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Abstract: Segmenting and classifying nuclei in H&E histopathology images is often limited by
the long-tailed distribution of nuclei types. However, the strong generalization ability of image
segmentation foundation models like the Segment Anything Model (SAM) can help improve the
detection quality of rare types of nuclei. In this work, we introduce category descriptors to perform
nuclei segmentation and classification by prompting the SAM model. We close the domain gap
between histopathology and natural scene images by aligning features in low-level space while
preserving the high-level representations of SAM. We performed extensive experiments on the
Lizard dataset, validating the ability of our model to perform automatic nuclei segmentation and
classification, especially for rare nuclei types, where achieved a significant detection improvement in
the F1 score of up to 12%. Our model also maintains compatibility with manual point prompts for
interactive refinement during inference without requiring any additional training.

Keywords: nuclei segmentation; nuclei classification; prompt guided segmentation; domain alignment;
long-tailed distribution

1. Introduction

Performing analysis of the micro-environment in histopathology samples is a crucial
step to understand the status and prognosis of cancer tumors [1–4]. The presence of
eosinophils in tumor sites and the neutrophil-to-lymphocyte ratio have already been used
as prognostic indicators in oncologic clinical practice [5,6]. Also, high numbers of tumor-
infiltrating lymphocytes have been connected to the inhibition of tumor progression [7], and
plasma cells are known to secrete high amounts of antibodies, protecting the host against
toxins and pathogens [8]. However, automatic detection of some rare types of nuclei is
challenging due to the long-tailed distribution of nuclei in tissue samples and the relatively
small size of available datasets. Deep learning methods [9–17] have demonstrated great
ability to automatically extract meaningfully features from data, but their performances
have been limited by the relatively small size of datasets [18–21]. In contrast, foundational
models [22–25] have shown better generalization by training on very large datasets. Thus,
we identify the strong representation of foundational models as a way to overcome the
issues derived from the long-tailed distribution of histopathology images.

Recently, the release of the Segment Anything Model (SAM) [26] has opened the
possibility to use foundation models for image segmentation. The model has been trained
on the SA-1B dataset containing 11 M natural scene images with 1 B masks. The large
amount of labeled data has allowed the model to learn a strong representation to detect
complex patterns in order to segment a wide variety of objects. In order to make pre-
dictions, the SAM model uses point, bounding box, and mask prompts to return valid
segmentation masks in an interactive way. Therefore, several prompts can be combined to
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let the model identify foreground segments and reject others. In this way, we hypothesize
that given the right combination of prompts, the model could segment nuclei foreground,
background tissue, or even nuclei boundary pixels (a technique commonly used for nuclei
segmentation [27–30]). The advantage of using prompts over task-specific tuning of the
output layers is that the model’s learned representations are preserved, leading to better
generalization and preventing overfitting [31].

In this work, we introduce a category prompt encoder to learn category descriptors
for each type of nuclei, background tissue and nuclei boundaries. In Figure 1, we show that
category descriptors applied to the SAM mask decoder generate different segmentation
masks based on the prompts used. We also show that the existing domain gap between
histopathology and natural scene images limits the performance of the vanilla SAM model.
Therefore, we introduce a domain alignment module to close the gap leading to better
quality segmentation outputs. Instead of adding adapter layers to the transformer blocks
of the model [32,33], we only adapt features in low-level space to preserve the strong
representation of the model. Our experimental results show the significantly improved
detection ability of our model, especially on rare types of nuclei. Moreover, our model also
maintains compatibility with point prompts, allowing interactive refinement at inference
time even though no point prompts were used during training; thus, this demonstrates
that our domain alignment module effectively adapts the SAM model to histopathology
images while preserving the model’s internal representation. We summarize our main
contributions as follows:

• We introduce category descriptors to perform automatic nuclei segmentation and
classification via prompting the SAM model.

• We align the low-level features of histopathology images with the distribution of
natural scenes features to exploit the high-level representation of the SAM model for
accurate nuclei segmentation and classification.

• We also show that the inherent ability of the SAM model is still preserved after
domain alignment and can use manual point prompts (not used during training) on
histopathology images for further interactive refinement during inference.

In the following sections, we introduce the relevant literature in Section 2, describe
our methodology in Section 3, introduce the datasets and experimental settings in Section 4,
and provide the experimental results and ablations in Section 5.

2. Related Works
2.1. Nuclei Segmentation

Nuclei segmentation was initially performed by first detecting foreground pixels and
later applying post-processing algorithms to separate individual cells [34–37]. Subsequent
works included boundary detection to allow models learn patterns to separate touching nu-
clei using a three-class detection task [27,29,30]. In contrast, other works used a regression
task to determine the boundaries between nuclei. Naylor et al. [20] used the distance map,
while Graham et al. [38] encoded nuclear instances into vertical and horizontal distances
in order to determine their centers and boundaries. However, He et al. [12] showed that
adding stronger emphasis on boundary classification led to higher nuclei segmentation
performance using the three-class detection task. In our work, we use category descriptors
to prompt the SAM model in order to determine nuclei foreground per class, boundary
pixels, and background.

2.2. Segment Anything Model (SAM)

With the release of the SAM model [26], several works have focused on leveraging
the strong representation of the foundation model to perform tasks in unseen domain
including medical images. Zhang et al. [39] used the predictions produced by the SAM
model to augment medical images to train a task-specific segmentation model. Ma et al. [40]
used bounding box prompts to perform segmentation in medical images and fine-tuned
both the image encoder and the mask decoder while keeping the prompt encoder fixed.
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Mazurowski et al. [41] studied the zero-shot accuracy of the SAM model in medical image
segmentation. They found that SAM performs better on well-circumscribed objects and
the benefit of using additional point prompts is limited. Furthermore, Huang et al. [42]
found that combining point and bounding box prompts performs better on medical images.
Also, fine-tuning the mask decoder shows improvements but performance on small or rare
objects decreases.

Due to domain gaps between the SA-1B dataset and the target datasets, several works
have explored ways to fine-tune the model to the increase performance of the target task.
Most works have opted to include adapter modules in the image encoder and mask decoder.
Xiong et al. [43] added convolutional adapters between transformer layers with a custom
multi-scale decoder for segmentation output. Chen et al. [44] also used adapter modules
between transformer layers in the image encoder where conditional prompts were directly
applied for each specific task, with the mask decoder also fine-tuned. Pu et al. [31] added
adapter modules to each transformer module in the image encoder and fully trained a
custom decoder. Wu et al. [45] included adapter modules to each transformer layer in both
the image encoder and mask decoder modules. However, adding trainable parameters to
modify high-level features incurs the risk of over-fitting on the training dataset, reducing
the inherent ability of the foundation model. In contrast, we perform domain alignment in
low-level feature space, preserving the strong representation learned by the SAM model on
the SA-1B dataset.

3. Method

The SAM model has acquired strong high-level representations for segmenting a wide
diversity of objects by training with over 1 billion masks. However, it is not possible to
apply the vanilla SAM model to histopathology images for automatic nuclei segmentation
and classification. The SAM model relies on manual prompts to interactively perform
segmentation while the grid of point prompts used in the “everything mode” suffers from
ambiguous boundaries commonly encountered in histopathology images. In addition,
there is no built-in capability to perform classification. Therefore, we devise a prompting
scheme with category descriptors to segment and classify nuclei while preserving the high-
level representation of the SAM model. We exploit the ability of the model to run multiple
prompts at low cost to extract several prediction masks. In detail, we predict masks for
each type of nuclei as well as background tissue and nuclei boundaries to help separate
individual instances. By combining these predicted masks, we can accurately segment
nuclei of different types. Although the vanilla SAM model can perform nuclei segmentation
and classification with category descriptors, the domain gap between histopathology and
natural scenes images limits the performance of the model. Thus, we introduce a domain
alignment module to project the low-level features of the histopathology images into a
space closer to natural scene features where the high-level representation of the model
could be better exploited. In Figure 1, we present the architecture details of our model and
provide visual examples on how the predicted masks quality is improved by our category
descriptors and domain alignment module.
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Figure 1. Our proposed category descriptors are an effective way to perform automatic nuclei
segmentation and classification. Point prompts can be used for interactive manual refinement during
inference, but they are not used at training time. Domain alignment in low-level feature space is used
to bridge the gap between histopathology and natural scene images while preserving the high-level
representation of the model. Category descriptors alone demonstrate superior segmentation ability
over manual prompts while domain alignment enhances the segmentation quality.

3.1. Category Descriptors

The combination of multiple prompts allow the SAM model to predict complex seg-
mentation masks. Prompts are transformed into tokens and stacked together to let the mask
decoder recover the mask of a target object. In a similar way, we define a set of learnable
category descriptors in the form of a stack of tokens for each nuclei type, background and
boundary pixels. The number of tokens per class is studied in Section 5.1. In Figure 1, we
demonstrate that the vanilla SAM model is able to perform segmentation of some types of
nuclei via manual prompts, but the lack of clear boundaries severely affects the output masks.
In contrast, using our learned category descriptors allow the mask decoder to recover fairly
accurate masks, but due to the domain gap, predictions are still affected by noise and the
confidence of some masks is very low. Mitigating the domain gap lets the model predict very
clear and confident masks across nuclei types using our category descriptors.

3.2. Domain Alignment

Fine-tuning is a common way to transfer the representation learned on large datasets to
smaller ones on relatively similar tasks. However, updating the parameters of a foundational
model might hurt the high-level learned representation leading to over-fitting. Instead, we
propose to perform domain alignment in low-level feature space. This allows the model
to shift the external domain image features to a space where the high-level patterns are
more effective for the target task. As depicted in Figure 1, we insert a domain alignment
module between the patch embedding layer and the transformer blocks. Specifically, the patch
embedding layer maps the image to a larger dimensional space for feature extraction. Then,
we use a sequence of lightweight residual layers to project the image features to an optimal
distribution in low-level space. Each residual layer shifts the low-level features from the input
histopathology image to a distribution closer to natural scene images that is expected by the
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transformer blocks. In this way, we preserve the high-level representation of the SAM model
to perform nuclei segmentation and classification via category descriptors. Another advantage
is that point prompts can be also applied through the SAM prompt encoder without any
additional training (an ablation is conducted in Section 5.2). Finally, in order to minimize the
size of our domain alignment module, we use lightweight inverted residual layers following
the MobileNetV2 implementation [46] to reduce the module memory footprint while retaining
a strong performance.

3.3. Training Objective

Each set of category descriptors are learned to activate an independent type of nuclei
and could be optimized separately from other descriptors. However, due to morphological
similarities between different types of nuclei, it is important to emphasize negative gra-
dients depending on other classes predictions. Therefore, we consider two fundamental
aspects to ensure rare classes have higher activation than frequent ones in ambiguous cases.
First, we employ a federated style loss [47] to ensure that negative gradients are only
applied to classes that appear in the image reducing their impact on rare classes. Second, we
adopt a multi-class hinge loss strategy to focus on hard samples that have high activation
among several category descriptors. This allow us to reduce negative unnecessary gradi-
ents from easier samples. In detail, we employ a separate binary cross entropy loss for each
category that is only applied to cell types present in the image. However, the loss has a mar-
gin γ that compares predictions across all categories and only back-propagates gradients
for ambiguous samples ignoring confident pixels. In our experiments, we set γ = 0.2 as
the minimum prediction probability gap between the target category and other categories.

4. Experiments
4.1. Dataset

We run our experiments on the Lizard dataset [48]. The dataset contains images from
a wide variety of colon tissue samples including normal, inflammatory, dysplastic, and
cancerous conditions. The images were extracted from colon H&E images at 20× objective
magnification (∼0.5 µm/pixel). The publicly available version of the dataset is divided
in subsets obtained from five different sources: CoNSeP [38], CRAG [49], DigestPath [50],
GlaS [51], and PanNuke [52]. The dataset was extensively annotated with 495,179 individual
nuclei masks separated across six different types of cells, i.e., neutrophil, eosinophil, plasma,
connective, lymphocyte, and epithelial. However, 92.4% of the instances are epithelial,
lymphocyte, and connective cells (frequent categories) while only 5.9% are plasma cells and
the remaining 1.7% cells are neutrophils and eosinophils (rare categories). Thus, due to the
long-tailed distribution of cell types, we pay special attention to the accurate detection of
rare categories in our experiments.

4.2. Experimental Setup

The majority of labeled nuclei come from the DigestPath and CRAG subsets, whereas
the fewest labeled nuclei come from the CoNSeP subset. Thus, in our experiments we selected
the CoNSeP subset as our validation set and performed four-fold cross-validation with the
remaining four subsets for testing purposes (CRAG, DigestPath, GlaS, PanNuke). The results
on the CoNSeP validation set were computed by averaging the scores of all four models
trained during the four-fold cross-validation process and are reported in Tables 1 and 2.
Similarly, the test scores were computed for four different test subsets according to the
four-fold cross-validation procedure, and we report the average scores in Tables 3 and 4.
Using cross-validation allowed us to test the resilience of the models to changes in the
training and testing domains.

4.3. Evaluation Metrics

Due to the long-tailed distribution of the dataset, we focus on the detection accuracy
across different types of nuclei. To this end, we employ the object-based F1 score, where
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true positives (TP) are defined by assigning every prediction to its closest ground truth
label, and only one prediction is allowed for each ground truth mask. Predictions and
labels without matching pair are treated as false positives (FP) and false negatives (FN),
respectively. Prediction and label pairs are assigned according to the highest intersection
over union score (IoU).

F1 score =
TP

TP + 1
2 (FP + FN)

(1)

In addition, we evaluate the segmentation and classification combined performance using
the mean average precision metric (mAP), commonly used for instance segmentation tasks:

mAP =
1
N

N

∑
k=1

APk, (2)

where k is the nuclei category and AP (Average Precision) is the area under the precision–
recall curve. Specifically, we use the MS COCO evaluation algorithm (https://github.com/c
ocodataset/cocoapi (accessed on 21 December 2023)) with 101 interpolation points and
10 IoU thresholds on the precision–recall curve to compute the average precision (AP) for a
more fine-grained evaluation.

4.4. Comparison Methods

We compare our method with a state-of-the-art nuclei segmentation method and
a widely used instance segmentation method. CDNet [12] was originally proposed to
perform nuclei segmentation without accounting for nuclei type classification. Thus, we
extended the network with a classification branch following structure of the existing “mask
branch”. However, to account for the long-tailed distribution of the Lizard dataset, we
implemented two variants with different classification objectives. The Seesaw [53] and
ECM [54] losses were developed to mitigate the negative effects of frequent categories over
rare ones, making them suitable for our experiments.

Mask R-CNN [9] is a powerful segmentation method that has been widely applied
to multiple instance segmentation tasks. We used the implementation provided by the
Open MMLab Detection Toolbox [55], where the model has been highly optimized and
pre-trained on the MS-COCO [21] dataset, providing a strong initial learned representation.
We also run experiments using the Mask R-CNN model with the Seesaw loss [53] to account
for the long-tailed distribution of the Lizard dataset.

4.5. Implementation Details

We used the official implementation of the SAM model (https://github.com/faceboo
kresearch/segment-anything (accessed on 21 December 2023)) and ran our experiments
using the ViT-B version of the model, i.e., the smallest released model with 91 M parameters.
Our learnable category descriptors were defined with the same size as other prompt tokens
with 256 channels. The inverted residual blocks used in the domain alignment module were
reduced to 96 channels, where a 3 × 3 channel-wise convolution was applied. As shown in
Figure 1, the original SAM image encoder, prompt encoder and mask decoder were not
updated during training. We trained our model for 20 epochs using an Adam optimizer
with learning rate of 10−3 with linear warm-up and step decay to 10−4 for the last 2 epochs.

We trained our model using randomly extracted image crops of size 256 × 256 pixels.
We used repeat factor sampling (RFS) [56] to balance the rate at which rare and frequent
categories were observed by the model. We also applied random flip, rotation, and color
jittering augmentations to extend the variety of distributions seen by the model. For infer-
ence, we used a sliding window approach with a step size of 128 pixels to extract image
crops of size 256 × 256 pixels and made separate predictions for each crop. We recon-
structed the entire slide by adding the predicted instances at the center of each crop to a

https://github.com/cocodataset/cocoapi
https://github.com/cocodataset/cocoapi
https://github.com/facebookresearch/segment-anything
https://github.com/facebookresearch/segment-anything
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full-size prediction map without duplicating nuclei from neighboring crops. All metrics
were computed using the full-size predictions and labels.

5. Results

Our experimental results demonstrate that our approach shows superior performance
for segmenting and classifying nuclei, especially rare categories. In Figure 2, we show
tissue samples containing neutrophils and eosinophils, where most models had limited
detection results. These qualitative results show that Mask R-CNN models suffer from
lower detection ability while CDNet models tend to assign classes incorrectly. In contrast,
our category descriptors leverage the high-level representation of the SAM model to
correctly segment and classify both rare and frequent nuclei.

Mask R-CNN +
Seesaw Mask R-CNNCDNet + Seesaw CDNet + ECMOursGround TruthImage

a)

b)

c)

d)

e)

EpithelialLymphocyteConnectivePlasmaEosinophilNeutrophil

Figure 2. Segmentation and classification results across different tissue samples containing rare nuclei
types. Neutrophils are shown in (a–c) rows, while Eosinophils in (d,e).

In our quantitative results, we report the average performance of the four models
obtained from our four cross-validation experiments. The results on the common validation
set for all experiments (CoNSeP subset) are shown in Tables 1 and 2. Our method shows
significantly higher detection performance (F1 score) on rare categories while the gains
on frequent categories are less pronounced. In fact, the object-based F1 score does not
consider pixel level matching between prediction and label masks, therefore highlighting
the ability of our model to assign the correct class to detected instances across all cell types.
On the mAP evaluation, however, other methods might achieve higher scores on frequent
categories due to higher pixel-level accuracy, but our approach consistently achieves higher
segmentation and classification accuracy on rare categories.
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The results on the test set add another variable to the evaluation of the models per-
formance. Evaluating in considerable larger subsets than the CoNSeP subset, the gen-
eralization ability of the models plays a bigger role due to larger domain gaps between
subsets. As shown in Tables 3 and 4, the performance scores significantly reduced across
all models. However, there is a consistent trend regarding the performance on rare and fre-
quent categories. Our model significantly outperforms the segmentation and classification
capabilities of other methods. In addition, due to the larger domain shift between subsets,
the strong representation acquired by SAM enables better generalization over competing
models even in the case of frequent classes.

Table 1. Validation F1 scores per object in the CoNSeP subset.

Method F1mean

F1category

Rare Frequent

Neutrophil Eosinophil Plasma Connective Lymphocyte Epithelial

CDNet [12] + Lecm [54] 0.624 0.304 0.627 0.509 0.729 0.757 0.814

CDNet [12] + Lseesaw [53] 0.671 0.443 0.690 0.574 0.725 0.768 0.824

Mask R-CNN [9] 0.665 0.382 0.646 0.564 0.781 0.788 0.827

MRCNN [9] + Lseesaw [53] 0.668 0.382 0.676 0.556 0.78 0.782 0.829

Ours 0.733 0.540 0.797 0.645 0.785 0.789 0.844

Table 2. Validation mean average precision scores in the CoNSeP subset.

Method mAP mAP50

mAPcategory

Rare Frequent

Neutrophil Eosinophil Plasma Connective Lymphocyte Epithelial

CDNet [12] + Lecm [54] 0.225 0.423 0.064 0.171 0.19 0.236 0.385 0.303

CDNet [12] + Lseesaw [53] 0.295 0.545 0.123 0.238 0.268 0.374 0.415 0.350

Mask R-CNN [9] 0.240 0.459 0.110 0.201 0.224 0.226 0.384 0.296

MRCNN [9] + Lseesaw [53] 0.292 0.536 0.109 0.231 0.248 0.384 0.422 0.355

Ours 0.321 0.594 0.238 0.319 0.274 0.373 0.38 0.342

Table 3. Testing F1 scores per object applying 4-fold cross-validation on the CRAG, DigestPath, GlaS,
and PanNuke subsets.

Method F1mean

F1category

Rare Frequent

Neutrophil Eosinophil Plasma Connective Lymphocyte Epithelial

CDNet [12] + Lecm [54] 0.507 0.154 0.334 0.418 0.656 0.689 0.789

CDNet [12] + Lseesaw [53] 0.565 0.236 0.460 0.465 0.699 0.710 0.819

Mask R-CNN [9] 0.533 0.244 0.394 0.482 0.619 0.722 0.739

MRCNN [9] + Lseesaw [53] 0.521 0.219 0.371 0.478 0.616 0.714 0.730

Ours 0.639 0.371 0.590 0.565 0.735 0.731 0.839
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Table 4. Testing mean average precision scores applying 4-fold cross-validation on the CRAG,
DigestPath, GlaS, and PanNuke subsets.

Method mAP mAP50

APcategory

Rare Frequent
Neutrophil Eosinophil Plasma Connective Lymphocyte Epithelial

CDNet [12] + Lecm [54] 0.162 0.309 0.021 0.038 0.128 0.223 0.320 0.246
CDNet [12] + Lseesaw [53] 0.171 0.336 0.021 0.048 0.141 0.245 0.319 0.251
Mask R-CNN [9] 0.225 0.396 0.086 0.126 0.196 0.281 0.384 0.276
MRCNN [9]+Lseesaw [53] 0.220 0.390 0.081 0.115 0.205 0.277 0.378 0.263
Ours 0.269 0.470 0.108 0.171 0.239 0.348 0.393 0.350

We evaluate the statistical significance of our four-fold cross validation results by
applying the Wilcoxon signed-rank test. We verify that the underlying distribution of the
difference of the paired samples between our model and comparison methods results is
greater than a distribution symmetric about zero. Table 5 demonstrates that the differences
are significant (p ≤ 0.05) across all methods.

Table 5. Wilcoxon signed-rank test of the difference of the paired samples between our model and
comparison methods.

Method CDNet [12] +
Lecm [54]

CDNet [12] +
Lseesaw [53]

Mask
R-CNN [9]

MRCNN [9] +
Lseesaw [53]

p-value 8.6 × 10−23 1.5 × 10−21 8.8 × 10−16 3.3 × 10−16

5.1. Ablation Studies

We run ablation studies on the number of category descriptors and residual layers used
in our domain alignment module that are necessary to allow the SAM model segment and
classify nuclei accurately. In our ablation experiments we use the GlaS and PanNuke subsets
as training set and the CoNSeP subset for testing. In Table 6, we show the performance
obtained at different number of residual alignment layers and category descriptors sizes.
The case when there are zero residual alignment layers is equivalent to using our proposed
category descriptors to prompt the original SAM model.

Table 6. Ablation results on the number of residual alignment layers and the size of the category
descriptors. These experiments were run training on GlaS and PanNuke subsets and testing on the
CoNSeP subset.

# Residual # Category F1 mAPLayers Descriptors

0 8 0.226 0.046
0 32 0.285 0.060
0 128 0.308 0.069
0 512 0.309 0.079

4 32 0.498 0.161
8 32 0.628 0.237
12 32 0.638 0.240
16 32 0.643 0.244

12 8 0.629 0.235
12 16 0.630 0.230
12 32 0.638 0.240
12 64 0.645 0.242
12 128 0.647 0.246



Bioengineering 2024, 11, 294 10 of 14

The results indicate that there is a positive relation between the number of category
descriptors and the performance on the SAM model. However, without residual alignment
layers, the detection quality is poor, and significantly increasing the number of category
descriptors only leads to marginal gains. On the other hand, adding our domain alignment
module results in a greater performance increase while reducing the number of required
category descriptors per class.

As shown in Table 6, there is a tangential increase in performance beyond eight resid-
ual layers. Although using a larger number of parameters leads to additional performance
gains, the GPU memory footprint also increases at a faster rate. Thus, we selected 12 resid-
ual alignment layers and 32 category descriptors for all our experiments as they show a
reasonable trade-off between performance and memory requirement.

5.2. Manual Prompts

The vanilla SAM model allow additional interactions with the segmentation output
through manual prompts. In our work, although point prompts were not used while
training the domain alignment module (only prompts from category descriptors), in Table 7
we show that manual point prompts are still an effective way to make interactive corrections.
Specifically, we tested the performance of our model by adding an increasing number of
manual point prompts per nuclei type, i.e., a single point prompt per cell type is added
at each step. For this process, we used the ground truth labels to select one instance
per class that has the lowest confidence to add the next point prompt. The results show
that rare categories achieve major improvements while frequent nuclei types only have
marginal changes. Therefore, preserving compatibility with point prompts validates our
approach to perform domain alignment in low-level feature space without affecting the
strong high-level representation of the SAM model.

Table 7. Ablations on the use of manual point prompts for a model trained on GlaS and PanNuke
subsets and tested on the CoNSeP subset.

# of Prompts F1mean

F1category

Rare Frequent
Neutrophil Eosinophil Plasma Connective Lymphocyte Epithelial

0 0.638 0.621 0.565 0.412 0.694 0.751 0.783
1 0.699 0.758 0.667 0.488 0.717 0.779 0.788
2 0.725 0.806 0.731 0.504 0.728 0.787 0.792
4 0.747 0.866 0.755 0.528 0.738 0.799 0.794
8 0.754 0.866 0.764 0.542 0.749 0.809 0.796

16 0.762 0.879 0.771 0.556 0.756 0.814 0.796

6. Limitations

Although leveraging the strong learned representation of SAM helps to mitigate the
problem of classifying nuclei under a long-tailed distribution, further research is needed
to decrease the computational demands of such a large foundational model. Considering
that whole-slide histopathology images are usually very large, in the order of Gigapixels,
smaller and memory efficient models will be required for practical use. In this sense, knowl-
edge distillation techniques [57] are a viable option for smaller models to learn adequate
representations from large teacher models. Future research on the topic is still required.

7. Generalizability

Our ablation results (Table 6) demonstrate that a reasonable number of residual align-
ment layers combined with category descriptors are sufficient to adapt SAM to alternative
tasks such as nuclei segmentation and classification, while addressing the domain gap with
medical images. We believe our technique can be extended to segment and classify other
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types of medical images by defining adequate prompts (category descriptors) and objective
functions according to the target task.

8. Conclusions

In this work, we showed that the SAM model already has a powerful learned rep-
resentation that enables it to perform segmentation on unrelated domains such as nuclei
segmentation in H&E Histopathology images. Performing proper domain alignment in
low-level feature space allowed the us to leverage the SAM model to accurately detect
different types of nuclei. Moreover, learning separate category prompts showed to be an
effective way to classify nuclei under a long-tailed distribution. Further statistical analysis
confirmed the superiority of the results obtained by our model. In addition to performing
automatic nuclei segmentation and classification, we also highlight that our model can
refine predictions with the aid of manual prompts that significantly improve the quality of
model outputs. Although we achieved great improvements on detection of neutrophil and
eosinophil nuclei types (rare categories), performance improvement was less pronounced
in plasma cells due to similar appearance with lymphocytes (a frequent type of nuclei).
Further investigation on what other factors can be leveraged from foundation models to
distinguish nuclei types with highly similar morphology is left for future work.
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