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Abstract: According to recent global public health studies, chronic kidney disease (CKD)
is becoming more and more recognized as a serious health risk as many people are suf-
fering from this disease. Machine learning techniques have demonstrated high efficiency
in identifying CKD, but their opaque decision-making processes limit their adoption in
clinical settings. To address this, this study employs a generative adversarial network
(GAN) to handle missing values in CKD datasets and utilizes few-shot learning techniques,
such as prototypical networks and model-agnostic meta-learning (MAML), combined with
explainable machine learning to predict CKD. Additionally, traditional machine learning
models, including support vector machines (SVM), logistic regression (LR), decision trees
(DT), random forests (RF), and voting ensemble learning (VEL), are applied for comparison.
To unravel the “black box” nature of machine learning predictions, various techniques of
explainable AI, such as SHapley Additive exPlanations (SHAP) and local interpretable
model-agnostic explanations (LIME), are applied to understand the predictions made by
the model, thereby contributing to the decision-making process and identifying significant
parameters in the diagnosis of CKD. Model performance is evaluated using predefined
metrics, and the results indicate that few-shot learning models integrated with GANs
significantly outperform traditional machine learning techniques. Prototypical networks
with GANs achieve the highest accuracy of 99.99%, while MAML reaches 99.92%. Further-
more, prototypical networks attain F1-score, recall, precision, and Matthews correlation
coefficient (MCC) values of 99.89%, 99.9%, 99.9%, and 100%, respectively, on the raw
dataset. As a result, the experimental results clearly demonstrate the effectiveness of the
suggested method, offering a reliable and trustworthy model to classify CKD. This frame-
work supports the objectives of the Medical Internet of Things (MIoT) by enhancing smart
medical applications and services, enabling accurate prediction and detection of CKD, and
facilitating optimal medical decision making.

Keywords: chronic kidney disease prediction (CKD); medical Internet of Things (MIoT);
explainable machine learning (XAI); few-shot learning; generative adversarial networks
(GANs); SHapley Additive exPlanations (SHAP); local interpretable model-agnostic
explanations (LIME)
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1. Introduction
More than 700 million individuals worldwide suffer from chronic kidney disease

(CKD), which affects 10% of the world’s population [1]. According to global public health
studies, 78% of individuals with chronic kidney disease (CKD) live in low- and middle-
income countries, where health systems face challenges due to systemic injustices and a
lack of resources. Without functioning kidneys, the average survival time is only about
18 days, making dialysis and kidney transplants highly necessary. CKD is classified into
different stages: stage 1/2 is considered early-stage kidney disease, stage 3/4 is considered
mid-stage kidney failure, and stage 5 renal failure is considered late-stage kidney disease.
Therefore, early detection of individuals at risk for developing kidney failure offers a
chance to implement focused interventions to change the course of the disease. However,
the diagnosis of CKD requires testing urine for protein levels and blood for measuring
biochemical kidney function. The results from these tests are helpful in classifying CKD
from Stage 1 (minimal damage) to Stage 5 (kidney failure) [2].

Even though these studies are straightforward, proteinuria data is often missing,
compromising the ability to provide optimal therapy. Additionally, these two tests do not
consider numerous variables that could influence disease progression. Currently, clinical
judgment, supported by the course of kidney disease, is used to predict who is likely to
develop kidney failure. Clinicians must be able to identify patients who are at risk for
progressive illness and renal failure by integrating other relevant data sets [3]. To facilitate
early detection, a variety of statistical predictors have been developed. A person with
chronic kidney disease (CKD) has a probability of developing kidney failure between the
ages of two and five, according to a risk prediction method known as the kidney failure risk
equation (KFRE) [4]. The key factors in this calculation are age, sex, eGFR, and the urine
albumin/creatinine ratio; on the other side, the adjusted calcium, phosphorus, bicarbonate,
and serum albumin are optional measures. The equation’s major limitations are that it only
accounts for renal failure (requiring dialysis) as an outcome, only applies to later stages
of CKD (G3–G5), and requires a urine albumin/creatinine ratio, which is rarely done in
clinical practice. Furthermore, the KFRE is a static equation that disregards several readings
and changes in variables throughout time [5].

Artificial intelligence (AI) has many applications nowadays in various fields such as
healthcare, environment, and transportation [6,7]. In biomedical applications, artificial
intelligence (AI) is now a major force behind individualized diagnosis, treatment planning,
and illness management. The incorporation of Internet of Things (IoT) technologies further
advances this development. Advancements in artificial intelligence (AI) and machine
learning (ML) offer significant potential for bioscience and improving disease classification
and prediction in biomedical applications [8,9]. ML methods, for example, can support
the early detection of organ conditions with exceptional accuracy and dependability. For
instance, ML techniques can reliably and accurately assist in the early identification of
organ diseases. Medical Internet of Things (MIoT) applications have been enhanced
by the recent emergence of IoT and medical systems as complementing technologies.
Incorporating Internet of Things (IoT) technology into healthcare to provide effective, real-
time patient monitoring, diagnosis, and management is known as the Medical Internet
of Things (MIoT). Real-time monitoring, analysis, and decision making in complicated
healthcare contexts are made easier by connecting healthcare services with IoT devices,
which significantly improves patient care. The MIoT system consists of multiple layers, as
shown in Figure 1 below:

• Layer 1: This layer is driven by MIoT sensors and actuators, which are responsible for
collecting and monitoring various medical and healthcare data.
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• Layer 2: This layer involves the use of gateway and edge devices, which serve as
intermediaries linking the wireless sensor network (WSN) to cloud servers. These
devices are a key part of the MIoT-based control platform.

• Layer 3: Cloud computing is utilized in this layer, showcasing its ability to power
intelligent medical IoT systems. The proposed system uses cloud servers to store
and process data from the industrial control field, collected through the MIoT-based
controller. The medical data gathered is periodically transmitted to the relevant
channel via an IoT protocol like Constrained Application Protocol (CoAP).

• Layer 4: This layer focuses on developing mobile and web applications that interface
with cloud servers to retrieve analytical results generated by applying machine learn-
ing techniques to stored medical and healthcare data. The goal is to provide actionable
insights to support decision making within healthcare institutions.
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Overall, the multi-tier architecture of an MIoT system enables smooth data flow,
storage, and subsequent analysis.

Clinical decision making can be improved with the help of artificial intelligence (AI),
especially machine learning (ML) models, which help in analyzing various biomedical
signal [8]. Clinical and biological data are routinely collected in large quantities. Because
of this, it is recommended to integrate machine learning models that are intended to
identify non-linear patterns in big, complicated datasets and forecast the behavior of future
variables. Selecting which individual variables to have an impact in an ML model requires
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careful consideration because variable relevance significantly affects accuracy and data
gathering [11]. However, the datasets in some studies suffer from missing values. So, by
learning the underlying data distribution and producing believable values to fill in the gaps,
GANs can be used to forecast missing values in datasets. Due to their poor interpretability,
many of the earlier models for CKD prediction have a “black box” aspect that prevents
clinical application. By enhancing model transparency and reliability, XAI approaches
such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) help close the gap between machine learning predictions and clinical
applicability. A crucial tool that complements XAI methodologies is counterfactual analysis,
which modifies input data points significantly to track changes in the model’s predictions
and offer concrete and useful insights into the model’s decision-making process. We created
an explainable longitudinal machine learning model that could successfully detect CKD
patients [12].

This paper presents an explainable AI framework for chronic kidney disease prediction
in medical IoT by integrating GAN-based data imputation with few-shot learning for
accurate and interpretable classification. Therefore, the objectives that follow are attempted
to be accomplished by this comprehensive study:

• This procedure improves the model’s functionality and offers insightful information
about the main causes of CKD. For the modeling, we employed support vector ma-
chines (SVM), logistic regression (LR), decision trees (DT), random forests (RF), and
Voting Ensemble Learning (VEL). A few-shot learning techniques like prototypical
networks and model-agnostic meta-learning were also used and integrated with the
XAI to explain why a person is likely to have CKD or not.

• A proposed preprocessing method such as generative adversarial networks (GANs)
has been implemented to deal with missing values in datasets, yielding superior
results by integrating tried-and-tested practices compared to existing techniques.

• Accurate CKD prediction and clear explanation are made possible by combining
machine learning and XAI approaches.

• It is shown the superior performance of our proposed model in terms of accuracy,
precision, recall, score, ROC curve, interpretability, and resilience by comparing its
performance with that of state-of-the-art models that had previously been applied to
the same dataset.

• The proposed model is specifically designed for real-world medical IoT (MIoT) ap-
plications, enhancing the intelligent prediction and monitoring of CKD through its
scalability and flexibility. Its structured approach enables various MIoT components
to function efficiently, regardless of the deployment environment.

The rest of this paper is organized as follows: Section 2 provides a concise overview
of pertinent literature in the paper’s subject area. Section 3 explains the material and
the methods used in this study. Section 4 presents the proposed methodology for CKD
prediction, while Section 5 shows the results and outcomes analysis of the proposed
framework. Finally, the paper’s conclusion and future scope are presented in Section 5.

2. Related Work
Recent advancements in deep learning have led to the development of more trans-

parent and interpretable models for medical diagnosis. To address these issues, Tanim
et al. [13] present DeepNetX2, a bespoke deep neural network that integrates explainable
artificial intelligence (XAI) methods, particularly SHapley Additive exPlanations (SHAP)
and local interpretable model-agnostic explanations (LIME). These methods increase the
model’s decision-making transparency, which boosts the forecasts’ credibility. A thorough
data pretreatment procedure using a tailored Spearman’s correlation coefficient feature
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selection strategy is part of the suggested methodology. Instead of oversimplifying to the
point of losing efficiency, this preprocessing limits complexity to only pertinent elements
that enhance efficacy. The PIMA dataset, the local private dataset, and the Type-2 diabetes
dataset were used to thoroughly evaluate DeepNetX2.

The authors in [14] discuss the present and probably future uses of AI in the treatment
of diabetes and its comorbidities, such as medication compliance, hypoglycemia diagnosis,
diabetic neuropathy, diabetic kidney disease, diabetic eye disease, diabetic foot ulcers, and
diabetic heart failure. The ability of artificial intelligence to manage sizable and intricate
datasets from several sources makes it beneficial. The calculation gets more complicated and
precise with each new kind of data added to a patient’s clinical picture. Emerging medical
technologies are built on artificial intelligence, which will drive future improvements in
patient health and diagnostic integrity as well as the diagnosis of diabetes complications.
To improve dataset preparation for CKD classification and create a web-based application
for CKD prediction.

A machine learning-based kidney disease prediction (ML-CKDP) model is created
in [15]. A thorough data pretreatment procedure, numerical value conversion for categorical
variables, missing data imputing, and normalization using min–max scaling are all part
of the suggested model. Correlation, chi-square, variance threshold, recursive feature
elimination, sequential forward selection, Lasso regression, and ridge regression are some
of the methods used to refine the datasets during feature selection. Random forest (RF),
AdaBoost (AdaB), gradient boosting (GB), boost (XgB), naive Bayes (NB), support vector
machine (SVM), and decision tree (DT) are the seven classifiers used by the model to predict
CKDs. The models’ efficacy is evaluated using accuracy measurements and confusion
matrix statistics analysis, as well as computing the area under the curve (AUC), especially
for positive case categorization. The 100% accuracy rate of random forest (RF) and AdaBoost
(AdaB) is demonstrated using a variety of validation techniques, such as data splits of 70:30,
80:20, and K-Fold set to 10 and 15. Under various splitting ratios, RF and AdaB regularly
achieve flawless AUC values of 100% across a variety of datasets. Naive Bayes (NB) is
particularly effective; it has the shortest training and testing durations for all datasets
and split ratios. To operate the model and improve accessibility for stakeholders and
healthcare professionals.

To predict chronic kidney disease, Khan et al. [16] conduct a variety of machine
learning models, including logistic regression, random forest, decision tree, k-nearest
neighbor, and support vector machine with four kernel functions (linear, Laplacian, Bessel,
and radial basis kernels). Records from a case-control study including patients with chronic
renal disease in Pakistan make up the dataset that was used. A variety of performance
metrics, such as accuracy, Brier score, sensitivity, Youden’s index, and F1-score, were
calculated to compare the models’ classification and accuracy. To categorize patients
into two groups: those who advanced to CKD stages 3–5 during follow-up (positive
class) and those who did not (negative class). The authors in [17] created four machine
learning algorithms: logistic regression, random forests, neural networks, and eXtreme
gradient boosting (XGBoost). The model’s ability to distinguish between the two classes
was assessed using the area under the receiver operating characteristic curve (AUC-ROC)
for the classification test. The concordance index (C-index) and integrated Brier score
were utilized for model evaluation, while Cox proportional hazards regression (COX) and
random survival forests (RSFs) were utilized for survival analysis to forecast the progression
of CKD. Additionally, the outcomes of the models were interpreted using restricted cubic
splines, variable importance, and partial dependence plots.

A combination of the models was included in [18] half-and-half model. The Irregular
Timberland classifier served as the meta classifier, while the basis classifiers used were
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XGBoost, arbitrary woods, strategic relapse, AdaBoost, and the crossover model classifiers.
This analysis’s primary goal was to assess the top AI grouping strategies and select the
most accurate classifier. This method achieved the highest level of accuracy and fixed
the problem of overfitting. Precision was the primary focus of the evaluation, and we
implemented a comprehensive analysis of the important writing in even configuration.

The authors employed four of the best AI models and developed a second model
called “half and half”, using the UCI Persistent Kidney Disappointment dataset for pre-
dictive analysis. The “black box” aspect of conventional machine learning predictions
was addressed in [2] by using explainable machine learning to predict CKD. The extreme
gradient boost (XGB) machine learning method showed the highest accuracy out of the
six that were assessed. SHapley Additive exPlanations (SHAP) and partial dependency
plots (PDP), which clarify the reasoning behind the predictions and aid in decision making,
were used in the study for interpretability. Additionally, a graphical user interface with
explanations was created for the first time to diagnose the probability of chronic kidney
disease. Explainable machine learning can help medical personnel make precise diagnoses
and pinpoint the underlying causes of chronic kidney disease (CKD), which is a serious
condition with high stakes.

In [19], twelve full-featured classification algorithms based on machine learning were
employed. The synthetic minority over-sampling technique (SMOTE) was employed to
address the class imbalance issue in the CKD dataset and evaluate the effectiveness of ma-
chine learning classification models using the K-fold cross-validation technique. Support
Vector Machine, Random Forest, and Adaptive Boosting are the three classifiers with the
highest accuracy that were chosen to employ the ensemble technique to enhance perfor-
mance after the results of twelve classifiers with and without the SMOTE technique. While
Qin et al. [20] focus on utilizing machine learning techniques to create a CKD predictive
model by examining a dataset including 25 columns and 9993 rows that contain impor-
tant kidney health data. For the best CKD prediction, several techniques are examined,
including random forest, logistic regression, decision trees, support vector machines (SVM),
k-nearest neighbors (KNN), and naive Bayes. Correcting missing data guarantees accurate
results. The ultimate objective is to offer a dependable, reasonably priced model for early
CKD detection, which will benefit patients and healthcare providers by facilitating prompt
intervention and accelerating diagnosis.

In [21], the study begins with 25 variables; however, at the conclusion, it has reduced
the list to 30% of those factors as the most effective subset for CKD identification. In a
supervised learning setting, twelve distinct machine learning-based classifiers have been
evaluated. Twelve different machine learning-based classifiers have been studied within
the parameters of a supervised learning environment. The XGBoost classifier has the
best performance metrics. The study’s methodology leads to the conclusion that modern
advances in machine learning, combined with predictive modeling, offer an intriguing
means of discovering new. To increase the accuracy of CKD prediction, the authors in [22]
suggested a hybrid convolutional neural network (CNN) support vector machine (SVM)
model. Performance was enhanced by combining SVM for classification with CNN for
feature extraction. SMOTE was used for a large clinical dataset that included ten medical
indicators in total.

A thorough evaluation of the literature on chronic renal disorders has been conducted.
Table 1 provides a description of the literature review summary. The influence of variable
selection and dataset features on model performance has been highlighted in earlier re-
search on CKD prediction and prognosis using machine learning approaches. However,
external validation on independent datasets is often lacking in these studies, which is
important for evaluating generalizability. and ignoring missing values is also considered a
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critical step in improving CKD prediction. First, we use GANs to predict missing values in
datasets where GANs can learn the underlying data distribution and generate realistic data
samples. Secondly, due to the machine learning’s poor interpretability, many of the earlier
models for CKD prediction have a “black box” aspect that prevents clinical application. By
enhancing model transparency and reliability, XAI approaches such as SHapley Additive
exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME) help close
the gap between machine learning predictions and clinical applicability. A crucial tool that
complements XAI methodologies is counterfactual analysis, which modifies input data
points significantly to track changes in the model’s predictions and offer concrete and useful
insights into the model’s decision-making process. We created an explainable longitudinal
machine learning model that could successfully detect CKD patients who would eventually
develop kidney failure or not to overcome the shortcomings of earlier research.

Table 1. Summary of related work.

Work AI Method Merit Demerit Handling Missing
Values

[13]
DeepNetX2

(explainable deep
learning)

High accuracy in
diabetes diagnosis;

explainable AI
improves transparency

Requires large
datasets;

computationally
expensive

Not explicitly
mentioned; likely uses

imputation or exclusion
of incomplete sample

[14]
Artificial intelligence
(AI) for diagnosing

diabetes complications

Effective in early
detection of

complications; scalable

Limited
generalizability;

depends on quality of
input data

Imputation methods
(e.g., mean, median, or

k-NN imputation)

[15]

Machine learning (ML)
with smart web

application for CKD
prediction

User-friendly interface;
high prediction

accuracy

Web application
dependency; potential

privacy concerns

Data preprocessing with
imputation techniques

(e.g., mean/mode
imputation)

[16]
Comprehensive ML

models for CKD
prediction

High predictive power;
robust performance

across datasets

Complex model
interpretation requires

extensive
computational

resources

Advanced imputation
methods (e.g., MICE or

model-based
imputation)

[17]
Interpretable ML for

CKD progression risk
prediction

Interpretable results;
useful for clinical
decision making

Limited to specific
patient populations;

may require frequent
retraining

Handling missing data
through imputation or

exclusion based on
clinical relevance

[18]

Comparison of ML
techniques for

early-stage CKD
detection

Identifies
best-performing
models for early

detection

Performance varies
across datasets; may

overfit on small
datasets

Simple imputation
methods (e.g., mean,

median) or removal of
incomplete samples

[2]

ML-based interface
with explainable AI

(XAI) for CKD
diagnosis

Enhances trust in AI
predictions; improves
diagnostic accuracy

High implementation
complexity; requires

expert knowledge

Advanced techniques
like multiple imputation

or model-based
approaches

3. Material and Methods
3.1. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) are a class of artificial intelligence models
designed to generate new data that resembles a given dataset. Introduced by Ian Goodfel-
low and his colleagues in 2014 [23]. GANs comprise a generator and a discriminator, both
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trained under the adversarial learning idea. The goal of GANs is to estimate the potential
distribution of real data samples and generate new samples from that distribution. In data
imputation, the generator attempts to predict missing values by learning the underlying
data distribution. While the discriminator is often a binary classifier to evaluate whether
the imputed values are real (from the original dataset) or fake (produced by the generator).
The generator continuously improves its ability to generate realistic imputations through
iterations, making GANs particularly powerful for analyzing data in the case of high
dimensionality and complexity. GANs learn complex patterns from the data, which, unlike
simpler imputation techniques like mean imputation or regression-based methods, provide
more accurate and context-aware imputations. This adversarial process will continue as
depicted in Figure 2. The structure of currently widely used deep neural networks can be
used by both the discriminator and the generator. The optimization process of GANs is a
minimax game process, and the optimization goal is to reach Nash equilibrium, where the
generator is considered to have captured the distribution of real samples.
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3.2. Few Learning Technique

Few-shot learning techniques, such as prototypical networks and model-agnostic meta-
learning (MAML), enable models to generalize effectively by leveraging prior knowledge,
learning robust representations, or adapting quickly to new tasks. Few-shot learning is a
machine learning paradigm that focuses on training models to be a powerful paradigm
that empowers models to rapidly adapt and generalize to new tasks with minimal training
examples [24]. As shown in Figure 3, prototypical networks are a metric-based approach
that leverages the concept of class prototypes to classify new examples. During training,
the network computes a prototype (mean representation) for each class in the support
set (a small, labeled dataset). This figure depicts the few-shot learning application of
prototypical networks in predicting chronic kidney disease (CKD). Patient data, which
include clinical information and lab test results, are passed through an embedding network,
extracting relevant features and mapping them into a lower-dimensional embedding space.
In this space, different CKD stages cluster the data points, each represented as a prototype
(centroid of known samples). The classification of a new test sample is done based on
its proximity to these prototypes, using a distance metric such as the Euclidean distance.
Finally, a softmax function assigns the sample to the most likely CKD stage. This approach
enables accurate prediction with limited labeled data. These networks are particularly
efficient because they rely on a single forward pass for inference, avoiding the need for
complex optimization during testing.
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On the other hand, model-agnostic meta-learning (MAML) is a meta-learning tech-
nique designed to enable models to quickly adapt to new tasks with minimal data. MAML
works by learning a good initialization for the model’s parameters during meta-training,
such that only a few gradient steps are needed to fine-tune the model on a new task dur-
ing meta-testing. Unlike prototypical networks, which focus on learning a metric space,
MAML is a general-purpose optimization-based approach that can be applied to any model
trained with gradient descent. This flexibility makes MAML suitable for a wide range of
applications. Both prototypical networks and MAML have significantly advanced the field
of few-shot learning, each with its unique strengths.

3.3. Explainable Artificial Intelligence (XAI)

Explainable artificial intelligence (XAI) is a number of techniques and methods with
the goal of making artificial intelligence models decision-making processes more clear,
interpretable, and comprehensible to humans. Increasing complexity and prevalence of
AI systems, particularly with deep learning models, has led to raise concerns regarding
trust, accountability, and ethical usage in the future about the Blackbox appearance of AI
models [25]. XAI has been conceptualized to provide insights into how models arrive at
their decisions and predictions, allowing the end-user to understand the underlying logics,
identify possible biases, and test the authenticity of AI-based decisions. This is particularly
crucial in high-stake areas such as health, finance, and security, where understanding
the rationale behind AI decisions is of paramount importance for fairness, safety, and
compliance adjacent to regulations. Several clinical case studies show the usefulness of
SHAP and LIME, which offer complementary ways to model interpretability in clinical
contexts such as seizure detection [11], Parkinson diagnosis [12], diabetes diagnosis [13],
and heart disease prediction [26].

Although SHAP (SHapley Additive exPlanations) and LIME (local interpretable model-
agnostic explanations) belong to the most widely used post hoc explainer techniques in
explainable AI (XAI), both are trained to explain the predictions of complex, machine
learning models. SHAP utilizes Shapley values, which fairly distribute the prediction
outcome among all input features by considering all possible feature combinations. This
ensures a consistent and mathematically grounded explanation of the model’s decision-
making process. SHAP provides both global interpretability, which helps understand the
overall impact of features on the model’s predictions, and local interpretability, which
explains individual predictions by identifying the most influential features for a specific
instance. However, LIME is different, though, as it works regarding learning local behavior
by using a less complex, understandable model (like linear regression) to approximate
the behavior of a rather complex model around a certain point of interest. Data were
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represented in a manner that constructs perturbations of the input data around a certain
instance of interest, measuring the effect on predictions by the complex model. Then,
it locally approximated the behavior of the model in the neighborhood using a simple
interpretable surrogate model. By using this surrogate model, it can assess which features
were the most important in getting to its prediction for that specific data point and give
insight into the model’s decision. This method enables users to understand why the model
made a certain decision, especially in black-box models like neural networks and ensemble
methods. These methods generate explanations that are intuitive and understandable to
humans, so the stakeholders recognize how individual predictions are being made, which is
of utmost importance to clinical applications such as CKD diagnosis, where interpretability
and trust are of utmost importance.

A method for explaining machine learning models’ predictions, especially those of
deep neural network, is called integrated gradients. By integrating the gradients of the
model’s output with respect to the input features along a path from a baseline input to the
actual input, it gives each input feature a relevance score. Any differentiable model can be
used with this approach because it is model agnostic.

4. Proposed CKD Prediction for MIoT
This section outlines the key stages of our proposed CKD prediction model and illus-

trates its development for managing the complex data commonly encountered in MIoT
applications. Figure 4 illustrates the systematic approach used in this study for CKD
prediction, comprising five key steps: data collection and storage, data preprocessing, ma-
chine learning model training, model evaluation and validation, and explainable artificial
intelligence (XAI) for model interpretation. Each step is detailed as follows:
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Step 1: Data Collection and Storage: The diagnostic data were gathered from medical
records, traditionally collected by healthcare professionals. Then categorical variables were
converted into numerical values using label encoding. The dataset was analyzed for missing
values, which were later imputed using generative adversarial networks (GANs) [27].
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Step 2: Data Preprocessing: Generative adversarial networks (GANs) were employed
to handle missing data by: establishing a mask for missing values and preprocessing the
dataset. A generator and discriminator are designed for the dataset. The GAN is then
trained adversarial to learn the data distribution. The trained generator is used to fill in
missing values, and the imputed values are evaluated and post-processed.

Step 3: Machine Learning Model Training: Seven different machine learning models
were used to predict CKD. Traditional models include support vector machines (SVMs),
logistic regression (LR), decision trees (DT), random forests (RF), and voting ensemble
learning (VEL). Additionally, few-shot learning techniques such as prototypical networks
and model-agnostic meta-learning (MAML) [28] were employed to enhance performance
in limited data scenarios.

Step 4: Model Evaluation and Validation: The trained models were evaluated using
accuracy, precision, recall, F1-score, confusion matrix, and area under the receiver operating
characteristic curve (ROC-AUC) to assess predictive performance. Internal validation was
conducted on CKD datasets to ensure model robustness. To further enhance generalization,
few-shot learning techniques were used in cases with limited data availability.

Step 5: Explainable Artificial Intelligence (XAI) for Model Interpretation: To enhance
interpretability, explainable artificial intelligence (XAI) techniques were applied:

1. SHapley Additive exPlanations (SHAP): Provided both global and local interpretabil-
ity based on game theory. It explained the contribution of each feature to the
model’s predictions.

2. Local interpretable model-agnostic explanations (LIME): Assessed how individual
input features influenced predictions and identified even minor feature effects on
CKD prediction [29].

5. Experimental Results
This section provides an overview of the CKD dataset, along with the performance

metrics and a detailed analysis of the proposed system’s results.

5.1. Dataset

Table 2 and Figure 5 provide an overview of the dataset used for chronic kidney disease
(CKD) classification, highlighting the distribution of cases across two categories. The dataset
consists of 250 CKD cases, representing patients diagnosed with chronic kidney disease,
and 150 non-CKD cases, referring to individuals without CKD. This distribution indicates
a slight class imbalance, which should be considered when training machine learning
models to prevent bias toward the majority class. Techniques such as data balancing
(e.g., SMOTE for oversampling) or cost-sensitive learning may be necessary to improve
model performance and ensure fair predictions across both categories. The 24 features
for CKD diagnosis have been documented in Table 3 along with their descriptions. These
features are patients’ demographic data, laboratory tests, and other medical conditions,
which contribute towards classifying CKD. Each of these critical parameters is important to
evaluate every aspect of CKD to enhance the classification process. The statistical analysis
of the CKD dataset is depicted in Figure 6.

Table 2. Dataset description.

Class Type Classes Description Number of Cases

CKD Diagnosis CKD 250

Not CKD Normal 150
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5.2. Evaluation Metrics

In this work, the effectiveness of the proposed model for the diagnosis of chronic
kidney disease (CKD) using accuracy, F1-score, precision, recall, and ROC curve, where the
percentage of the test set that the classifier successfully classifies represents the accuracy of
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the classification model on that test. The precision of positively labeled examples is deter-
mined by their accuracy. Recall is a metric that quantifies how accurate or comprehensive
positive examples are, that is, how many instances of the positive class have the proper
label applied. Table 4 illustrates the confusion matrix parameters used for evaluating the
model’s performance. These metrics are derived from classification outcomes and help in
computing evaluation metrics such as accuracy, precision, recall, F1-score, and Matthews
correlation coefficient (MCC) [30,31]:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2
{

Precision ∗ Recall
Precision + Recall

}
(4)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

where (TN) true negatives, (TP) true positives, (FP) false positives, and (FN) false negatives.

Table 4. The parameters of confusion matrix.

Predicted CKD Predicted Not CKD

Actual CKD TP FP

Actual Not CKD FN TN

5.3. Results Analysis

Examining model performance is essential to see how each algorithm performs in
classification during testing and training. The model learns the hidden patterns in the
data during training, and then it uses the unseen data to make predictions during testing.
Seventy percent of the data was used to train the model. The optimized models were tested
using the remaining 20%. After each model was optimized, we compared seven different
models to assess how well they performed. As shown in Table 5, KNN imputation gives
good results. This evaluation considered several parameters, including recall, accuracy,
precision, and F1-score when dealing with missing values with traditional machine learning
imputation using KNN imputation [32]. However, from Table 6 and Figure 7, it is shown
that improvement in the results when dealing with missing values using GANs. It is
revealed that the outperformance of both prototypical networks learning and MAML is
all across all metrics. Prototypical networks learning is shown its efficacy in the learning
phase by achieving high accuracy (99.99%) and outstanding precision (99.9%). Also, its
recall score (99.2%) is good; prototypical networks few-shot learning achieved flawless
training results. Like the prototypical networks few-shot learning model, the MAML model
achieved good results. So, the few-shot learning models were chosen as the top-performing
models after considering; this is especially significant in a CKD where a precise diagnosis
is essential. High precision minimizes false positives, saving patients needless worry and
additional testing, while high sensitivity (recall) is essential for guaranteeing that patients
with CKD are accurately detected [33]. A box plot for the ML model performance with
GAN imputation is illustrated in Figure 8.
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Table 5. Table results algorithms after handling missing values using KNN imputer.

Algorithms Accuracy Precision Recall F Score

SVM 92.00 92 94 94

Logistic Regression 94.00 93 96 95

DT 92.00 94 93 92

RF 95.00 95 96 96

Voting Ensemble Learning 98.00 97 99 98

Prototypical networks few-shot learning 98.90 98.9 98.9 98.9

Model-agnostic meta-learning (MAML) 98.70 0.987 98.7 98.7

Table 6. Models’ performance when handling missing using GANs imputation.

Algorithms Accuracy Precision Recall F1-Score MCC

Support vector machine 92 92 94 94 94.73

Logistic regression 94 93 96 95 94.73

Decision tree 92 94 93 92 94.67

Random forest 95 95 96 96 1

Voting ensemble learning 98 97 99 98 1

Model-agnostic meta-learning (MAML) 99.2 99.0 99.2 99.1 1

Prototypical networks learning 99.99 99.9 99.9 99.89 1
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Confusion matrices highlight each model’s classification abilities in further depth
(Figure 9). The classification results are sorted into four groups by these matrices. Instances
where a CKD patient was accurately detected are known as true positives (TP). True
negatives (TN) are instances in which a person without chronic kidney disease is correctly
identified. False positives (FP) are instances in which a person was mistakenly diagnosed
with chronic kidney disease (CKD) when they tested negative. Finally, cases where we
mistakenly classified a person as non-CKD when they were truly positive are known as
false negatives (FN) [34].
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These confusion matrices help in understanding model performance and detecting
possible misclassifications. Prototypical networks and MAML achieved perfect classifi-
cation, correctly identifying all CKD (TP = 29) and non-CKD cases (TN = 51) with zero
misclassifications (FP = 0, FN = 0). This resulted in an MCC of 1.0, indicating optimal
classification performance. Random forest (RF) and voting ensemble models also exhibited
exceptional accuracy, correctly classifying 49 non-CKD cases and 30 CKD cases, with only
one misclassification (FP = 1, FN = 0). Both models attained an MCC of 1.0, reflecting
high reliability and minimal error rates. The decision tree (DT) demonstrated strong clas-
sification performance, correctly predicting 49 non-CKD cases and 29 CKD cases, with
a slight misclassification of one CKD case as non-CKD (FN = 1, FP = 1). Its MCC of
94.67% shows it remains a dependable classifier. Logistic regression (LR) and support
vector machine (SVM) performed similarly, with 48 correct non-CKD classifications and
29 correct CKD predictions, but with two non-CKD cases misclassified as CKD (FP = 2).
Their MCC scores of 94.73% confirm that they remain robust but slightly less precise than
ensemble models.

An assessment of the trade-off between true positive and false positive rates can be
made by looking at the ROC curves as shown in Figure 10 and the corresponding AUC
values for the models used in the categorization of chronic renal disease. The prototypical
networks, a few-shot learning model, and MAML achieved an exceptionally high AUC
of 0.999, demonstrating outstanding generalization capability and superior classification
performance. The decision tree (DT), with an AUC of 0.97, showed reliable classification
performance, though slightly lower than other models. The support vector machine (SVM),
logistic regression (LR), ensemble learning, and random forest (RF) models all achieved
an AUC of 0.98, confirming their strong ability to accurately distinguish between CKD
and non-CKD cases [33]. These results validate that few-shot learning models, particularly
prototypical networks, provide the best classification performance.
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To understand the logic behind CKD predictions, the model explanations were inter-
preted using the best model, prototypical networks learning. The SHAP (SHapley Additive
exPlanations) global explanation of CKD data is shown in Figure 11. Global explanations
encompass the entire dataset.
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According to the findings of the performance analysis carried out using these statistical
indices, prototypical networks learning is the most effective model for predicting the KCD.
It consistently outperformed both MAML and other machine learning across all criteria.
The prototypical networks few-shot learning model outperformed other machine learning
models, and the underlying process of the outcomes it generated was examined using the
SHAP explanation. Figure 11 displays the meaning of absolute SHAP values, or feature
importance, for the prototypical networks model. This figure assesses how interpretable for
MAML, a voting ensemble, and prototypical networks. MAML and prototypical networks
have more balanced feature importance distributions and more structure to them, while
the voting ensemble model seems more scattered. Prototypical networks effectively point
out the key features that impact prediction within a narrower scope that guarantees that
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the model predicts based on the most relevant information. MAML, on the other hand,
attributes importance to a wider spectrum of features while retaining stability, which speaks
of its generalization capacity in different scenarios. In contrast, the voting ensemble model
seems to give tremendous importance to a few of the features, neglecting others, resulting
in overfitting and limited adaptability to the real world. Therefore, the approaches pursued
by MAML and prototypical networks are seen as much more trustworthy and interpretable,
as they could be seen to enhance robustness or relevance in feature selection. LIME is a
potent XAI technique that may be used to comprehend the intricate correlations between
KCD measures and their influence on overall kidney potability since it approximates a
complex machine learning model with a simpler, interpretable model. In terms of KCD, this
implies that LIME can help determine which KCD criteria are most important in predicting
a particular KCD. The model predicted whether the kidney was diseased or not because
of these characteristics. Researchers and decision-makers can benefit greatly from this
information since it helps pinpoint the specific issues that must be resolved to improve the
KCD prediction, as illustrated in Figure 12.

From the figure above, it is shown that the most relevant features will have the
strongest effects, such as “dm ≤ −0.52” (diabetes mellitus), which has the most positive
effect, and “cad ≤ −0.28” (coronary artery disease), which has the most negative effect.
Other important features include “htn > 1.26” (hypertension) and “bp > −0.02” (blood
pressure), indicating their significant role in the model’s decision making. The LIME
method decomposes individual predictions to facilitate the understanding of black-box
models, ensuring transparency and interpretability in AI-based CKD detection.

The study’s findings highlight how well the prototypical networks GANs model and
explainable artificial intelligence (XAI) work together to diagnose chronic kidney disease
(CKD). Our study confirms prototypical networks’ applicability in the setting of CKD,
which is consistent with earlier research showing its accuracy and efficiency in many
medical scenarios. The current study, however, fills a critical gap in the field of medical AI
where understanding the rationale behind the model is just as important as the diagnostic
outcome. It goes beyond simply concentrating on diagnostic accuracy and emphasizes the
importance of model interpretability utilizing XAI. This study has noteworthy practical
benefits, particularly in kidney care. This work demonstrates the reliability of explainable
machine learning in diagnosing CKD, which may pave the way for the eventual integration
of these technologies into routine clinical practice. This combination could lead to a faster
and more accurate diagnosis of CKD, enabling prompt action to improve patient outcomes
and reduce the progression of the illness. Physicians will be using SHAP and LIME in
CKD diagnoses by interpretable insights into machine learning modeling. By allowing
importance to be laid on serum creatinine, diabetes mellitus, and proteinuria, SHAP serves
to help hospitals in validating the prediction by an AI model. By explaining a diagnosis as
due to certain symptoms, such as high blood pressure or diabetes history, LIME elucidates
individual diagnoses that contribute to a patient’s CKD classification. Besides identifying
indicators of deterioration in hemoglobin levels, SHAP could provide predictions on
the progression of CKD, enabling early intervention in most cases. SHAP could also
identify biases in such AI models, thereby offering itself to unbiased risk assessment across
different demographics.

The comparison with previous studies shows that the proposed technique provides
outperformance against all other methods in the literatures as shown in Table 7.

The encouraging results of this study point to the need for additional research, partic-
ularly to examine the model’s performance in a range of clinical settings and patient types.
To ensure the model’s adaptability and growth potential, future studies should concentrate
on validating its performance through multicenter trials encompassing a broad range of
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clinical and demographic parameters. Furthermore, incorporating social determinants of
health and genetic markers may improve the model’s predictive power and provide a more
all-encompassing strategy for CKD management. The goal is to seamlessly incorporate
AI-powered solutions into healthcare systems, revolutionizing the management of chronic
kidney disease through models of customized, predictive, and preventative care.
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Table 7. Comparison of the proposed model to previous studies based on various matrices.

Technique Accuracy Precision Recall F1-Score

Ensemble deep learning, no feature selection [35] 98% 97% 99% 98%

Ensemble deep learning proposed hybrid with feature
selection [35] 99.0% 85% 99% 92%

XgBoost classifier [21] 98.3% 98% 98% 98%

Support vector machine (SVM) with SMOTE [36] 99.33% 99% 99% 99%

Linear regression with tuning parameter [37] 99.36% 100% 99% 99%

Proposed model 99.99% 99.9% 99.9% 99.89%

5.4. Limitations and Challenges

Despite the promising outcomes of our study, several limitations and challenges must
be addressed for broader applicability and real-world deployment of the proposed CKD
prediction model:

■ Generalizability to Diverse Populations—While the models demonstrated high predic-
tive accuracy on the CKD dataset, their generalizability remains a concern. Additional
validation on larger and more diverse multi-ethnic populations is necessary to ensure
consistent performance across different demographic groups and healthcare settings.

■ Reliance on High-Quality Data: The study relies on regularly collected pathological
data, which may not always be available or standardized across medical institutions.
Variability in data collection methods and missing values in real-world datasets could
impact model performance.

■ Dependence on GANs for Imputation: Although GANs were effective in handling
missing data, their imputation process may introduce bias or synthetic artifacts that
could influence prediction outcomes. As it basically learns from the existing data,
any imbalance or inaccuracy in the original dataset will amplify in the generated
samples. So, if the training dataset itself contains biases, there will be a problem in
the generated data. So, a further validation is needed to assess the reliability of these
imputed values across different datasets.

■ Computational Complexity and Resource Requirements: The integration of advanced
algorithms such as prototypical networks, model-agnostic meta-learning (MAML),
SHAP, and LIME introduces computational overhead. Hence, this renders the anal-
ysis in real time very hard with highly complex deep neural networks. Real-time
deployment in resource-constrained environments, such as small clinics or remote
healthcare settings, may be challenging.

■ Model Interpretability vs. Complexity Trade-off: While explainable AI techniques
such as SHAP and LIME enhance model transparency, deploying these techniques
in hospitals faces challenges, including computational cost, as it requires evaluating
models many times for the generation of their explanations. Doctor training is also
required because a majority of these clinicians do not understand any AI interpretabil-
ity tools; hence, dedicated workshops need to be developed to understand the SHAP
and LIME outputs in a clinical context. Compliance with all the healthcare regulations
is another challenge, as AI has been proved stringent with data privacy regulations
that must be met. They also require that hospitals ensure that they will not produce
any biases or misinterpretations that might leak into the patient care process. Further
research is required to develop more efficient interpretability frameworks for clinical
decision making.
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■ Adaptability to Different Clinical Contexts: The model was primarily tested on CKD-
related pathological data, and its adaptability to other types of medical data or health-
care conditions remains uncertain. Future studies should explore its applicability in
different clinical scenarios to enhance its versatility.

■ Ethical and Regulatory Considerations: The use of AI in healthcare raises ethical
concerns regarding patient privacy, data security, and regulatory compliance. Con-
fidentiality of the patient and data security are fundamental issues requiring the
strict adherence of regulations such as HIPAA and GDPR in order to secure sensitive
medical records from breaches and unauthorized access. In the case of AI-enabled
CKD diagnosis, medical accountability and liability standards must also be followed.
In cases where AI models make incorrect predictions, however, it is still ambiguous
who can be held responsible, either the developers or the healthcare institutions that
release the technology or the physicians themselves relying on it. To address this,
regulations must define clear guidelines on AI-assisted decision making, ensuring
that human oversight remains integral to the diagnostic process.

■ Potential Bias in Feature Selection: The model heavily relies on specific clinical vari-
ables such as age and gender. However, other potential risk factors not included in
the dataset might influence CKD progression. Further research should incorporate
additional biomarkers and lifestyle factors to enhance predictive accuracy.

Addressing these limitations will be crucial for refining the proposed model and
ensuring its effective deployment in real-world medical applications.

6. Conclusions and Future Work
Our study has effectively established explainable AI models that leverage routinely

collected pathological data to accurately predict chronic kidney disease (CKD). The model
utilizes a GAN to address missing values in CKD datasets and integrates few-shot learn-
ing techniques, including prototypical networks and MAML, with explainable machine
learning for CKD prediction. By using vital parameters such as age, gender, and other
crucial aspects of predicted CKD, this model showed significant prediction accuracy, es-
pecially when determining the probability of progression to kidney failure. Experimental
results on CKD datasets demonstrated high performance, with prototypical networks and
MAML achieving ROC-AUC values of 0.999 and 0.992, respectively, highlighting their
strong predictive capabilities and potential applicability across diverse populations. It is
shown that the key features align with the core pathophysiology of chronic kidney disease,
enhancing the clinical significance of the developed models. Additionally, explainable AI
such as SHAP and LIME improved model interpretability by offering clear, data-driven
insights into prediction behavior at both local and global levels, enhancing transparency
and trust. The study’s results emphasize the potential of precise predictive modeling in
identifying high-risk CKD patients for personalized disease management in the framework
of medical IoT. Future studies could explore the adaptability of the proposed approach
across diverse data types and clinical settings to validate its effectiveness and broaden
its applicability. Additionally, further validation in larger, multi-ethnic populations is
necessary to enhance generalizability.
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