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Abstract: Accurate inferior alveolar nerve (IAN) canal segmentation has been considered a crucial
task in dentistry. Failing to accurately identify the position of the IAN canal may lead to nerve injury
during dental procedures. While IAN canals can be detected from dental cone beam computed
tomography, they are usually difficult for dentists to precisely identify as the canals are thin, small,
and span across many slices. This paper focuses on improving accuracy in segmenting the IAN
canals. By integrating our proposed frequency-domain attention mechanism in UNet, the proposed
frequency attention UNet (FAUNet) is able to achieve 75.55% and 81.35% in the Dice and surface
Dice coefficients, respectively, which are much higher than other competitive methods, by adding
only 224 parameters to the classical UNet. Compared to the classical UNet, our proposed FAUNet
achieves a 2.39% and 2.82% gain in the Dice coefficient and the surface Dice coefficient, respectively.
The potential advantage of developing attention in the frequency domain is also discussed, which
revealed that the frequency-domain attention mechanisms can achieve better performance than their
spatial-domain counterparts.

Keywords: medical image segmentation; convolutional neural network; inferior alveolar nerve;
attention mechanism; frequency-domain attention

1. Introduction

Inferior alveolar nerve (IAN) injury is one of the most serious complications in dental
implant procedures [1–3]. This type of injury can occur at various stages, such as during
anesthesia and implant placement. It is, therefore, of paramount importance to identify and
mark the IAN canal on the medical images before dental surgeries. By having a clear under-
standing of the position of the nerve, dentists can take the necessary precautions and make
informed decisions to minimize the chances of nerve injuries during dental procedures.

Cone beam computed tomography (CBCT) is an effective tool for dental disease
diagnosis [4] and provides high-resolution 3D views for the oral and maxillofacial regions,
making it possible for a detailed inspection of teeth, jawbones, and the surrounding
structures [5]. Due to the fact that IAN tubes are usually displayed as small dots on CBCT
slices and are easily confused with cancellous bone imaging, dentists often find it difficult
to clearly identify their precise location. Thanks to their potential ability to process 3D
volumes as a whole, deep learning methods have been adopted to segment IAN canals
from CBCT images [6–13].

Deep learning technology plays an important role in processing medical images
nowadays [10–12,14–18]. In medical image segmentation tasks, U-shape network archi-
tectures [19–24] are the most commonly used in medical image segmentation and have
achieved top-ranking accuracy in many tasks. U-shape networks typically employ encoder–
decoder structures with dense skip connections between the encoder and decoder layers.
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Generally speaking, the encoder layers are responsible for extracting semantic information
and learning effective representations of the input images. The decoder layers, on the other
hand, focus on generating a finer segmentation result by jointly considering semantic infor-
mation and spatial information. The skip connection enables the decoder layers to jointly
process the feature maps from both deeper and shallower encoder layers so as to capture
image features at different scales and depths and produce more accurate segmentation
results [25,26]. When segmenting the IAN canals, UNet is also the most often adopted
architecture and has presented good accuracy in both institutional datasets [8–11] and
public datasets [13].

One drawback of the original UNet is that the encoder feature maps are directly
concatenated with the decoder feature maps. As the decoder only focuses on refining the
segmentation results, the encoder feature maps include a lot of redundant information,
which is useless for decoders. Such irrelevant features impose difficulties for decoders,
and therefore attention mechanisms are introduced to emphasize the most relevant fea-
tures [20,27]. For instance [17], introduces a PAL-Net by incorporating both spatial-wise
and channel-wise attention modules at the encoder layers to make the network focus on
task-relevant features. Note that the attention maps are usually computed according to
the original representation, i.e., the spatial domain, of the feature maps. Simply adopt-
ing spatial attention and channel attention using convolution layers may fail to capture
long-range dependencies from the image. In conventional image processing techniques, it
is equally important to analyze the image in both the spatial domain and the frequency
domain. As pointed out in [28], the channel-wise attention in the squeeze–excitation (SE)
module is equivalent to that generated according to the direct current (DC) component
of each feature map. By taking more frequency components into consideration, the per-
formance can be further improved. However, while innumerable attention methods have
been proposed for spatial domain analysis, attention methods on the frequency domain are
very limited [28,29].

In this paper, we propose an effective frequency-domain attention module (FAM)
for the U-shape network. Although the proposed FAM only includes 56 parameters,
the IAN canal segmentation accuracy can be significantly improved. To fairly evaluate
the performance, a publicly available IAN canal dataset with accurate segmentation labels
is used to train and evaluate the performance [13]. The 91 fully annotated subjects are
split into training and test sets with 68 and 23 subjects, respectively, following the same
splitting strategy as [13]. The experiment results reveal that our proposed method is able to
achieve a Dice coefficient of 75.55%. Compared to UNet, our proposed method presents a
significant improvement in segmentation accuracy by adding only 224 parameters, which
highlights the effectiveness of introducing frequency-domain attention mechanisms in
medical image segmentation tasks.

2. Related Work
2.1. U-Shape Networks

Despite the fact that DeepLab networks [30–32] have achieved tremendous perfor-
mance in many image segmentation tasks by employing a pre-trained backbone, U-shape
networks are still considered as the most efficient network structure in medical image
segmentation tasks due to the lack of effective pre-trained backbones. Originally proposed
in [19], UNet adopted a symmetric encoder–decoder structure, with skip connections be-
tween the encoder and decoder layers. Such structure enables it to efficiently learn the
features even with limited training samples, and therefore has become increasingly popular
in biomedical segmentation tasks [33,34].

To further improve segmentation accuracy, many useful modifications have been
made to the original UNet, where most efforts focus on improving the efficiency of the
skip connections. For instance, UNet++ [21] and UNet3+ [22] focus on introducing more
skip connections between different levels of encoder and decoder layers. By incorporat-
ing a squeeze–excitation module [35] at the skip connection, DSEU-net [27] utilized the
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channel attention mechanism and reweighted the feature maps of different channels. At-
tention UNet [20], on the other hand, introduced a special attention mechanism at the skip
connection to enforce the decoder, focusing more on features in a specific region.

In addition, UNet’s performance is also expected to improve by designing better
encoders. Inspired by Transformer’s great success in natural language processing [36],
network architectures with Transformer-type encoders have also attracted extensive atten-
tion [37–40]. Despite that the Transformer encoder enables them to capture long-range de-
pendencies and therefore improve segmentation accuracy, these architercutres still adopted
skip connections to transfer detail information to the decoder.

In general, the skip connections have been proven to efficiently transfer the spatial
information from the encoder so that the decoder can fuse both the spatial and semantic
information to obtain a finer segmentation. However, directly fusing information from the
encoder with information from the decoder may not be an efficient approach, as too much
redundant information is also transferred to the decoder. In [41], by adding a high-pass
filter at the skip connection, the contrast attention UNet (CAUNet) is able to further improve
segmentation accuracy in kidney segmentation tasks without introducing any parameters.

2.2. Attention Mechanism

Attention mechanisms enable the network to selectively focus on important features
or regions so as to make more accurate and context-aware predictions. When applied
to image processing tasks, channel attention and spatial attention are mostly considered.
For instance, DSEU-net [27] adopted the channel attention mechanism to emphasize the
more important feature map channels. Attention UNet [20] introduced the spatial attention
mechanism to focus on the important regions. The attention mechanisms can also be
simultaneously applied channel-wise and spatial-wise [42–45], which is expected to make
the networks focus on the important regions within the feature map channel.

When segmenting small objects, spatial attention mechanisms are usually adopted [46],
as they filter out the large but irrelevant regions and force the decoder to emphasize the
small objects. Note that the spatial attention maps are usually generated using convolution
layers directly on the feature maps, which capture the dependencies of neighboring regions.
If we expect to capture the long-range dependency, large convolution kernels are generally
required, which significantly increases the number of parameters.

In conventional image processing, it is well known that a filter can be designed either
in the spatial domain or in the frequency domain. Spatial attention, which generates a
weighting map and element-wise multiplies it by the feature maps, can be regarded as a
filter defined in the spatial domain. This motivates us to investigate ways to adopt spatial
attention while designing a filter on the frequency domain.

In fact, some attention mechanisms can also be treated as frequency attention mech-
anisms. It has been proven in [28] that the global average pooling in the SE module is
equivalent to extracting only the direct current (DC) component from the feature maps.
To further improve the performance of the SE module, FcaNet proposed to retain multiple
low-frequency components on the frequency-domain map and perform frequency atten-
tion mechanisms by applying channel-wise attention [28]. By noting that the frequency
components in the FcaNet are manually selected by experiments, we propose to develop a
more general frequency attention mechanism that adaptively determines which frequency
components to emphasize. As we will show in this paper, by adding only 224 parameters
to UNet, the segmentation accuracy can be significantly improved.

3. Frequency Attention UNet

In this paper, we propose a frequency attention UNet (FAUNet), as shown in Figure 1.
The proposed FAUNet has basically a similar structure as a conventional UNet, while a fre-
quency attention module (FAM) is added at each skip connection. In our proposed FAUNet,
the feature maps from the encoder layers are first reweighted in the frequency domain
by the FAMs before concatenating with the decoder feature maps. The FAM generates an
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attention map, applied to the feature maps in the frequency domain, and filters out the irrel-
evant features from the encoder feature maps. Before introducing the motivations and the
structure of the proposed FAM in detail, the fundamentals of the spatial-frequency-domain
transform will first be revisited.

C

C

C

C

C

Conv 3×3×3, BN, LeakyReLU

FAM

Concat

DeConv 2×2×2

Max-Pooling

DeConv 2×2×2

Max-PoolingC

C

C

C

C

Conv 3×3×3, BN, LeakyReLU

FAM

Concat

DeConv 2×2×2

Max-Pooling

Figure 1. Architecture of our proposed FAUNet. The FAUNet generally has a similar structure, while
an FAM is added at each skip connection.

3.1. Discrete Cosine Transform Revisit

The frequency-domain image of the feature map can be obtained through discrete
cosine transform (DCT) [47]. For a spatial-domain function f (x, y, z), its DCT is defined as

F(u, v, w) = α(u)α(v)α(w)
H−1

∑
x=0

W−1

∑
y=0

D−1

∑
z=0

f (x, y, z)Bx,y,z
u,v,w, (1)

where Bx,y,z
u,v,w is the basis function, which is defined as

Bx,y,z
u,v,w = cos(

πu
H

(x +
1
2
)) cos(

πv
W

(y +
1
2
)) cos(

πw
D

(z +
1
2
)). (2)

α(u), α(v), α(w) are the normalization constants that ensure the orthogonality of the basis.
As (1) shows, different from the discrete Fourier transform (DFT), which also generates the
frequency-domain representation of a discrete signal, the DCT representation of a signal is
composed of real-valued numbers, making it easier to be processed for neural networks.

An important observation from the DCT is that it usually concentrates the most energy
at the upper-left corner in the frequency domain, which implies that the image content is
mostly determined by lower frequency components. For instance, Figure 2 presents the re-
construction result of 2D CBCT slices using different proportions of frequency components.
From Figure 2, we can see that by retaining a small proportion of frequency components,
most details of the image can be recovered. As the retaining proportion increases, more
details of the images can be retained, and the recovered image gradually becomes sharper
and clearer. Such an observation suggests that the high-frequency components can be
suppressed to generate a more compact representation of the features.

Another observation from the DCT is the different roles that the amplitude map and
phase map play, where the phase is defined as the sign of a frequency component. Figure 3
presents the reconstructed images from either the amplitude or the phase. It can be clearly
seen from Figure 3 that the spatial information of the pixels is mainly determined by the
phase, while the style of the image is mainly determined by the amplitude map. This
motivated us to develop an attention mechanism from the aspect of the frequency domain,
which not only reweights the amplitudes but also modulates the phases, in order to filter
out the irrelevant features.
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Figure 2. Reconstruction of spatial-domain images by preserving different levels of frequency
components. Axis means the proportion of low-frequency components retained in each axis direction.
Meanwhile, pixel denotes the proportion of retained low-frequency components compared to all
frequency components.
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Figure 3. Visualized examples of recovered CBCT slice from its DCT representation using IDCT on
different DCT components. Top row: recovered from amplitude map only. Middle row: recovered
from both amplitude and phase maps. Bottom row: recovered from phase map only. In the first
two rows, the frequency-domain representations are presented in logarithmic coordinates for better
visualizing the amplitude distribution.
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3.2. Frequency Attention Module

Figure 4 presents the design of our proposed FAM. We call it frequency-domain attention,
as all operations are performed in the frequency domain using DCT. Our proposed FAM
mainly consists of two stages: the information extraction (IE) stage and the information
fusion (IF) stage. The input feature maps are first transformed to the frequency-domain
representation using DCT and then processed by a channel-wise average pooling operation to
obtain the mean frequency-domain features before being fed to the IE and IF stages.

In the IE stage, convolution layers with kernel sizes of 3 × 3 × 3 and different dilation
rates are adopted to interact between different frequency components. The convolution
layer with a dilation rate of R = 1 allows interaction between the adjacent frequency
components, while the convolution layer with a dilation rate of R = 2 enables interaction
only among the components whose frequencies have the same parity (i.e., odd or even). In the
IF stage, the feature maps are first channel-wise concatenated and then activated using ReLU.
A convolution layer with a kernel size of 1 is employed to fuse the information from both
branches of the IE stage, after which the tanh function is adopted to generate the frequency-
domain attention map. The reason that we use tanh instead of sigmoid, as most attention
mechanisms do, is that both the amplitudes and the phases should be adaptively tuned by the
attention map. As we will show in our experiments, modulating the phases is beneficial in
improving segmentation accuracy. After obtaining the attention map, the frequency-domain
representation of the input feature maps is multiplied by the attention map and then converted
back to the spatial domain using inverse discrete cosine transform (IDCT).

CA

C

DCT

IDCT

Channel Average

Concat

Pixel-wise 

Multiplication

Discrete Cosine 

Transform

Inverse Discrete 

Cosine Transform

DCT
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3×3×3 Conv 
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Information 
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Figure 4. The architecture of the proposed FAM block.

The number of parameters in the proposed FAM is very limited. More specifically,
the number of parameters of an FAM can be computed as

PFAM = 33︸︷︷︸
kernel

× 1︸︷︷︸
Cin

× 1︸︷︷︸
Cout

× 2︸︷︷︸
N

+ 13︸︷︷︸
kernel

× 2︸︷︷︸
Cin

× 1︸︷︷︸
Cout

× 1︸︷︷︸
N

= 56 (3)

where kernel denotes the number of parameters of a convolution kernel and Cin and Cout
are the numbers of input channels and output channels, respectively. N is the numbers of
the convolution layer. As shown in Figure 1, our proposed FAUNet is modified from UNet
by adding four FAMs at the skip connections. Therefore, our proposed FAUNet has only
224 more parameters than a UNet.
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3.3. Loss Function

The loss function we adopted is the sum of the cross entropy loss and Dice loss, i.e.,

L = LDice + λLCE, (4)

where λ is the tradeoff coefficient, which is set to be 1 in this paper. LDice and LCE denote
the Dice loss and cross entropy loss, respectively, and are given as

LDice = 1 − 2 ∑N
i=1 pigi

∑N
i=1 p2

i + ∑N
i=1 g2

i
(5)

and
LCE = −∑ gilog(pi), (6)

where pi and gi are the predicted probability and the ground truth of the i-th voxel,
respectively.

3.4. Evaluation Metrics

In this paper, the volumetric symmetric metric, i.e., the Dice coefficient, and the
boundary accuracy metrics, including the surface Dice coefficient (SD), the 95% Hausdorff
distance (HD95), and the average symmetric surface distance (ASSD), are used to evaluate
the segmentation accuracy.

In particular, by denoting A and B as two binary segmentation maps, the Dice coeffi-
cient is defined as

Dice =
2 × |A ∩ B|
|A|+ |B| , (7)

where |A| denotes the area of foreground voxels on A.
Similarly, SD measures the similarity of two boundaries. By denoting SA and SB as

the boundaries of the segmentation maps A and B, respectively, SD is defined as

SD =
2 × |SA ∩ SB|
|SA|+ |SB|

. (8)

The Hausdorff distance measures the maximum distance of a set to the nearest point in the
other set. In this paper, to eliminate the prominant influences of the outlier points, a 95%
Hausdorff distance is adopted to measure the surface accuracy, which is defined as

HD95(A, B) = max
(

K95th
a∈A

(
min
b∈B

d(a, b)
)

, K95th
b∈B

(
min
a∈A

d(b, a)
))

, (9)

where d(·, ·) denotes the Euclidean distance between two points. K95th
a∈A means the max

Euclidean distance when taking the 95% percentile distances into consideration.
The ASSD evaluates the average symmetric surface distance between two images,

taking into account the symmetry of the images and averaging the distances between
different surfaces to provide a more comprehensive evaluation of segmentation accuracy.
The ASSD is defined as

ASSD =
∑a∈A minb∈B{d(a, b)}+ ∑b∈A mina∈B{d(b, a)}

|A|+ |B| . (10)

4. Experiment Results
4.1. Data

In this paper, a publicly available IAN canal segmentation dataset [13] is used to
evaluate our proposed method. The dataset consists of the dental CBCT of 347 subjects,
where 91 of them are with dense 3D annotations and 256 are with sparse 2D annotations.
In this paper, we only use the subjects with dense annotations and split the 91 subjects
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following the same allocation as described in [13], where 68 samples are used as the training
set and 23 samples are used as the testing set. All samples in the dataset have a uniform
voxel size of 0.3 × 0.3 × 0.3 mm3, while their matrix sizes range from 151 × 265 × 369 to
171 × 396 × 463.

4.2. Implementations

The experiment is conducted on a workstation with NVidia TITAN RTX GPU, and the
proposed method is implemented using PyTorch 2.0.0 and monai 1.1.0.

Before training, the intensities of the images are first clipped to the range of [−300, 800]
HU and then normalized to zero mean and unit variance. During training, the images
are randomly cropped to patches of size 112 × 112 × 112 before being fed to the network.
AdamW [48] is adopted as the optimizer during training, and the initial learning rate
is 0.0001. The learning rate decays at the end of each epoch using a polynomial decay
scheduling, where the learning rate at the t-th epoch is given as

lr(t) = lrinit

(
1 − t

tmax

)
, (11)

where lrinit and lr(t) are the initial learning rate and the learning rate at the t-th epoch,
respectively. tmax denotes the number of epochs to be trained. In this paper, we define an
epoch as 100 update iterations, and the model is trained for 500 epochs. Data augmentation
techniques, including elastic deformation, random scaled zooming, random flipping, ran-
dom contrast adjustment, and random scaled intensity, are also adopted during training.
The details of our data augmentation techniques are summarized in Table 1.

Table 1. Data augmentation methods applied during training.

Method Probability Settings

Elastic deformation 0.3 σ ∼ [0.005, 0.01], M ∼ [0.005, 0.01]
Zooming 0.3 zooming scale factor ∼ [0.8, 1.2].
Rotation 0.3 rotation angle ∼ [−π, π] for each plane.
Axis flip 0.5 (each axis) \

Contrast adjustment 0.2 γ = (0.7, 1.5)
Scale intensity adjustment 0.2 factors ∼ [−0.1, 0.1]

4.3. Results

In this section, the segmentation accuracy of our proposed method on the testing set
is presented. For the sake of comparison, several other U-shaped networks, including
UNet [19], SEU-net [27], Attention UNet [20], UNet++ [21], UNet3+ [22], TransUNet [37],
and UNETR [38], are also trained on the same training set.

Figure 5 shows several segmentation examples of the testing set. As the IAN canals
are tubes that span across many 2D slices, the 3D views of the IAN canals are also plotted
in Figure 5 to give a more complete view of the segmentation result. As we can see from
Figure 5, the segmentation results of UNet, SEU-net, UNet++, and UNet3+ are corrupted by
discontinuities on the segmented IAN canals due to the fact that the convolution operations
are performed in the spatial domain using convolution kernels with limited fields of
view. Therefore, when segmenting small objects, such as IAN canals, it becomes more
difficult to determine whether a voxel belongs to the foreground or background when only
considering the local features. For the Transformer-based methods, such as TransUNet
and UNeTR, despite the fact that the Transformer encoders are good at capturing long-
range dependencies, they need more training samples to train the network due to the
overwhelmingly large number of parameters. Our proposed FAUNet, on the other hand, is
able to capture long-range dependencies using the attention mechanism in the frequency
domain, leading to better segmentation accuracy.
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Numerical results also validate our observations. Table 2 presents the evaluation
results of all the methods mentioned on the test set. The segmentation results reported
by the data producer [13] are also listed in Table 2 for the sake of comparison. Note that,
despite the fact that we use the same UNet structure as [13], our experiment suggests a
higher Dice coefficient in Table 2 thanks to the richer data augmentations in our experiment.
As we can see from Table 2, our proposed FAUNet achieved the best performance on all
evaluated metrics. UNet, on the other hand, also achieved good results compared to the
other UNet variants, which coincides with the observations in nnUNet [49] that UNet is
able to achieve top-ranking performance by using properly designed training strategies. It
is also interesting to see from Table 2 that UNETR and TransUNet, which adopt Transformer
encoders, do not perform well in segmenting IAN canals. As we can see from Table 2, both
UNETR and TransUNet have a much larger number of parameters, making it difficult to be
trained, especially with a limited sized training set.

As we have analyzed in Section 3.2, our proposed FAM only includes 56 parameters,
which means that our proposed FAUNet has only 224 more parameters than UNet. As
Table 2 shows, our proposed FAUNet is able to significantly improve segmentation accuracy
by adding a very limited number of parameters, which highlights the efficiency of our
proposed frequency-domain attention mechanism.

GT UNetimage SEU-net
Attention

UNet
UNet++ TransUNet UNETR FAUNet

Slice view

3D view

Slice view

3D view

Slice view

3D view

GT UNetimage SEU-net
Attention

UNet
UNet++ TransUNet UNETR FAUNet

Slice view

3D view

Slice view

3D view

Slice view

3D view

Figure 5. Visualized examples of the segmentation results by various methods. For more clear
visualization, the segmentation results are presented in both slice view and 3D view.

Table 2. Numerical evaluation results of UNet, some UNet variants, and our proposed FAUNet
on the test set. The number of parameters and the computational complexity are also presented.
The most prominent result for each column is highlighted in bold font.

Method Dice (%) HD95 ASSD SD (%) Params (M) FLOPs (G)

UNet [13] * 67.00 / / / / /
UNet 73.16 22.05 3.60 78.53 22.93 363.5
Attention UNet 72.60 26.03 3.63 78.07 23.02 366.5
SEU-net 71.94 40.13 6.28 76.19 25.29 436.3
UNet++ 74.10 16.99 2.65 79.74 26.64 1282.3
UNet3+ 69.78 19.83 3.00 75.36 20.40 2622.8
UNETR 55.99 95.73 12.08 54.61 101.62 419.6
TransUNet 71.53 37.03 5.53 75.61 68.47 272.4
FAUNet 75.55 16.98 2.63 81.35 22.93 363.6

* Only Dice coefficient is reported in [13].
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5. Discussion
5.1. Spatial-Domain Attention versus Frequency-Domain Attention

Note that most attention mechanisms focus on producing attention directly on the
feature maps. To demonstrate the effectiveness of the frequency-domain attention, we chose
to modify Attention UNet and SEU-net by producing attention maps on the frequency
domain. Moreover, the performance of a modified FAUNet by removing the DCT is also
evaluated. The evaluation results are presented in Table 3.

As Table 3 shows, among all evaluated methods, the frequency-domain attention meth-
ods, i.e., “Attention UNet + DCT”, “SEUNet + DCT”, and “FAUNet”, presented prominent
improvements over their spatial-domain counterparts. Compared to the spatial-domain
attention mechanisms, the corresponding frequency-domain attention mechanism achieved
Dice coefficient improvements of 0.78%, 0.55%, and 0.83% in Attention UNet, SEU-net, and
our proposed FAUNet. This suggests that generating attention mechanisms from the fre-
quency domain would provide additional benefits without adding any tunable parameters.

Table 3. Numerical evaluation results of networks with spatial-domain and frequency-domain
attention mechanisms on the test set. The most prominent result for each column is highlighted in
bold font.

Method Dice (%) HD95 ASSD SD (%)

Attention UNet 72.60 26.03 3.63 78.07
Attention UNet + DCT 73.38 29.31 4.44 78.14
SEU-net 71.94 40.13 6.28 76.19
SEU-net + DCT 72.49 21.08 3.31 77.69
FAUNet − DCT 74.72 18.11 2.80 80.16
FAUNet 75.55 16.98 2.63 81.35

5.2. Ways to Generate Frequency-Domain Attention

The proposed FAM simultaneously applies attention to the amplitude and phase of
the frequency-domain representation of the feature maps, and the frequency-domain repre-
sentation is obtained by applying DCT to the feature maps. To validate the effectiveness
of the layers included in our proposed FAM, ablation experiments are performed in this
subsection. The numerical evaluation results are presented in Table 4. The modified FAMs
are depicted in Figure 6. In particular, “FAUNet-NoAvg” denotes the network by removing
the channel-wise average pooling in the FAM. “FAUNet-SingleBranch” denotes that the
convolution layer with a dilation rate of R = 2 is removed in the FAM while the kernel of
the convolution layer with a dilation rate of R = 1 is expanded to 5 × 5 × 5. “FAUNet-FFT”
denotes that fast Fourier transform (FFT) is adopted to obtain the frequency-domain repre-
sentations, where the real and imaginary parts of the FFT representations are separately
processed. “FAUNet-Sigmoid” denotes that the tanh in the FAM is replaced by a sigmoid
function, which means that the phase of the DCT maps will not be modulated and the
attention is only adopted to modulate the amplitude.

It can be observed from Table 4 that the attention map generated by tanh is 0.66%
better than that generated by sigmoid activation. This identifies a clear distinction between
the frequency-domain and spatial-domain attention mechanisms in that it is important
to simultaneously modulate the amplitude and phase, which also validates the observa-
tions discussed in Section 3.1 that the phase map includes critical information about the
original images.

By comparing the performance of double-branch FAM and single-branch FAM, we
can see from Table 4 that the FAUNet achieved a 1.01% improvement in the Dice score
compared to the FAUNet-SingleBranch while reducing 56% of the parameters. The channel
average operation also plays an important role in the attention mechanism. By applying
a channel average operation, the network received a 1.45% gain in terms of Dice. The
results suggest that using the average frequency-domain representation of all channels can
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yield a more stable performance. Moreover, DCT, which generates real-valued frequency-
domain representations, presented better performance in generating the frequency-domain
attention mechanisms.
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Figure 6. Structures of the various frequency-domain attention methods.

Table 4. Evaluation results of different frequency-domain attention approaches on the test set. The
most prominent result for each column is highlighted in bold font.

Method Dice (%) HD95 ASSD SD (%)

UNet 73.16 22.05 3.60 78.53
FAUNet 75.55 16.98 2.63 81.35
FAUNet-NoAvg 74.10 20.47 3.14 79.09
FAUNet-SingleBranch 74.54 17.59 2.75 79.92
FAUNet-Sigmoid 74.89 16.56 2.93 80.41
FAUNet-FFT 74.70 19.58 2.94 79.89

Moreover, the impact of different spatial-frequency-domain transformation methods
on model performance is also discussed. Despite the fact that FFT is a more commonly
adopted approach for spatial-frequency transform, our experiments suggest that using FFT
instead of DCT leads to much worse performance, which should be blamed on the resulting
phase ambiguities and energy concentration. As we have discussed in Section 3.1, the phase
of DCT is determined by the sign and only takes two values, i.e., {0, π}. For FFT, however,
the phase could be drawn from [0, 2π), which is much more difficult to tune compared to the
DCT case. As a result, in our experiments, FAUNet-FFT achieves much worse performance
than our proposed FAUNet, which uses DCT for spatial-frequency-domain transform.

5.3. Analysis of Attention Maps

It is also interesting to take a closer look at the frequency-domain attention maps
generated by the FAM. By randomly selecting two input patches with foreground from the
test set, the visulized results of the amplitude and phase maps of the generated attention
maps of the sample patches are depicted in Figure 7.

From the attention amplitude maps, we can see that components with lower frequen-
cies, i.e., near the upper-left corner, are assigned to higher weights, while those with higher
frequencies are assigned to lower or even zero weights. Such an observation coincides with
the DCT property of images, where the energy in the frequency domain is concentrated at
lower frequencies, as we have revisited in Section 3.1. When observing the attention phase
maps, however, there is no obvious tendency shown on the phase maps. It is also very
interesting to see that, for the examples in Figure 7, at FAM4, i.e., the FAM at the deepest
skip connection, there is no phase inversion at all.
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To analyze whether the ratio of phase inversion is related to the depth where the FAM
is installed, we counted the number of phase inversions across all subjects in the test set,
as shown in Figure 8. As we can see, the ratio of phase inversion is closely dependent on
the depths of the FAMs. There is no phase inversion at the deepest FAM, i.e., FAM4. FAM2,
on the other hand, has the largest proportion of phase inversion, with about 75% of the
phases inverted. As the phases have a significant impact on the texture of an image, such
observations in turn support the intuition of UNet that deeper skip connections contribute
more to semantic information and shallower skip connections contribute more to spatial
information, generating a finer segmentation.
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Figure 7. Visualized examples of the attention maps in FAM at different depths of skip connections.
For each sample, the columns from left to right denote the DCT representation of the input, amplitude
of the attention map, phase of the attention map, and the DCT representation of the FAM output,
respectively. Best viewed in color.
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Figure 8. Statistics on phase inversion ratio presented in the FAM attention maps.

Figure 9 further shows the statistics of the amplitudes in the attention maps on the entire
test set. The blue lines, which represent the proportion of amplitudes within the range of
[0, 0.2), are typically high in all FAMs. This suggests that our proposed frequency-domain
attention mechanism suppresses a large proportion of frequency components and therefore
reduces the overwhelming information in the feature maps. We can also observe from
Figure 9 that the red line, which represents the proportion of amplitudes within the range of
[0.8, 1], reduces for higher-frequency components. This suggests that our proposed frequency-
domain attention exhibits a preference to give low-frequency components higher weights.
The statistical results indicate that, in frequency-domain attention, the network tends to
preserve low-frequency information to capture the main content while altering the phase of
frequency components in shallow layers that contain rich, detailed information to obtain edge
information, which also supports our hypothesis in Section 3.1.
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Figure 9. Statistics on amplitude weights on the attention maps of FAMs. (a–d) present the statistics
of the amplitude weights on attention maps of FAM 1-4, respectively. Each FAM attention map is first
divided into 7 non-exclusive regions, Fi = {A(u, v, w)|u ≤ i

7 H, v ≤ i
7 W, w ≤ i

7 D}, where A is the
attention map and (H, W, D) is the shape of the attention map. Then, the amplitude of the elements
within the regions Si = Fi/Fi−1 is considered.
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6. Conclusions

In this paper, we have proposed a frequency-domain attention mechanism to improve
segmentation accuracy. By inserting the proposed FAM at the skip connections of UNet,
our proposed FAUNet has presented a significant improvement in segmenting the IAN
canal from the CBCT by adding a negligible number of parameters. The effectiveness of
frequency-domain attention is also discussed. Our experiments reveal that, by directly
converting other popular spatial attention mechanisms to the frequency domain using DCT,
their segmentation accuracy can also be improved, which highlights the great potential of
adopting frequency attention mechanisms in medical image segmentation tasks. Note that,
due to the limited number of samples in the publicly available IAN dataset, the performance
of our proposed FAUNet on large datasets remains unverified. It is, therefore, of paramount
importance to investigate the effectiveness of frequency-domain attention mechanisms on
larger and more diverse datasets, which will be conducted in our future work.
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