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Abstract: Several studies have found a relationship between the rotational anatomy of the distal
femur and the overall coronal lower limb alignment in knees with osteoarthritis (OA). Less is known
about the rotation of the proximal tibia, especially in the context of total knee arthroplasty (TKA),
where one of the goals of the surgery is to achieve the appropriate component-to-component rotation.
The aim of this study was to investigate the relationship between the coronal alignment of the lower
extremity and the relative proximal tibial rotation. A prospective cohort study of patients with an
end-stage OA scheduled for TKA was conducted. All patients underwent a computed tomography
(CT) scan and a standing X-ray of both lower limbs. A relative femorotibial rotation was measured
separately for mechanical and kinematic alignment. A statistically significant correlation was found
between the tibial varus and the external tibial rotation (p < 0.001). Out of 14 knees with high tibial
varus (>5◦), 13 (93%) and 7 (50%) knees had >10◦ of femorotibial rotation for the mechanical and
kinematic alignment landmarks, respectively. In order to keep the component-to-component rotation
within the 10◦ margin, more internal rotation of the tibial component is required in knees with higher
tibial varus.

Keywords: knee osteoarthritis; total knee arthroplasty; femorotibial rotational mismatch; medial
proximal tibial angle; external tibial rotation

1. Introduction

Knee OA is a progressive joint disease and one of the leading causes of disability in
elderly population [1]. It is characterized not only by cartilage degeneration and joint-space
narrowing, but also by meniscal degeneration and tears, subchondral bone remodeling,
infrapatellar fat pad inflammation with fibrosis, and synovitis, leading to the perception of
knee OA as a whole-joint disease. Age, obesity, previous knee injury, joint malalignment,
and instability are all strong risk factors for the development of knee OA. Many of these
factors involve biomechanical and physiological influences which lead to abnormal joint
loading and alteration in the structure, metabolism, and mechanical properties of joint
tissues [2].

TKA is the standard treatment for the end-stage knee OA. It has become one of the
most common surgical procedures, with an expected increased demand at a rate of 43%
by the year 2050, reaching an incidence rate of 299 per 100.000 inhabitants [3]. At the
same time, the incidence of revision procedures, which is a very technically demanding
procedure, is expected to increase even more rapidly by almost 90% [3].

Internal malrotation of components has been one of the most common surgical errors
in TKA [4]. Increased internal rotation of the tibial component has been shown to have

Bioengineering 2024, 11, 296. https://doi.org/10.3390/bioengineering11030296 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11030296
https://doi.org/10.3390/bioengineering11030296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-8646-4436
https://orcid.org/0000-0002-1902-8447
https://doi.org/10.3390/bioengineering11030296
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11030296?type=check_update&version=2


Bioengineering 2024, 11, 296 2 of 12

a higher influence on the retropatellar pressure compared to femoral rotation [5]. In
addition, the tension on the medial collateral ligament increases significantly with the
internal rotation of the tibial component [6]. Several clinical studies have confirmed the
tibial component rotation to be an important factor in the development of postoperative
pain, knee stiffness, and patellar instability in patients after TKA [4,7–10].

The Insall line method uses the medial third of the tibial tuberosity and the insertion
of the posterior cruciate ligament on the posterior border of the tibia as the reference
points [11]. These reference points are accessible and widely used osseous markers for
determining the intraoperative tibial component rotational alignment [12–14]. However,
the position of the tibial tuberosity seems to vary, which might result in a significant
malrotation between the femoral and tibial components in TKA [15–19]. Different methods
for determining the intraoperative tibial rotational alignment have emerged (Akagi line,
anterior tibial cortex, posterior tibial condylar axis, range of motion technique), but none
has managed to prove the superiority [13,20–25]. The rotational position of the tibial
component still relies on the surgeon’s preference and is, at best, a compromise between
osseous anatomic and ligamentous soft-tissue input [26–28].

Compared to the proximal tibia, the rotational alignment of the distal femoral com-
ponent in TKA is smaller and less variable [18]. Several studies have tried to explain the
variability and have found a relationship between the rotation of the distal femur and
coronal alignment of the lower extremity in patients with knee OA [29–31]. They have
shown that, as the coronal alignment changes from varus to valgus the condylar twisting
angle (CTA, the angle between femoral transepicondylar axis (TEA) and femoral posterior
condylar line (PCLf)) increases. Much less is known about the relationship between the
coronal alignment and the proximal tibial rotation.

While the TKA surgical technique emphasizes the component-to-bone rotation, the
component-to-component rotation also needs to be aligned during the surgery. A rotational
mismatch between femoral and tibial components (>10◦) has been associated with poorer
outcomes and pain after TKA [10,32,33]. Higher rotational mismatch can be expected in
cases where preoperative rotational landmarks are already not aligned [34]. To complicate
things even further, new alignment strategies have emerged in the last decades, with
kinematic alignment aiming towards a more personalized component position [35–37].
While an argument for a constant, anatomically independent tibial component rotation can
be made in mechanical alignment, a more personalized approach is warranted in kinematic
alignment. The tibial component should therefore be placed not only in the anatomical
coronal and sagittal positions, but also in the correct rotation. Nedopil et al. found an
anterior-posterior axis of the oval boundary of the lateral tibial plateau to be a better marker
for tibial component rotation, leading to a smaller femorotibial mismatch in a kinematically
aligned TKA [38]. Most surgeons, however, are still more familiar with the tibial tuberosity
and rely on this marker to determine their tibial rotation.

The objective of this research was to explore the correlation between the coronal
alignment of the lower limb and the relative proximal tibial rotation in both mechanical
and kinematic alignment strategy. The eventual existence of this relationship could help
the surgeon to anticipate and more reliably position the tibial component into a more
anatomically correct rotation, thus avoiding the rotational mismatch in TKA.

2. Materials and Methods
2.1. Materials

After the appropriate approval from the national ethics commission (ref. no. 0120570/2020/4)
was obtained and the study was pre-registered (ClinicalTrials.gov (accessed on 26 January 2024),
ID NCT05295602), a prospective cohort study with patients scheduled for TKA was conducted.
Patients with Kellgren–Lawrence stage III–IV OA were included and underwent TKA from March
2022 to December 2024. All patients signed an informed consent form informing them of the
risk of radiographic exposure during a CT scan. The non-inclusion criteria were as follows: prior
surgery or trauma that changed the hip and/or knee anatomy (hip or knee arthroplasty, femoral
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or tibial osteotomy, femoral or tibial fracture, tibial tuberosity transfer), fixed flexion contraction
>15◦, and immunological diseases of the knee (rheumatoid arthritis). In addition to OA knees
scheduled for TKA, knees on the contralateral side (with or without OA) were also included if the
non-inclusion criteria were fulfilled.

2.2. Methods

All participants underwent a CT scan of full-length lower limbs prior to a TKA. A
CT scan was performed on IQon-Spectral CT (Philips Healthcare, Best, The Netherlands)
from the upper L4 vertebra margin to the ankles using a tube voltage of 140 kVp and a
slice thickness of 1.5 mm. All images were saved as Digital Imaging and Communications
in Medicine (DICOM) files. Both knees were kept in neutral position during the scanning.
The same protocol was followed in all cases. Three-dimensional reconstructions were
performed from the CT data using the open source program 3D Slicer v5.3.0 [39]. In
addition, a standard X-ray of the lower limb while standing was taken to measure the
Kellgren–Lawrence grade and the hip–knee–ankle angle (HKA-X).

Two observers independently performed all measurements. In cases where the mea-
sured coronal angles differed by more than 1.5◦ (axial angles more than 3◦), both observers
made a second measurement together to reach an agreement.

The relevant points and axes were determined using the definitions previously de-
scribed in the literature [40–42]. To minimize the human error, all important anatomical
points were determined on the CT using a semi-automatic method (e.g., center of the hip
joint was calculated using a best-fit sphere of manually selected points on the femoral
head surface, the ankle joint center was calculated as a mid-point of the line connecting
the manually selected tips of both malleoli). The coronal plane was defined as a plane
through the hip center and PCLf. The following angles were measured in the coronal plane:
mechanical medial distal femoral angle (MDFA), mechanical medial proximal tibial angle
(MPTA), and angle between femoral mechanical and anatomical axes (FMA). The angles
are shown in Figure 1. The arithmetical hip–knee–ankle angle (aHKA) was calculated by
summing the MDFA and MPTA. To measure the rotational limb profile, the femoral torsion
(tF, angle between femoral neck axis (FNA) and PCLf), CTA and tibial torsion (tT, angle
between tibial posterior condylar line (PCLt), and ankle transmalleolar line (TMA)) were
determined. When the direction of the distal line was in internal rotation, the angles were
defined as positive.

The proximal tibial rotation was measured in relation to the distal femoral rotation, as
this association is relevant for the purpose of TKA. A rotational femorotibial (rFT) angle
was defined as an angle between distally projected TEA and the Insall line. In order to
determine the Insall line, the medial third of the tibial tubercle was first projected proximally
to the tibial plateau along the tibial mechanical axis. The Insall line was then defined as a
line connecting the center of the posterior cruciate ligament and the projected medial third
of the tibial tubercle. The TEA, connecting the sulcus of the medial femoral epicondyle to
the lateral epicondyle, was projected onto the tibial plateau along the femoral mechanical
axis. The angle between the projected TEA and the Insall line–rFT angle was then measured
and used as an estimation for femorotibial rotational match (Figure 2). If the Insall line was
externally rotated to the projected TEA, the angle was defined as negative. A rotational
lateral plateau angle (rLAT), defined as an angle between the long axis of the lateral tibial
plateau and the projected PCLf, was also determined, as this can be used as a measurement
for components matching in kinematic alignment (Figure 3).
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Figure 1. Schematics of main lines and measured angles. Correlations of angles between FNA and
relevant lines to increasing varus of aHKA and MPTA are signified with p values. The direction
(internal rotation) of significant correlations is marked with curved arrow. MDFA—mechanical
medial distal femoral angle. MPTA—mechanical proximal tibial angle. FMA—femoral mechanical
anatomical angle. FNA—femoral neck axis. TEA—transepicondylar axis. PCLf—femoral posterior
condylar line. LAT—projection of anterior–posterior axis of lateral tibial plateau. Insall—projection
of Insall line. PCLt—tibial posterior condylar line. TMA—transmalleolar axis. aHKA—arithmetic
hip–knee–ankle angle.
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Figure 2. Measurement of rotational femorotibial angle (rFT) on superposed images of distal femur
and proximal tibia. TEA—projection of transepicondylar line; Insall—projection of Insall’s line;
pTEA—perpendicular line on TEA. If pTEA is in internal rotation to Insall line, values are positive.
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Figure 3. Measurement of rotational lateral plateau angle (rLAT). Left: transversal CT slice at the
level of tibial plateau. Right: 3D volume rendering for better visualization of lateral tibial plateau
long axis. PCL—posterior condylar line of the femur; LAT—long axis of lateral tibial plateau surface;
pPCL—perpendicular line to PCL.

2.3. Statistical Analysis

All analyses were conducted using SPSS version 22 (IBM Corp., Armonk, NY, USA).
Descriptive analyses were reported using means, standard deviations (SD), and ranges
for continuous variables and frequencies with percentages for discrete variables. The
relationship between the coronal and axial angles was analyzed with the Pearson correlation
coefficient, and a significance of less than 0.05 was considered significant. The intraclass
correlation coefficient was used as a measure of inter-rater reliability. A one-way ANOVA
test was used to compare the differences among the Kellgren–Lawrence groups. Multiple
linear regression was used to assess the impact of measured variables on rFT.

3. Results

One hundred ninety-nine knees (112 patients) were included in the study. A total of
25 patients had had a previous surgery on the other side (12 TKA, 11 total hip arthroplasties,
1 hip osteosynthesis after a fracture, and 1 patient with the transfer of tibial tuberosity);
these previously operated knees were not included in the study. The demographic data are
shown in Table 1.

Table 1. Patient demographics and radiographic/CT data. HKA-X—hip–knee–ankle angle on a standing
lower limb X-ray. aHKA—anatomical hip–knee–ankle angle on a CT scan. MDFA—mechanical medial
distal femoral angle. MPTA—mechanical medial proximal tibial angle. FMA—femoral anatomical
mechanical angle. CTA—condylar twisting angle. tF—femoral torsion. tT—tibial torsion. rFT—rotational
femorotibial angle (mechanical alignment, based on the tibial tuberosity). rLAT—rotational lateral plateau
angle (kinematic alignment, based on the lateral tibial plateau).

Patients, n 112
Knees, n 199

Age, years 69.7 ± 7.9 (49–84)
Gender, female/male 111/88

Side, right/left 100/99

Kellgren–Lawrence, n-grade 2/3/4 20/67/112
HKA-X, ◦ 176.2 ± 7.0 (160.4–197.6)
aHKA, ◦ 181.2 ± 4.1 (171.0–191.9)
MDFA, ◦ 92.8 ± 2.5 (86.6–100.7)
MPTA, ◦ 88.5 ± 2.6 (81.7–95.8)
FMA, ◦ 6.1 ± 1.5 (2.6–11.4)
CTA, ◦ 4.2 ± 1.7 (0.6–8.2)

tF, ◦ 12.3 ± 7.7 (−13.2–34.2)
tT, ◦ −25.9 ± 8.4 (−57.5—4.4)

Medial tibial slope, ◦ 82.8 ± 3.8 (70.7–92.7)
Lateral tibial slope, ◦ 84.1 ± 3.7 (72.3–95.2)

rFT, ◦ −6.7 ± 4.7 (−19.1–3.7)
rLAT, ◦ −6.5 ± 3.3 (−13.0–3.8)

Data are presented as means ± standard deviations with ranges in parentheses.
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A high degree of reliability was found between both observers. The intraclass correla-
tion coefficients for relevant measurement are shown in Table 2.

Table 2. Intraclass correlation coefficients (ICC) for relevant variables. HKA-X—hip–knee–ankle angle on
a standing lower limb X-ray. aHKA—anatomical hip–knee–ankle angle on a CT scan. MDFA—mechanical
medial distal femoral angle. MPTA—mechanical medial proximal tibial angle. FMA—femoral anatomical
mechanical angle. CTA—condylar twisting angle. tF—femoral torsion. tT—tibial torsion. rFT—rotational
femorotibial angle (mechanical alignment, based on the tibial tuberosity). rLAT—rotational lateral plateau
angle (kinematic alignment, based on the lateral tibial plateau).

ICC 95% Confidence Interval

HKA-X 0.99 0.98–1.0

aHKA 0.99 0.99–0.99

MDFA 0.99 0.99–1.0

MPTA 0.99 0.98–1.0

FMA 0.99 0.99–0.99

CTA 0.87 0.83–0.90

tF 0.97 0.97–0.98

tT 0.98 0.97–0.98

rFT 0.93 0.91–0.95

LAT 0.91 0.88–0.93

A significant correlation between the overall limb alignment (aHKA) and the tibial
rotation (rFT) was found (p < 0.001, Table 3).

Table 3. Correlation between coronal and axial parameters. HKA-X—hip–knee–ankle angle on a
standing lower limb X-ray. aHKA—anatomical hip–knee–ankle angle on a CT scan. MDFA—mechanical
medial distal femoral angle. MPTA—mechanical medial proximal tibial angle. FMA—femoral me-
chanical anatomical angle. rFT—rotational femorotibial angle (mechanical alignment, based on tibial
tuberosity). rLAT—rotational femorotibial angle (kinematic alignment, based on lateral tibial plateau).
tF—femoral torsion. tT—tibial torsion. CTA—condylar twisting angle.

rFT rLAT tF tT CTA

HKA-X 0.21, 0.005 0.14, 0.05 0.04, 0.56 −0.05, 0.48 0.04, 0.55
aHKA 0.30, <0.001 0.23, 0.001 −0.07, 0.35 −0.01, 0.84 −0.01, 0.99
MDFA 0.09, 0.21 0.04, 0.62 0.02, 0.74 −0.22, 0.002 0.32, <0.001
MPTA 0.66, <0.001 0.44, <0.001 −0.29, <0.001 0.21, 0.003 −0.07, 0.35
FMA −0.18, 0.01 −0.15, 0.04 0.06, 0.39 0.04, 54 −0.10, 0.16

Data are presented as Pearson correlation coefficients (ρ) and statistical significance values (p, <0.05 values in bold).

An even stronger correlation (p < 0.001) was observed between the tibial varus (MPTA)
and rFT, as shown in Figure 4. A collinearity existed between aHKA and MPTA, and the
latter was found to be an independent parameter. Multiple linear regression (stepwise
method) found MPTA, the slope of the medial tibial plateau, and internal femoral torsion
(tF) to be meaningful predictors (rFT = −115.98 + (1.06 × MPTA) + (0.20 × medial tibial
plateau) + (−0.10 × tF); adjusted R2 = 0.48, F 3, 195 = 61.78, p < 0.001).

In case of mechanical alignment strategy (using the Insall line), rotational femorotibial
mismatch (rFT) of more than 10◦ was found in 41 knees (21%). In case of kinematic
alignment, the long axis of the lateral tibial plateau was used (rLAT), and only 16 knees
(8%) had rotational femorotibial mismatch outside the 10◦ margin. Thirteen out of fourteen
(93%) patients with MPTA lower than 85◦ had the rFT > 10◦. In patients with MPTA < 87◦,
the rFT > 10◦ was found in 27 out of 59 (46%) cases. Only 2 knees (both in one patient)
out of 55 (4%) with MPTA > 90◦ had rFT higher than 10◦. If the Insall line was measured
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for kinematic alignment (using PCLf instead of TEA), 117 knees (59%) had rotational
femorotibial mismatch > 10◦.

Bioengineering 2024, 11, x FOR PEER REVIEW  7  of  12 
 

and  the  latter was  found  to  be  an  independent  parameter. Multiple  linear  regression 

(stepwise method)  found MPTA,  the  slope  of  the medial  tibial  plateau,  and  internal 

femoral torsion (tF) to be meaningful predictors (rFT = −115.98 + (1.06 × MPTA) + (0.20 × 

medial tibial plateau) + (−0.10 × tF); adjusted R2 = 0.48, F 3, 195 = 61.78, p < 0.001).   

 

Figure 4. Relationship between rotational femorotibial angle (rFT) and mechanical medial proximal 

tibial angle (MPTA). aHKA—arithmetic hip–knee–ankle angle. 

In  case  of  mechanical  alignment  strategy  (using  the  Insall  line),  rotational 

femorotibial mismatch  (rFT) of more  than 10° was  found  in 41 knees  (21%).  In case of 

kinematic alignment, the long axis of the lateral tibial plateau was used (rLAT), and only 

16 knees (8%) had rotational femorotibial mismatch outside the 10° margin. Thirteen out 

of fourteen (93%) patients with MPTA lower than 85° had the rFT > 10°. In patients with 

MPTA < 87°, the rFT > 10° was found in 27 out of 59 (46%) cases. Only 2 knees (both in one 

patient) out of 55 (4%) with MPTA > 90° had rFT higher than 10°. If the Insall line was 

measured  for kinematic  alignment  (using PCLf  instead of TEA),  117 knees  (59%) had 

rotational femorotibial mismatch > 10°. 

A  one-way ANOVA was  performed  to  compare  the  effect  of Kellgren–Lawrence 

grade on rFT. No statistically significant difference in rFT was found among the groups (F 

2,  196  =  1.07,  p  =  0.35).  In  addition,  no  correlation was  observed  between  the  joint  line 

convergence angle on a standing long-leg X-ray and rFT (p = 0.09). 

A rotational profile of a lower extremity with measured lines referenced to the FNA 

was analyzed. With increasing varus of the proximal tibia (lower MPTA), more internal 

rotation of TEA, PCLf, and PCLt was observed when referenced to FNA (p < 0.001, p < 

0.001 and p = 0.003, respectively). No significant correlations of Insall’s line (p = 0.07, trend 

toward external rotation) and TMA (p = 0.69) were found as the MPTA changed. 

Women had significantly higher internal femoral torsion and higher CTA (p = 0.002 

and p = 0.029, respectively). No influence of gender on other relevant angles was found. 

4. Discussion 

The primary objective of this study was to find a relationship between the coronal 

lower limb alignment and the relative femorotibial rotation in patients scheduled for TKA. 

A significant correlation between  the  tibial varus  (MPTA) and  the relative  femorotibial 

rotation (rFT) was found. Our statistical regression model showed that with more tibial 
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A one-way ANOVA was performed to compare the effect of Kellgren–Lawrence grade on
rFT. No statistically significant difference in rFT was found among the groups (F 2, 196 = 1.07,
p = 0.35). In addition, no correlation was observed between the joint line convergence angle on
a standing long-leg X-ray and rFT (p = 0.09).

A rotational profile of a lower extremity with measured lines referenced to the FNA
was analyzed. With increasing varus of the proximal tibia (lower MPTA), more internal
rotation of TEA, PCLf, and PCLt was observed when referenced to FNA (p < 0.001, p < 0.001
and p = 0.003, respectively). No significant correlations of Insall’s line (p = 0.07, trend
toward external rotation) and TMA (p = 0.69) were found as the MPTA changed.

Women had significantly higher internal femoral torsion and higher CTA (p = 0.002
and p = 0.029, respectively). No influence of gender on other relevant angles was found.

4. Discussion

The primary objective of this study was to find a relationship between the coronal
lower limb alignment and the relative femorotibial rotation in patients scheduled for TKA.
A significant correlation between the tibial varus (MPTA) and the relative femorotibial
rotation (rFT) was found. Our statistical regression model showed that with more tibial
varus, more external rotation of the proximal tibia could be expected (higher femorotibial
rotational mismatch).

A similar relationship has already been described by Matsui et al. [43]. They demon-
strated that relative external rotation of the tibia existed in knees with OA and was higher in
knees with increased overall limb varus. Likewise, Khan et al. also found increased external
tibial rotation in varus osteoarthritic knees [44]. Both studies used the tibial tuberosity as
a marker for the proximal tibial rotation. If the tibial posterior condylar line was used in-
stead, no increase in external rotation was found in either study. No statistically significant
difference for PCLt was found in our study. The possible explanation for the discrepancy
between the tibial tuberosity and PCLt is the formation of the osteophyte at the posterior
rim of the medial tibial plateau, which typically forms in a varus knee. In our study, it
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was the tibial varus (MPTA) rather than the overall limb varus that was independently
correlated to the proximal tibial external rotation.

In addition to the tibial varus, the internal femoral torsion (angle between the femoral
neck and posterior condylar line of the femur) was correlated to the external tibial rotation.
With lower MPTA, higher internal femoral torsion (higher anteversion) was observed. We
believe that this relationship plays a role in the development of external tibial rotation. In a
study by Nejima et al., a similar correlation was found between increased femoral torsion
and lower MPTA [45]. They postulated that this relationship is a result of nature trying to
restore the extension-to-flexion change in joint line obliquity, thus making the joint line
parallel to the ground in a flexed knee. In order to maintain a normal foot progression
angle with increased internal femoral torsion, a compensatory external rotation of the
tibia may reduce the external knee’s adduction moment [46]. Increased femoral neck
anteversion also shifts the mechanical axis towards valgus and decreases the stress across
the medial compartment [47,48]. The relative external rotation of the tibia could therefore
be a compensatory mechanism to decrease the growing compressive forces on the medial
compartment as the OA progresses. Further confirmation of this theory was given in a
cadaveric study by Yazdi et al. [49]. They found a decreased contact pressure of the medial
compartment when the tibia was placed at 15◦ of external rotation (if the tibia was rotated
interiorly, the pressure increased). If this theory is true, lower MPTA would, therefore,
through increased femoral torsion, force the tibia into external rotation to alleviate the
increasing medial compartment forces.

In addition to tibial varus and femoral torsion, the increased medial tibial slope was
also found to independently correlate to the femorotibial rotation. The effect of increased
posterior slope on anterior tibial translation has already been described by Nagamine
et al. [50]. With an increased medial tibial slope, more anterior translation of the medial
tibia can be expected, which would result in external rotation. To our knowledge, we are
the first to report the connection between tibial rotation and medial tibial slope.

The knowledge of preoperative rotational femorotibial mismatch could have an impor-
tant clinical implication for TKA. The conventional use of bony landmarks for determining
the tibial component rotation might lead to rotational mismatch, especially in knees with
increased tibial varus (MPTA < 85◦). A method which includes a relative femorotibial
rotational measure (e.g., range of motion technique, use of a connecting instrument) would
probably be better suited to these situations [51].

No association between the Kellgren–Lawrence grade and external tibial rotation was
found in our study. This suggests that rotation might develop before end-stage symptomatic
knee OA. However, our study was not designed to follow patients through different stages
of osteoarthritis, as we included only patients scheduled for TKA. On the other hand,
there are studies which claim that the femorotibial rotation changes with the progression
of OA [44,52]. In these studies, patients with a higher grade of OA (Kellgren–Lawrence)
had higher external rotation of the tibia relative to the femur. Rotation could be a part
of changes that affect the proximal tibia as the OA progresses. At the initial stage, the
proximal tibial parameters, including the varus, remain more or less unchanged [53]. As
the OA progresses, the “non-uniform settlement phenomenon” occurs, initially creating a
medial shift of the femoral condyles (medial subluxation), followed by the bone loss of the
medial tibial compartment (medial plateau settlement) and distinct morphological changes
in the lateral compartment of the knee [54,55]. External tibial rotation could, therefore, be a
part of this settlement phenomenon. The relative increase in femorotibial rotation would,
in this case, be pathological, and following the preoperative femorotibial rotation during
TKA, an attempt to recreate the pathological condition would be made.

The main question is whether the femorotibial mismatch corrects itself with TKA. If
the external tibial rotation is a part of the end-stage osteoarthritic changes, the tibia might
rotate back once those changes are corrected during TKA. Kawaguchi et al. looked at
79 patients with pre- and postoperative CT scans [34]. They found the existent preoperative
tibiofemoral mismatch to be the most important risk factor for the remaining postoperative
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component rotational mismatch in TKA. This implies that, in knees with preoperative
tibiofemoral mismatch (e.g., in knees with higher tibial varus), the rotation does not correct
itself with TKA, and standard landmarks for component rotation might not be appropriate.

This is especially true in kinematic alignment, where placing the femoral component
in a flexion–extension axis means placing it into more internal rotation. In order to keep
the appropriate component rotation, the tibial component should also be rotated into a
higher internal rotation, particularly in knees with more tibial varus, where more external
rotation is expected. In kinematic alignment, the lateral plateau line has been suggested
as a landmark for the tibial component rotation [38]. We have found this line to be an
appropriate landmark in 92% of knees in kinematic alignment. That is slightly less than the
findings of original authors (97%), but still much better if the Insall line is used for either
kinematic or mechanical alignment. Although Insall’s line has been shown to be a reliable
landmark in non-arthritic knees, that has not been proven in the population with end-stage
OA [56]. We, therefore, suggest selecting an axis in the middle between the range-of-motion
technique and Insall line as a reference for tibial component rotation in knees with a higher
grade of tibial varus. This seems to be a sensible compromise for determining a better
rotation of the tibial component in mechanical alignment. The alternative landmark, long
anterior–posterior axis of the lateral tibial plateau, has been shown to be more reliable with
less femorotibial rotational mismatch in kinematic alignment.

By observing the rotational profile of the whole limb with the femoral neck axis
(FNA) as a reference line, an internal rotation of TEA and PCLf was found to be in strong
correlation to higher tibial varus. This internal torsion of the distal femur seemed to be
extra-articular at the level of the femoral diaphysis. A corresponding external rotation of
the tibia was observed, and was intra-articular in nature (at the level between the distal
femur and the proximal tibia). As a consequence, FNA–Insall line rotation and whole-limb
rotation (FNA-TMA) did not correlate to the tibial varus and remained relatively constant
to FNA. This further substantiates the theory that lower limb rotation attempts to maintain
a normal foot progression angle regardless of aHKA and MPTA.

The study is certainly not without limitations. Firstly, it was conducted on patients
who were in the pre-operative stage, scheduled for TKA, and the actual surgery had not yet
been performed. Consequently, there was no opportunity to validate our findings in vivo,
as there were no postoperative X-rays or CT scans available for analysis. Secondly, the
assessment of OA was based solely on Kellgren–Lawrence staging, without considering
factors such as patients’ pain levels, ranges of motion, and other relevant criteria. Thirdly,
the CT scan was performed under the non-weight-bearing condition, and the results of
rotational mismatch showed the non-weight-bearing status. The conclusions regarding
our tibiofemoral rotational mismatch could, therefore, not be extended to weight-bearing
conditions. Fourth, our proposal regarding the rotational position of the tibial component
has not undergone clinical validation. Subsequent studies will be necessary in order to
address these aspects comprehensively.

5. Conclusions

This study showed a correlation between tibial varus and external rotation of the tibia.
Knees with more than 5◦ of tibial varus (MPTA < 85◦) are highly likely to have an increased
external tibial rotation and a pre-operative rotational femorotibial mismatch. The use of
standard tibial rotational landmarks in these cases requires more internal rotation of the
tibial component to avoid an excessive post-operative rotational component mismatch.
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