal case exhibiting suboptimal results, due to extreme cartilage thinning.

Table 3. Summary of segmentation performance measures (means ± stds) of the two cartilage
classes of our proposed methods DMA-GCN (CT) and DMA-GCN (SEQ) compared to state of the art:
1. patch-based methods, 2. deep learning methods, 3. graph deep learning methods. Best results for
all three categories (CT vs SEQ) with respect to DSC index are highlighted.

Femoral Cartilage Tibial Cartilage

Method Recall Precision DSC VOE VD Recall Precision DSC VOE VD

PBSC
83.51% 82.65% 82.23% 29.97% 11.01% 79.76% 81.45% 78.85% 34.28% 11.79%
(±0.066) (±0.045) (±0.061) (±0.082) (±0.037) (±0.021) (±0.036) (±0.027) (±0.031) (±0.041)

PBNLM
84.12% 83.28% 84.09% 26.73% 8.25% 81.22% 82.07% 80.04% 33.91% 11.41%
(±0.071) (±0.045) (±0.052) (±0.061) (±0.084) (±0.038) (±0.019) (±0.027) (±0.031) (±0.029)

HyLP 94.04% 93.16% 92.56% 15.16% 5.12% 91.08% 89.98% 89.91% 19.67% 5.85%
(±0.052) (±0.051) (±0.026) (±0.028) (±0.034) (±0.074) (±0.023) (±0.018) (±0.025) (±0.011)

SegNet 89.18% 89.48% 89.09% 20.73% 5.65% 87.22% 89.07% 86.12% 22.79% 6.23%
(±0.116) (±0.219) (±0.089) (±0.039) (±0.066) (±0.056) (±0.062) (±0.034) (±0.012) (±0.016)

DenseVoxNet 88.75% 88.67% 87.54% 21.83% 6.45% 87.45% 86.03% 85.68% 25.47% 7.98%
(±0.156) (±0.204) (±0.042) (±0.048) (±0.121) (±0.076) (±0.041) (±0.047) (±0.028) (±0.025)

VoxResNet 88.03% 88.92% 88.12% 22.71% 6.64% 87.04% 85.26% 85.12% 26.03% 8.04%
(±0.187) (±0.205) (±0.047) (±0.055) (±0.128) (±0.071) (±0.044) (±0.043) (±0.032) (±0.029)

KCB-Net 89.74% 90.12% 88.92% 23.13% 6.72% 88.12% 87.46% 87.92% 25.90% 8.04%
(±0.149) (±0.185) (±0.031) (±0.042) (±0.098) (±0.055) (±0.029) (±0.033) (±0.017) (±0.021)

CAN3D 88.04% 88.54% 87.12% 22.93% 6.59% 87.28% 85.26% 85.02% 25.76% 8.01%
(±0.156) (±0.205) (±0.03) (±0.042) (±0.098) (±0.055) (±0.029) (±0.033) (±0.017) (±0.021)

PointNet 87.13% 88.12% 86.49% 23.06% 7.13% 86.88% 85.03% 84.79% 24.92% 7.39%
(±0.121) (±0.187) (±0.023) (±0.051) (±0.104) (±0.062) (±0.031) (±0.023) (±0.024) (±0.018)

GCN 90.19% 90.84% 89.23% 19.65% 5.48% 88.92% 89.02% 88.26% 23.27% 6.78%
(±0.129) (±0.126) (±0.030) (±0.046) (±0.098) (±0.059) (±0.033) (±0.021) (±0.028) (±0.017)

SGC 91.02% 91.31% 89.84% 17.41% 5.19% 89.81% 89.54% 89.02% 22.11% 5.89%
(±0.212) (±0.132) (±0.032) (±0.064) (±0.098) (±0.061) (±0.047) (±0.032) (±0.039) (±0.028)

ClusterGCN 90.56% 91.08% 90.12% 17.33% 5.16% 90.28% 91.05% 89.93% 22.08% 5.82%
(±0.141) (±0.150) (±0.039) (±0.058) (±0.107) (±0.054) (±0.061) (±0.039) (±0.036) (±0.024)

GraphSAINT 92.61% 92.74% 90.87% 17.18% 5.16% 91.75% 91.04% 90.12% 22.04% 5.76%
(±0.132) (±0.131) (±0.027) (±0.051) (±0.102) (±0.054) (±0.029) (±0.026) (±0.022) (±0.020)

GraphSAGE 92.87% 92.91% 90.95% 17.12% 5.09% 92.04% 92.53% 90.49% 20.71% 5.66%
(±0.129) (±0.144) (±0.031) (±0.065) (±0.098) (±0.049) (±0.033) (±0.038) (±0.027) (±0.024)

GAT 93.14% 93.09% 92.87% 13.90% 4.36% 93.29% 93.81% 90.86% 19.58% 5.61%
(±0.141) (±0.203) (±0.045) (±0.051) (±0.101) (±0.055) (±0.031) (±0.019) (±0.029) (±0.026)

MGCN 94.11% 93.92% 93.27% 14.05% 4.27% 93.79% 94.06% 91.43% 19.84% 5.34%
(±0.125) (±0.181) (±0.029) (±0.045) (±0.096) (±0.041) (±0.027) (±0.024) (±0.035) (±0.021)

DMA-GCN (SEQ) 96.13% 95.21% 95.44% 13.21% 3.98% 95.19% 94.41% 93.87% 18.65% 5.03%
(±0.121) (±0.183) (±0.022) (±0.045) (±0.089) (±0.031) (±0.027) (±0.024) (±0.034) (±0.023)

DMA-GCN (CT) 96.17% 95.81% 95.71% 13.17% 3.94% 95.31% 94.78% 94.02% 17.98% 4.99%
(±0.117) (±0.189) (±0.032) (±0.051) (±0.094) (±0.032) (±0.025) (±0.021) (±0.034) (±0.029)
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(a)

(b)

(c)

Figure 18. Segmentation results for femoral (FC) and tibial (TC) cartilage for the two main proposed
models (DMA-GCN(SEQ) and DMA-GCN(CT)). The first part of the figure illustrates a case of
successful application of DMA-GCN on a healthy knee (KL grade 0), while the second and third
parts correspond to more challenging subjects with moderate (KL grade 2) and severe (KL grade
4) osteoarthritis. (Left to right: ground truth, DMA-GCN(SEQ), DMA-CGN(CT)—color coding:
pink → FC, white → TC). (a) Segmentation showcase—KL grade 0. (b) Segmentation showcase—KL
grade 2. (c) Segmentation showcase—KL grade 4.

11. Conclusions and Future Work

In this paper, we presented the DMA-GCN for knee joint cartilage segmentation. Our
models shared a number of attractive properties, such as the constructive integration of
local-level and global-level learning, a densely connected structure, and adaptive graph
learning. These features rendered the DMA-GCN capable of acquiring expensive node
representations. A comparative analysis with various state-of-the-art deep learning and
graph-based convolution networks validated the efficacy of the proposed approach. As
future research, we intend to extent the current framework by focusing on hypergraph
networks, which allow the incorporation of multiple views of graph data.
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