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Abstract: Artificial intelligence (AI) has gained significant traction in medical image analy-
sis, including dentistry, aiding clinicians in making timely and accurate diagnoses. Radio-
graphs, such as orthopantomograms (OPGs) and intraoral radiographs, along with clinical
photographs, are the primary imaging modalities employed for AI-powered analysis in the
dental field. In this review, we discuss the most recent research and product developments
concerning the clinical application of AI as a visual aid in dentistry and introduce the
concept of Observational Diagnostics (ODs) as a structured method to standardise image
analysis. ODs serve as foundational elements for AI-driven diagnostic aids and have the
potential to improve the consistency and reliability of diagnostic data used in treatment
planning. We provide illustrative examples to demonstrate how ODs not only represent a
significant advancement towards more precise diagnostic aids but also provide the basis for
the generation of evidence-based treatment recommendations. These OD-based algorithms
have been integrated into chairside AI applications to streamline clinical workflows to
improve consistency, accuracy, and efficiency.

Keywords: artificial intelligence; observational diagnostics; OD-based algorithms; evidence-
based treatment; dentistry; AI applications; AI-powered visual aid

1. Introduction
Artificial intelligence (AI) is rapidly transforming the fields of medicine and dentistry,

offering significant potential to enhance diagnostic accuracy, optimise treatment outcomes
and in doing so, improve patient care [1]. In dentistry, AI is being leveraged to aid clinicians
in the detection of oral and dental conditions, with the aim of improving the accuracy of
radiographic assessments and facilitating more efficient patient management. Specifically,
a variety of machine learning (ML) and deep learning (DL) techniques for dental image
analysis are being evaluated to assist clinicians in making definitive diagnoses and choosing
the appropriate intervention promptly for better patient outcomes. In one example, a recent
scoping review has shown that AI-based image analysis was applied to virtually all fields
of dentistry, with oral medicine (19%), oral and maxillofacial surgery (16%), and operative
dentistry (15%) taking the lead [2]. Imaging modalities mostly used for AI analysis in
dentistry are radiographs (orthopantomograms (OPGs) and intra-oral radiographs) and
clinical photographs.
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The application of AI in dental imaging is currently focused on the automation of
image interpretation to assist practitioners in identifying pathologies and treatment out-
comes. However, despite these advancements, there is a lack of standardisation in the way
AI algorithms interpret imaging data. In this article, we aim to review the common image
modalities used in dentistry and to showcase how the development of discrete diagnostic
observations constitutes the building blocks of AI-powered visual aids for practitioners.
We further discuss how these Observational Diagnostics (ODs) can serve as a structured
framework that bridges the gap between AI technology and clinical applicability, ensuring
that AI-generated diagnostic data are both reliable and actionable.

2. Artificial Intelligence for Radiographic Images
Human readers are limited in their ability to assess numerous qualitative features

when interpreting medical images, and their performance can vary. AI, however, can
analyse a vast array of quantitative features consistently and reproducibly. These imaging
biomarkers can be used for prediction and risk assessment, diagnosis, prognosis, and
treatment response. The importance of integration of AI into radiology to reduce human
errors, increase efficiency, and achieve objectives with minimal manual input is now widely
appreciated [3]. For example, traditional diagnostic methods, such as X-rays, may miss
early signs of disease that are not yet visible to the naked eye [4]. AI systems may be
capable of systematically detecting these subtle changes by analysing radiographs and
imaging modalities alone or in combination, apparently with remarkable precision [5], thus
allowing timely management [6]. To exploit this potential, an AI-based mammography tool
has been developed by Google Health and has shown a 9.4% reduction in false negatives
and a 5.7% reduction in false positives [4]. Specifically, in the US dataset, the AI system
showed a sensitivity of 94.5% and a specificity of 91.1%, compared to the average sensitivity
of 90.5% and specificity of 88.0% achieved by human radiologists.

In dentistry, AI tools for interpreting dental radiographs leverage ML and DL algo-
rithms to analyse images such as OPGs and intraoral radiographs. The models most com-
monly used in diagnostic assistance systems are Convolutional neural networks (CNNs), a
type of deep learning model particularly well-suited for analysing visual data. A review
of 36 studies found that CNNs were most often used in general dentistry [7]. These tech-
nologies enable the detection of various dental conditions, including caries, periodontal
diseases, and other abnormalities, by recognising image patterns or simply by categoris-
ing these patterns accurately and in a time-efficient manner to aid a real-time diagnosis
(Figure 1). Early data show that the integration of AI in radiographic analysis has the
potential to not only enhance diagnostic accuracy, but also streamline workflow, allowing
practitioners to focus on patient care rather than time-consuming image evaluations [2].

A common application of AI in dentistry is for the detection of caries, and a CNN-
based tool was found to detect caries in radiographs with an accuracy comparable to human
examiners, achieving an area under the curve (AUC) of 0.89 [7]. In another example, a study
by Lee et al. (2018) [8]. evaluated the efficacy of a deep learning-based CNN algorithm for
the detection and diagnosis of dental caries on periapical radiographs using 3000 periapical
radiographic images. In this study, the deep CNN algorithm exhibited strong performance
in accurately detecting dental caries on periapical radiographs. Specifically, the diagnostic
accuracies of premolar, molar, and both premolar and molar models were 89.0% (80.4–93.3),
88.0% (79.2–93.1), and 82.0% (75.5–87.1), respectively. The deep CNN algorithm achieved an
AUC of 0.917 (95% CI 0.860–0.975) on premolar models. This early study highlighted that the
diagnostic accuracy of CNNs in dentistry could approach the level of human expertise.
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Figure 1. Example of annotated dental X-rays highlighting bone loss (turquoise lines) and ra-
diolucency (orange semicircles). The numbers indicate the tooth numbers based on the FDI
notation system.

As medical decision-making can be noisy, particularly with the interpretation of
imaging [3], AI has the potential to achieve greater consistency and accuracy. For example,
a randomised controlled trial evaluating the accuracy of AI-based software with human
interpretation in the diagnosis of dental caries by using intra-oral radiographs showed
that AI-based software achieved a sensitivity of 88%, a specificity of 91%, and an overall
accuracy of 89%, surpassing human examiners, who showed sensitivity, specificity, and
accuracy rates of 84%, 88%, and 86%, respectively. In this regard, the term “computer-
assisted diagnosis” has been coined to refer to the increasing importance of AI in reducing
human diagnostic errors as technology advances. [9] Published research reports assessing
AI-assisted tools in diagnosing dental pathologies by analysing dental radiographs and
clinical photographs are shown in Table 1.

Table 1. Example of studies assessing AI-powered diagnosis of dental pathologies [10–22]. PPV,
positive predictive value; NPV, negative predictive value; Acc, accuracy; mIoU, mean Intersection
over Union; AUC, Area Under the Receiver Operating Characteristic Curve.

Reference Dental Condition Sub-Category Image Source Results

Li W. et al. [10]

Periodontitis

Gingivitis Digital Photographs

Sensitivity: 0.75,
Specificity: 0.73,
Accuracy: 0.74,
Precision: 0.74

Lin PL et al. [11] Alveolar Bone Loss Periapical
Radiographs

Sensitivity (True
Positive Fraction):

0.925, Specificity (True
Negative

Fraction): 0.86
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Table 1. Cont.

Reference Dental Condition Sub-Category Image Source Results

Lee CT. et al. [12]

Periodontitis

Alveolar Bone Loss Periapical
Radiographs

Sensitivity: 0.80,
Specificity: 0.99,
Accuracy: 0.99,

AUC: 0.98

Krois et al. [13] Alveolar Bone Loss Panoramic
Radiographs

Sensitivity: 0.72,
Specificity: 0.83,
Accuracy: 0.81

M. B. H. et al. [14] Periodontal Bone
Destruction

Periapical
Radiographs

Sensitivity: 0.92,
Specificity: 0.71,

Accuracy: 0.81, NPV:
0.90, Precision: 0.76,

Khan et al. [15]
Bone Recession and

Interradicular
Radiolucency

Periapical
Radiographs

mIoU: 0.501, Dice
score: 0.569

Kim J et al. [16] Alveolar Bone Loss Panoramic
Radiographs

Sensitivity: 0.77,
Specificity: 0.95, PPV:
0.73, NPV: 0.96, AUC:

0.95, F1-score: 0.75

Ghaedi et al. [17]

Endodontics

Detect and Score
Caries Lesions

Intraoral Optical
Occlusal Tooth
Surface Images

Sensitivity: 0.83,
Specificity: 0.983,
Accuracy: 0.863

Berdouses et al.
[18]

Occlusal Caries
Lesions

Photographic
Coloured Images

Sensitivity: 0.80,
Specificity: 0.74,
Accuracy: 0.80,

Precision: 0.86, Recall:
0.86, F1-score: 0.85,

AUC: 0.98

Pauwels et al. [19] Periapical Lesions Intraoral
Radiographs

Sensitivity: 0.79,
Specificity: 0.88, AUC:

0.86

Ekert et al. [20] Periapical Lesions Panoramic
Radiographs

Sensitivity: 0.65,
Specificity: 0.87, AUC:
0.85, PPV: 0.49, NPV:

0.93

Bayraktar et al. [21] Interproximal Caries
Lesions

Bitewing
Radiographs

Sensitivity: 0.722,
Specificity: 0.981,

Accuracy: 0.945, PPV:
0.865, NPV: 0.954,

AUC: 0.871

Toshihito et al. [22] Prosthodontics Partial Edentulous
Arches Oral Photographs

Maxilla: Sensitivity:
1.00, Accuracy: 0.995,
Precision: 0.25, AUC:

0.99, Mandible
Sensitivity: 1.00,
Accuracy: 0.997,
Precision: 0.25,

AUC: 0.98

Notably, many of these advances have translated into diagnostic aid tools. Exam-
ples of AI-powered software currently used chairside in dental practice, as accessed on
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30 September 2024, include CoTreat (https://www.cotreat.ai) DentrixDetect (VideaHealth)
(https://www.videa.ai/practices), and Second Opinion (Pearl) (https://www.hellopearl.
com/products/second-opinion); these and others are discussed in Section 6.

In summary, the current literature suggests that AI systems have remarkable capabili-
ties in clinically relevant image segmentation and classification that are comparable to, if
not better than, human performance [18]. These findings underscore AI’s potential to im-
prove diagnostic accuracy, ensure consistency, and reduce variability in dental radiographic
assessments [17] and demonstrate a paradigm change brought about by the introduction of
artificial intelligence into diagnostic imaging [18,19].

3. Artificial Intelligence for Clinical Images
The diagnostic process in dentistry can sometimes be subjective, with clinicians relying

on their own experience and expertise to interpret clinical images. This subjectivity can
lead to variability in diagnoses, especially in more complex cases. Hence, analysis of
clinical images can help the clinician detect dental disease more consistently, improve
diagnostic accuracy, and personalise treatment plans. The integration of AI in clinical image
interpretation is still in its early stages, but its potential is vast. Continuous learning from
large datasets allows AI to stay current with the latest research and clinical guidelines [23].
One of the key capabilities that have been leveraged to integrate AI into image analysis is
the detection of changes in colours and patterns, which have natural applications in the
analysis of tooth discolouration, decay, and mucosal abnormalities.

The prototype of AI-powered image analysis tool in dentistry is again well versed
for caries detection. For decades, dentists have relied on a combination of visual–tactile
(including probing) and radiographic examination to identify dental caries accurately [24].
Probing involves the use of dental instruments to feel for soft spots or cavities in the teeth.
Radiographs provide a more detailed view of tooth structure, allowing dentists to visualise
hidden caries beneath the enamel. While this approach has served dentistry well, it is
not without its limitations and drawbacks. Probing can sometimes be uncomfortable for
patients and may even damage weak teeth. Additionally, radiographs expose patients to
ionising radiation, albeit at low levels, which can accumulate over time and potentially pose
health risks [24]. Studies comparing the sensitivity of visual examination to radiographs for
detection of tooth decay have yielded intriguing results. In recent systematic reviews, visual
inspection has been found to have a higher sensitivity (i.e., the proportion of decayed teeth
correctly identified by the test) in detecting early caries and enamel lesions, especially non-
cavitated lesions that may be missed by traditional radiographs [5,6]. Even more surprising
were the findings that visual inspection performed better than X-rays in proximal surfaces
of permanent teeth, too. By catching caries at their earliest stages, dentists can implement
preventive measures, such as remineralization therapies, to arrest caries’ progression before
they become problematic. Therefore, AI can leverage the accuracy and safety of visual
inspection for the detection of caries [25].

In addition to hard tissues, AI has shown potential in detecting a wider range of oral
diseases. For example, changes in the colour and texture of the oral mucosa have been
used to train machine learning algorithms to recognise oral mucosal pathology, particularly
oral cancer and potentially malignant disorders, which remain a significant public health
issue worldwide [26]. Additionally, AI models can assist in analysing microscopic slides
of oral tissue, reducing the burden on pathologists. For example, AI can aid in detecting
oral squamous cell carcinoma (OSCC) from histopathological images with remarkable
accuracy [27]. Furthermore, in regions with limited access to specialists, AI-based tools
can be incorporated into telemedicine platforms enabling remote diagnosis. Clinicians
can capture images of suspicious lesions, which are then analysed by AI models trained

https://www.cotreat.ai
https://www.videa.ai/practices
https://www.hellopearl.com/products/second-opinion
https://www.hellopearl.com/products/second-opinion
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to detect oral cancer. This approach facilitates timely referrals and reduces diagnostic
delays [28].

In summary, by leveraging machine learning algorithms, AI can assess a wide range
of dental conditions, including but not limited to caries. Current evidence suggests that
AI-assisted detection has the potential to significantly improve diagnostic accuracy while
reducing the likelihood of misdiagnosis or missed lesions. This technological advancement
is poised to enhance both diagnostic precision and patient outcomes in dental care.

4. The Concept of Observational Diagnostics (ODs) and Its Use for
Diagnosis and Treatment Planning

Unsupervised, semi-supervised, and supervised learning are the three broad categories
in which ML is classified [18], and this distinction has salient clinical implications. Briefly,
“supervised learning” refers to algorithms that work with labelled training data, where
clinical annotations, typically provided by radiologists or clinicians, guide the system. As
this approach works entirely with labelled data, where the inputs (e.g., medical images) are
paired with corresponding outputs (e.g., diagnoses), it aims to reproduce human decisions
and learns to predict outcomes based on these labelled examples. As the system allows
the prediction of specific pathologies or anomalies with high accuracy, it has immediate
clinical applications [29,30]. Conversely, in the unsupervised approach, large volumes of
imaging data are analysed without any specific information. By analysing pixel intensity,
texture, or shape, these algorithms explore the data to uncover hidden patterns or clusters
of information that may indicate a diagnostic finding. This can be particularly useful
for population-wide studies or rare disease detection. However, the system may miss
clinically relevant details since it lacks direct guidance from medical experts [31,32]. Semi-
supervised methods are particularly useful when there is a mixture of labelled (annotated)
and unlabelled data. In dentistry, this approach can be applied when a portion of the
dataset has clinical annotations, while the rest is unannotated. The system is trained in
the small pool of labelled data, learning clinically relevant features, and can generalise its
knowledge to the unlabelled portion. In medical imaging, this could be beneficial in cases
where clinicians annotate a limited number of images, allowing the system to extrapolate
and assist in diagnostics for larger datasets [33,34].

4.1. Observational Diagnostics for Diagnosis

The supervised approach is the one that more closely reproduces the clinician’s diag-
nostic cues and, to some extent, can be considered as a hybrid (human and AI) workflow.
To enable this, however, diagnostic findings must be categorised unequivocally to allow
accuracy and consistency. Unfortunately, many dental diseases have different and often
non-standardised diagnostic criteria reported in the literature. In order not to minimise
variation and smoothen the diagnostic workflow, the standardisation of diagnostic features
for ML has been applied to several dental AI-powered software, such as CoTreat’s ODs.
ODs have been developed as a structured approach to categorise and interpret diagnostic
observations drawn exclusively from visual sources, such as radiographs or photographs.
ODs can be classified into macro-categories encompassing the broader disease category
(e.g., Dental Caries) and subcategories featuring the basic visual characteristics (e.g., Radi-
olucency), enabling practitioners to utilise these observations as a foundation for AI-driven
diagnostic aids in clinical settings [35]. As an illustrative example, the description of ODs for
dental caries developed using the existing literature [36,37] is provided in Supplementary
Table S1.

In summary, ODs generated by supervised learning provide the basis for diagnostic
aid tools, ensuring that image analysis aligns unequivocally with clinical findings. This
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approach integrates human expertise with advanced computational models, ensuring high
precision in detecting abnormalities that may otherwise go unnoticed to the clinician.

4.2. Observational Diagnostics for Treatment Planning

While there has been an explosion of research on AI-assisted diagnostics, the utiliza-
tion of AI for treatment recommendations has received less attention (Table 2), despite
research showing that dentists often make clinical judgments intuitively on limited heuris-
tics leading to non-evidence-based treatment decisions [38]. Importantly, research shows
that trusted peers’ opinions can lead to modifications in diagnosis and treatment planning
by dentists [39]. Hence, it is crucial to maintain a foundation of evidence-based practice
when developing and recommending clinical treatments.

Table 2. Example of studies assessing AI-powered treatment planning.

References Specialty Sub-Category Image Source Conclusion

Bonfanti et al.
[40] Endodontics Endodontically

Treated Teeth OPG
Treatment decisions using
orthopantomography can
be improved by using AI

Lee et al. [41] Orthodontics Orthognathic
Surgery Cephalograms

Indications of orthognathic
surgery and orthodontic

treatment based on images
showed a significant

success rate

Suhail et al. [42] Orthodontics Decision-making for
teeth extraction

Patient records
including facial

photographs

AI was helpful in extraction
and treatment planning

AI: Artificial Intelligence, OPG: Orthopantomograph (Orthopantomogram).

Evidence-based clinical guidelines are the result of a collaborative process designed to
ensure that recommendations are grounded in current, verifiable evidence while remain-
ing practical, measurable, and achievable. This process ensures that the guidelines are
tailored to each dental pathology, as defined by the diagnostic criteria within the panel’s
expertise. As a result, clinicians gain streamlined access to concise, clinically relevant
evidence that can be integrated into patient care [43]. Similarly, AI-generated treatment
guidelines must be accurate, reliable, clinically relevant, and easily translatable into patient
care practises. To achieve this, AI systems must be trained to provide treatment plans
in accordance with identifiable and classifiable diagnostic patterns. By systematically
categorizing dental conditions into specialized fields and labelling them with ODs using
standardized terminologies, AI systems can be trained to diagnose dental pathology and
recommend appropriate treatment options (Supplementary Table S2). In this regard, we
have shown recently that AI can analyse appropriate diagnostic input to provide dentists
with patient-specific, evidence-based treatment recommendations or alternatives with high
accuracy [44].

While AI performs better than a human in harnessing the available treatment category
in a short period of time, identifying the suitable procedures specific to the case that
can inform clinical decision-making is an entirely different challenge. Furthermore, in
determining the best course of action for an identified abnormality, it is critical to also
consider contraindications—situations where specific treatments or procedures could be
harmful, ineffective, or inappropriate for certain patients. Both absolute and relative
contraindications must be carefully considered when developing treatment guidelines in
dentistry to ensure patient safety and optimal outcomes. Therefore, when constructing
AI models, it is vital to link each OD and its corresponding treatments or procedures to
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relevant contraindications. This approach can enhance the AI’s ability to provide tailored,
patient-specific recommendations, accounting for both the pathology and the unique
medical profile of the patient. An illustrative example of OD-based treatment guidelines
is provided in Supplementary Table S2 [36]. Crucially, this level of AI support can be
delivered in real-time during patient consultations, enabling dentists to make informed, on-
the-spot decisions. Ultimately, the integration of AI into dental practice creates a synergistic
relationship between technology and healthcare, enhancing both the decision-making
process and, prospectively, the overall quality of patient care [45].

5. Case Study: AI-Powered Dental Caries Detection and Management
To date, the imaging modality that has been more extensively studied in the context

of AI-assisted diagnostic decisions in dentistry are clinical photographs and radiographs
for the detection of carious lesions [46]. In this illustrative example, a 55-year-old female
was examined by her dentist and diagnosed with moderate gingivitis; treatment was
planned accordingly (Supplementary Table S3). Examination of the image dataset provided
(intraoral photographs and posterior bitewing (PBW) radiographs) was also conducted
by an AI-powered tool (CoTreat’s Navigator®) [47] and the output was validated by three
authors (R.R., V.M. and R.K.) and subsequently confirmed by the operating clinician
(Figure 2). Table S3 shows the complete set of observations and treatments suggested
by the operating clinician and Navigator® for this case, whereas the software interface
highlighting these findings is provided in Supplementary Figure S1.
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Figure 2. Diagnostic findings using an AI-powered tool. The observations provided by CoTreat
Navigator® that match the findings identified by the dentist are marked in green. The findings missed
by the dentist (false negative) are marked in red. The dentist’s false positives are marked in blue.

For simplicity, here we exemplify the aid that the AI-powered tool provided in facili-
tating the diagnosis and treatment plan of dental caries, as well as the resulting impact on
revenue in Table 3. Navigator® used the pre-specified criteria to determine the presence
and severity of caries, generating a corresponding treatment plan based on the guidelines
from the International Caries Classification and Management System (ICCMS) and caries
classification based on the International Caries Detection and Assessment System (ICDAS).
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While there was an overall agreement for most observations (true positives), there were dis-
crepancies in a number of findings between the dentist and Navigator® potentially leading
to false positives (signalling potential patient harm) and false negatives (signalling potential
missed treatment and revenue opportunity) as illustrated in Supplementary Figure S1.

Table 3. Dental caries detection (conventional method vs. AI-based ODs and treatment plan).

Tooth,
Surface

Detection
Mode Findings/OD Treatment Plan

(Procedure) Item Code Cost Inference

Dentist

23 Inspection Initial caries

Adhesive
restoration—

anterior
tooth—direct

522 $228.99 Dentist false
positive

14 Inspection Moderate
caries

Adhesive
restoration—

posterior
tooth—direct

533 $286.01 Dentist true
positive

CoTreat
Navigator®

36D 4 PBW 1 Initial Stage
ICCMS RA 3 2 Adhesive

restoration—
posterior

tooth—direct

532–535
$244.53–
$383.93

Dentist false
negative

36B Photo
Moderate

caries ICDAS
Code 3 3

14DM PBW 1 Initial Stage
ICCMS RA 3 2 Adhesive

restoration—
posterior

tooth—direct

533–535
$286.01–
$383.93

Dentist true
positive

14B Photo
Moderate

caries ICDAS
Code 3 3

1 PBW = Posterior Bitewing (Intra-oral radiograph), 2 RA 3 = Primary Caries (Virgin Tooth) Radiolucency—
Initial Stage ICCMS RA 3—Radiolucency limited to outer 1/3rd of dentine, 3 Code 3 = Primary Caries (Virgin
Tooth) Discoloration—Moderate caries ICDAS Code 3—Distinct loss of enamel integrity with no visible dentine,
viewed from the occlusal, buccal or lingual direction, appears as discolouration on a wet surface. 4 The teeth are
numbered using the Federation Dentaire Internationale (FDI) system—a two-digit system, the first digit indicates
the quadrant (1 through 4 for permanent and 5 through 8 for deciduous teeth) and the second digit indicates the
tooth type (1 through 8 for permanent or 1 through 5 for deciduous teeth). The tooth surfaces are represented by
the alphabets—La, Li, B, P, D, M, O, and I, to indicate the Labial, Lingual, Buccal, Palatal, Distal, Mesial, Occlusal
and Incisal surfaces, respectively.

For example, the dentist diagnosed initial caries on the anterior tooth (tooth 23) based
on clinical examination and image analysis, recommending adhesive restoration (procedure
code 522, cost $228.99) whereas Navigator® did not detect any caries at this site, suggesting
a false positive diagnosis leading to unnecessary treatment and an avoidable cost of $228.99
to the patient. Similarly for the same case (tooth 36) the AI-powered tool detected initial-
stage caries (ICCMS RA 3) through PBW on the distal surface and moderate caries (ICDAS
code 3) via image analysis on the buccal surface of the tooth, which were apparently missed
by the dentist, resulting in a false negative diagnosis (Figure 2).

In summary, this case exemplifies the possible benefits of integrating AI technologies
into routine dental practice, particularly in enhancing diagnostic and treatment precision
and reducing unnecessary procedures and treatment costs for patients. In particular, it
showcases the potential of AI-powered tools in aiding the detection of early-stage caries
(e.g., tooth 36). Additionally, the false positive finding in the conventional method (tooth
23) highlighted the potential for unnecessary procedures when relying solely on visual and
radiographic assessments. The cost implications were also significant, with the AI system
helping to avoid unnecessary treatment costs for the patient while maximising revenue
opportunities for the dentist. Overall, the integration of AI into dental diagnostics can
enhance detection, reduce diagnostic errors, and promote more cost-effective care.
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6. Discussion
In the last few years, ML has been used in the most disparate fields, from geo-

science [48] to chemistry and drug development [49] to healthcare. In medicine, ML models
are designed to replicate human knowledge and behaviour to facilitate clinical decision-
making. Furthermore, considering AI’s ability to identify changes in pixel brightness and
colour beyond that of the human eyes, it can also support practitioners in identifying
abnormalities that may not be immediately apparent. AI-based tools have been developed
to analyse dental radiographs and clinical images to detect dental conditions such as den-
tal caries and periodontal disease by recognising abnormal patterns. In this regard, we
recently developed ML algorithms using ODs as data to train the AI system to categorise
and interpret the diagnoses drawn from visual sources like radiographs and photographs.
These ODs were structured into macro- and sub-categories which enabled supervised ML
to return an output in a form that was clinically meaningful, enabling practitioners to
utilise it as a foundation for AI-driven diagnostic aids. Hence, the goal of ODs is to support
clinicians by highlighting abnormalities or significant findings that may not be immediately
apparent [29,30], and to use these ODs to propose evidence-based treatment plans.

AI can meaningfully assist clinicians with treatment planning, and studies published
in this regard support AI’s ability to help in clinical decision-making (Table 2). In tra-
ditional settings, clinicians rely on evidence-based guidelines to inform their decisions,
ensuring that treatments are grounded in verifiable, current data. These guidelines, de-
veloped through a collaborative and transparent process, prioritise practical, measurable,
and achievable outcomes [43]. This necessitates the need to train the AI systems with
evidence-based, established, treatment guidelines that correlate to the diagnostic informa-
tion input. ODs are essential in this process, as they provide a standardised framework
for categorising dental pathologies. By labelling conditions with specific diagnostic terms,
AI can systematically identify dental abnormalities and suggest appropriate treatment
options. This process mirrors the evidence-based approaches used by human practitioners
but with enhanced speed and precision. Further, it is essential to associate the assigned
treatment procedures with known contraindications to prevent any harmful, ineffective, or
inappropriate outcomes. This approach enhances the AI’s ability to provide patient-centric
recommendations which can not only optimise clinical outcomes but also improve patient
satisfaction by reducing unnecessary interventions and treatment costs while ensuring
patient well-being.

Building on the encouraging results from recent research, start-up companies have
begun to introduce AI-powered products with advanced capabilities, such as diagnosis
and treatment planning (Appendix A, Table A1). These systems, when applied to dental
radiographs or photographs, assist dentists by automatically generating diagnoses and
treatment plans through computer vision technology. In addition to diagnoses and treat-
ment suggestions, some of these products can now, or in the near future, assist the dentist
in anatomy annotation, analysing tooth margin for crown preparation, prosthesis design,
smile designing, patient data analysis, and monitoring orthodontic treatment outcomes.
Currently, however, these plans are limited to relatively simple procedures, like dental
restorations, leaving significant room for future enhancement.

The case study on AI-powered dental caries detection underscores the value of AI
in improving diagnostic accuracy and treatment planning, streamlining the management
of dental conditions. In this instance, the patient image analysis report generated by the
AI-powered software allowed early detection and possibly intervention. This improvement
in early-stage detection can be attributed to the AI system’s ability to process detailed
image data, making it possible to detect subtle indicators of caries that may be missed
during a visual examination. The study also highlights the potential risks associated with
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both AI and traditional methods. The AI system avoided unnecessary treatment costs
by identifying a false positive diagnosis from the dentist, showcasing the financial and
health-related benefits of accurate diagnostics. On the other hand, AI is not infallible and
must be continuously monitored to reassess false negatives, as observed in the case study.
Overall, the integration of AI into dental diagnostics can enhance diagnostic accuracy and
promote more cost-effective and patient-centric care.

Our appraisal of the literature does not come without limitations. While the case study
illustrates AI’s potential to improve diagnostic accuracy and streamline treatment planning,
it represents an illustrative example rather than a comprehensive validation of the accuracy
of the technology. Additionally, the review conducted was narrative in nature, which
limits the strength of the conclusions. Furthermore, while the Observational Diagnostics
(ODs) framework offers a structured approach to training AI systems, the lack of direct
comparison to large-scale, randomised clinical studies means that its clinical applicability
remains preliminary. This highlights the need for further refinement and validation to
support a broader implementation in complex dental treatments.

7. Conclusions
AI-driven tools have become indispensable in handling vast databases with remark-

able speed, improving the efficiency and accuracy of clinical decisions. These tools excel
in rapidly analysing large volumes of medical data, identifying intricate patterns in imag-
ing, and enhancing diagnostic precision, especially in detecting subtle anomalies. Unlike
human clinicians, AI is not subject to fatigue, ensuring consistent, standardised results
across a wide range of cases, which helps minimise human error. While AI does not replace
human expertise, it complements it by fostering a collaborative diagnostic process, allowing
healthcare professionals to focus on more complex aspects of patient care [16–19].

In dental practice, AI systems’ ability to generate comprehensive diagnostic reports
and treatment plans in real-time creates a collaborative environment between the dentist
and technology. The case study presented here showcases how AI has become a power-
ful tool to enhance clinical decision-making by offering immediate feedback on missed
diagnoses or unnecessary treatments. In particular, the integration of ODs as foundational
elements helps in developing AI systems that adhere to evidence-based diagnostic and
treatment guidelines. Such AI systems hold the potential to improve diagnostic accu-
racy, reduce variability, and further elevate clinical decision-making. Looking ahead, AI
has the potential to replicate the clinical decision-making of a trained dentist, not only
complementing human expertise but also elevating the overall standard of care for patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering12010009/s1, Table S1: CoTreat Caries ODs;
Table S2: OD-based treatment guidelines Table S3: Detection of Other Dental Conditions/Diseases
(Conventional Method v/s AI-based Observational Diagnostics and Treatment Plan), Figure S1:
CoTreat Note.
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Appendix A

Table A1. Commercially available AI-powered Dentist assistance products (as accessed on 30
September 2024).

Company Product Features

CoTreat
https://www.cotreat.ai CoTreat

Automated analysis
Anatomy annotation

Caries detection
Treatment plan suggestion

Patient data analysis

Dental Monitoring
https://dentalmonitoring.

com/our-solutions/
DM intelligent platform Orthodontics monitoring

Eyes of AI
https://www.eyesofai.

com/products/ai-
pathologies-detection

EAI Pathology
Automated analysis
Anatomy annotation

Caries detection

Glidewell.io
https://glidewell.io/

fastdesignio-software/
CrownAI and MarginAI

Patient data analysis
Crown preparation margin

analysis

ORCA Dental AI
https:

//orca-ai.com/solutions/
ORCA AI

Automated analysis
Image enhancement
Anatomy annotation

Caries detection
Orthodontic treatment

planning

ORYX
https://www.

oryxdentalsoftware.com/
oryxbot

Oryxbot

Automated analysis
Clinical Charting
Caries detection

Patient data analysis
Treatment plan suggestion

Overjet
https://www.overjet.

com/solutions/dentists

Overjet Clinical
Intelligence Platform

Automated analysis
Anatomy annotation

Caries detection

Pearl
https:

//www.hellopearl.com/
products/second-opinion

Second Opionion

Automated analysis
Anatomy annotation

Caries detection
Treatment plan suggestion

Patient data analysis

Smilecloud
https://www.smilecloud.

com/#cloud
Smilecloud Digital smile design

VideaHealth
https://www.videa.ai VideaAI

Automated analysis
Caries detection

Treatment plan suggestion

https://www.cotreat.ai
https://dentalmonitoring.com/our-solutions/
https://dentalmonitoring.com/our-solutions/
https://www.eyesofai.com/products/ai-pathologies-detection
https://www.eyesofai.com/products/ai-pathologies-detection
https://www.eyesofai.com/products/ai-pathologies-detection
https://glidewell.io/fastdesignio-software/
https://glidewell.io/fastdesignio-software/
https://orca-ai.com/solutions/
https://orca-ai.com/solutions/
https://www.oryxdentalsoftware.com/oryxbot
https://www.oryxdentalsoftware.com/oryxbot
https://www.oryxdentalsoftware.com/oryxbot
https://www.overjet.com/solutions/dentists
https://www.overjet.com/solutions/dentists
https://www.hellopearl.com/products/second-opinion
https://www.hellopearl.com/products/second-opinion
https://www.hellopearl.com/products/second-opinion
https://www.smilecloud.com/#cloud
https://www.smilecloud.com/#cloud
https://www.videa.ai
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