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Abstract

Motor imagery (MI) EEG decoding is a key application in brain—computer interface (BCI)
research. In cross-session scenarios, the generalization and robustness of decoding models
are particularly challenging due to the complex nonlinear dynamics of MI-EEG signals
in both temporal and frequency domains, as well as distributional shifts across different
recording sessions. While multi-scale feature extraction is a promising approach for general-
ized and robust MI decoding, conventional classifiers (e.g., multilayer perceptrons) struggle
to perform accurate classification when confronted with high-order, nonstationary feature
distributions, which have become a major bottleneck for improving decoding performance.
To address this issue, we propose an end-to-end decoding framework, MCTGNet, whose
core idea is to formulate the classification process as a high-order function approximation
task that jointly models both task labels and feature structures. By introducing a group
rational Kolmogorov—-Arnold Network (GR-KAN), the system enhances generalization and
robustness under cross-session conditions. Experiments on the BCI Competition IV 2a and
2b datasets demonstrate that MCTGNet achieves average classification accuracies of 88.93%
and 91.42%, respectively, outperforming state-of-the-art methods by 3.32% and 1.83%.

Keywords: motor imagery; EEG decoding; cross-session generalization; Kolmogorov—-Arnold
Network

1. Introduction

Brain—computer interfaces (BCls) are attracting increasing interest for their potential
to enable direct communication between the human brain and external devices [1-3].
Among various paradigms, motor imagery (MI) has emerged as a particularly appealing
modality [4,5]. By mentally rehearsing limb movements without any physical execution,
users activate sensorimotor brain regions and generate EEG patterns that can be decoded
by BCI systems. Compared with other BCI paradigms, MI offers a more intuitive and
self-paced interaction mechanism, making it well-suited for long-term neurorehabilitation,
intelligent control, and assistive communication systems.

Despite growing interest in MI-based BCI systems, decoding MI-EEG signals remains
a challenging task due to their intrinsic variability and complex temporal, spectral, and
spatial dynamics. In particular, MI-EEG signals exhibit pronounced non-stationarity across
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sessions, often caused by changes in user state such as fluctuations in attention, mental
fatigue, or emotional arousal [6,7]. Such variability leads to substantial distribution shifts,
which severely undermine the generalization and robustness of decoding models in cross-
session scenarios. To this end, numerous approaches have been proposed, ranging from
feature extraction techniques to advanced model architectures and novel MI paradigms.

Among these efforts, multi-scale feature modeling [8-10] has been widely explored as a
promising strategy for enhancing MI decoding performance. By capturing EEG rhythms at
different temporal and spectral resolutions, this approach enables the extraction of diverse
neural signatures associated with motor imagery, offering a more robust and informative
representation of the underlying brain activity. However, despite their effectiveness, exist-
ing methods often struggle to fully exploit multi-scale features. A primary limitation lies in
their reliance on conventional classifiers, such as multilayer perceptrons (MLPs), which
lack the expressive capacity required to model the high-order, nonstationary nature of
MI-EEG feature distributions [6,7]. Moreover, heterogeneous information structures, such
as local and global features, also display complex, dynamic patterns, further complicating
the classification process.

To address the aforementioned modeling bottlenecks, this paper proposes an end-to-
end decoding framework called MCTGNet , whose core idea is to formulate the classifica-
tion process as a high-order function approximation task, thereby structurally overcoming
the expressive limitations of traditional classifiers. Unlike conventional classifiers that rely
on stacked linear-affine transformations and nonlinear activation functions, we introduce
the Kolmogorov—Arnold Transformer (KAT) [11], which decomposes multivariate map-
pings into compositions of univariate functions. This formulation enhances the model’s
ability to represent complex nonlinear structures. As a result, the proposed method not only
improves the discriminative capacity for task labels, but also strengthens the unified mod-
eling of heterogeneous feature structures such as local and global representations, thereby
significantly improving the quality of multi-scale feature fusion and the generalization
performance under cross-session conditions.

However, to implement MCTGNet into a real system, some challenges must be faced:

*  Challenge 1: Limited perceptual range of feature extractors. MI-EEG signals contain
multiple neural rhythms across various frequency bands, each reflecting distinct
stages of motor imagination. However, existing models often rely on fixed receptive
fields or single-scale operations, limiting their ability to fully capture the diverse
temporal structures embedded across frequency components. This constraint reduces
the comprehensiveness of the extracted feature representations and compromises
decoding performance.

¢ Challenge 2: Inconsistent representation of heterogeneous features. MI-EEG signals
exhibit both local transient dynamics and global cross-channel coordination, which
differ in spatial scale, semantic granularity, and temporal patterning. Conventional
classifiers lack mechanisms to unify these heterogeneous patterns in a consistent
representational space, thereby hindering the construction of a shared discriminative
function and weakening the system’s robustness.

¢  Challenge 3: Insufficient modeling capacity for discriminative functions. Due to
cross-session variability, MI-EEG features often manifest as highly nonlinear, nonsta-
tionary, and distributionally divergent. Traditional classifiers such as MLPs struggle
to capture the complex high-order mappings required to distinguish task labels under
such conditions. This limits the model’s ability to generalize across sessions and
maintain stable performance.

To address the aforementioned challenges, MCTGNet introduces tailored designs
at both the feature extraction and classification stages. For Challenge 1, a multi-scale
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perception module is developed to construct a broad spectral representation space by
applying parallel convolutions with varying receptive fields, thereby capturing diverse
EEG rhythms. For Challenge 2 and Challenge 3, a group-rational Kolmogorov—-Arnold
Network (GR-KAN) is employed, which models the classification process as a high-order
function approximation task. Specifically, GR-KAN distinguishes heterogeneous struc-
tures such as local and global features via grouped mapping mechanisms, improving
discrimination under complex spatial hierarchies (Challenge 2). Moreover, its high-order
expressive structure enables the modeling of nonlinear decision boundaries, enhancing
the separability of MI task representations and improving robustness under cross-session
conditions (Challenge 3).
The major contributions of this work are summarized as follows:

*  We introduce a novel Kolmogorov—Arnold Network (KAN) formulation to motor
imagery EEG decoding, by casting the classification task as a high-order function
approximation problem. This perspective enhances the model’s ability to capture
complex, nonlinear, and nonstationary distributions in EEG feature space, overcoming
the expressive limitations of conventional MLP-based classifiers.

*  We propose an end-to-end neural architecture called MCTGNet, which integrates
a Multi-Scale Perception Module (MPE-CNN) for extracting neural rhythms across
diverse temporal scales, and a group-rational KAN (GR-KAN) for structured, high-
capacity decision modeling. This design provides a principled solution to the challenge
of heterogeneous feature representation and nonlinear separability in cross-session
MI decoding.

e We further incorporate a Hybrid Local-Global Attention mechanism (LG-KAT) to
enhance temporal feature integration by explicitly modeling both fine-grained local
fluctuations and global contextual patterns in EEG sequences. This enables more
robust and semantically consistent fusion across temporal hierarchies.

We emphasize the novel contribution of MCTGNet in providing a structured solution
to the challenges of multi-scale feature fusion, heterogeneous feature representation, and
high-order classification in MI-EEG decoding, with the potential to become a new baseline
for MI-EEG decoding. The source code has been released at https:/ /github.com/huangtl
26/MCTGNet, accessed on 23 June 2025.

The remainder of this paper is organized as follows: Section 2 reviews the related
work; Section 3 introduces the preliminary knowledge; Section 4 presents the detailed
architecture and training strategy of MCTGNet; Section 5 reports the experimental results
and performance comparison. We discuss some limitations of this paper in Section 6 and
conclude this paper in Section 7.

2. Related Work
2.1. Feature Extraction in MI-EEG Decoding

Effective feature extraction plays a crucial role in MI-EEG decoding, as it directly
influences the system’s ability to identify discriminative neural patterns. Early methods pri-
marily relied on traditional signal processing and classical machine learning techniques [12].
Among them, Common Spatial Pattern (CSP) and its extensions [13-16] have been widely
used to extract frequency-specific features by maximizing inter-class variance. Meanwhile,
time-frequency analysis approaches, such as the continuous wavelet transform (CWT) [17],
have been applied to model the nonstationary nature of EEG signals. However, these
approaches depend heavily on handcrafted features and domain expertise, limiting their
adaptability to complex neural dynamics.
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With the rapid advancement of deep learning, convolutional neural networks (CNNs)
have achieved notable success in learning spatiotemporal representations directly from
raw EEG signals [18,19]. Nevertheless, most CNN-based models utilize fixed-scale con-
volutional kernels, which constrain their capacity to fully capture the multi-frequency
characteristics intrinsic to motor imagery tasks. To address this limitation, multi-scale
feature modeling has emerged as a promising strategy. By incorporating parallel convo-
lutional branches with varied receptive fields, these models can extract neural patterns
across different temporal and frequency scales. Such architectures have demonstrated
improved robustness and classification performance, particularly in cross-session decoding
scenarios [20].

2.2. Feature Fusion Strategies

Building upon effective feature extraction, the integration of multi-dimensional EEG
features plays a pivotal role in enhancing motor imagery (MI) decoding performance. Early
methods typically employed handcrafted fusion techniques—such as discrete wavelet
transforms and filter banks—to combine frequency-specific features across spatial and
temporal dimensions [21,22]. While conceptually straightforward, these approaches lacked
adaptability and struggled with generalization due to the nonstationary and subject-specific
nature of EEG signals.

Recently, the transformer model has shown excellent performance in natural language
processing and computer vision for its long-range dependency modeling and efficient
parallel computing [23]. Transformer and its variants have been applied across various
fields with significant success. For instance, Roy et al. [24] proposed 'SimPoolFormer’,
which replaces multi-headed self-attention with SimPool and integrates linear attention for
hyperspectral image classification. Kasoju et al. [25] optimized Transformer models for low-
latency inference, achieving efficiency gains without sacrificing accuracy. Shaker et al. [26]
introduced SwiftFormer, a Transformer variant with an efficient additive attention mecha-
nism tailored for real-time mobile vision applications, optimized for resource-constrained
devices.

Similarly, transformer-based models have been gaining popularity in EEG decod-
ing [27-30]. These models are particularly advantageous as they benefit from an extended
receptive field, enabling them to capture long-range dependencies in MI-EEG signals. Cer-
tainly, Transformer-based fusion architectures have been proposed to learn complex interac-
tions across spatial, temporal, and spectral domains [31-34]. For instance, Zhou et al. [35]
introduced an attention-driven hybrid network that dynamically emphasizes salient spatial
and temporal features, enhancing discriminative representation learning. The Adaptive
Dual-Feature Fusion Convolutional Neural Network (ADFCNN) [20] jointly captures
spectral and spatial patterns via dual-scale convolution and attention mechanisms, achiev-
ing robust performance under nonstationary conditions. Similarly, Multi-Scale Attention
Fusion Network (MAFNet) [32] integrates multi-resolution features through adaptive
weighting guided by attention, facilitating more flexible representation across diverse
frequency bands.

Multi-scale fusion has thus emerged as a promising direction. By employing parallel
branches with varied kernel sizes or receptive fields, such architectures aim to capture
neural patterns across fine and coarse temporal and frequency resolutions [36,37]. However,
despite these advancements, current fusion frameworks still face structural challenges in
aligning heterogeneous representations—particularly in distinguishing and integrating
local and global features. This semantic mismatch limits the consistency of the fused feature
space and constrains the full potential of multi-scale learning.



Bioengineering 2025, 12, 775

50f24

2.3. Classifier for MI-EEG Decoding

In MI-EEG decoding, the classifier serves as the final and critical component, re-
sponsible for mapping extracted neural representations to task-specific labels. With the
advancement of deep learning, convolutional neural networks (CNNs) have been exten-
sively employed in motor imagery classification tasks due to their effectiveness in capturing
spatial patterns. Representative architectures such as DeepConvNet and EEGNet have
demonstrated competitive performance across various benchmarks [18,19]. In parallel,
recurrent neural networks (RNNs) and their variants—such as LSTM and GRU—have been
utilized for modeling temporal dependencies, although their limited training efficiency
and poor scalability have restricted broader applicability [38,39].

Despite the progress in feature extraction and fusion, most decoding frameworks
still adopt conventional multilayer perceptrons (MLPs) for classification. MLPs perform
input-to-output mapping through stacked linear transformations and nonlinear activations,
and are theoretically capable of approximating any continuous function [40]. However, in
practice, traditional MLPs often fall short when confronted with the nonlinear, nonstation-
ary, and structurally heterogeneous distributions typical of MI-EEG data. Moreover, the
dense connectivity in MLPs results in significant parameter overhead, increasing the risk of
overfitting and limiting generalization.

Recently, Kolmogorov—-Arnold Networks (KANs) have emerged as a promising alter-
native to traditional multilayer perceptrons (MLPs) in various domains. For example, Han
et al. [41] applied KANs to hyperspectral image classification. Similarly, Galitsky et al. [42]
optimized KANs for word-level explainable meaning representation, leveraging their inter-
pretability to improve model transparency compared to MLPs. Furthermore, Hu et al. [43]
introduced the Kolmogorov—Arnold Classifier (KAC) for continual learning, replacing
MLP structures with KANS to alleviate catastrophic forgetting in real-time learning scenar-
ios. Despite these advancements, KANS still face a significant challenge: their relatively
high computational cost. This limits their practical application, especially in resource-
constrained environments. In the context of MI-EEG decoding, the computational demands
of KANSs present particular difficulties for real-time classification systems. These systems
require low-latency processing to provide prompt feedback, but the high computational
overhead of KANs can lead to delays, impeding their deployment in real-time applications.

3. Preliminary
3.1. Transformer Encoder

The Transformer is a powerful model for sequence processing that utilizes the self-
attention mechanism to capture global dependencies [23]. In MI-EEG classification, the

Transformer encoder is commonly employed to perform deep feature extraction on the
processed features from earlier network layers. Its typical structure is illustrated in Figure 1.
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Figure 1. The structure of Transformer encoder.
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For an input sequence R"*?, where n represents the number of time steps and d the
feature dimension, the Transformer generates Query, Key, and Value triplets by performing
linear projections:

Q=XWp, K=XWg, V=XWy (Wpo, W, Wy € R (1)
Q Q

The attention matrix A € R"*" is then computed using the scaled dot-product atten-
tion mechanism, which quantifies the correlation strength between any two time steps:

QKT
Nzn

A= softmax( ), Output = AV (2)

The scaling factor /dy ensures numerical stability during the calculation of dot prod-
ucts with high-dimensional vectors. To enhance feature diversity, the Multi-Head Attention
(MHA) mechanism splits the input into & independent subspaces, computes attention for
each subspace in parallel, and concatenates the resulting projections:

head; = Attention(XWé, XWi, XWi), MHA(X) = [head;; heady; . ..;head,] (3)

To incorporate positional information into the sequence, sinusoidal positional encod-
ing is applied to provide absolute temporal context:

. pos B pos
PE(pos2i) = sm(loooozl'/d ): PEiposais) = Cos(loooozl'/d ) @

The encoder then applies residual connections followed by layer normalization (Lay-
erNorm), and uses a feed-forward network (FFN) to perform a nonlinear transformation of
the features:

FFN(x) = GELU(xW; + b1)W; + by (5)

3.2. Kolmogorov—-Arnold Representation Theorem and Network

The Kolmogorov—-Arnold Representation Theorem asserts that any continuous multi-
variate function defined on a bounded domain can be expressed as a combination of a finite
number of univariate continuous functions and addition [44]. Specifically, for a smooth
function f : [0,1]" — R, its representation is given by:

2n+1 n
flx1,...,x) = 2 D, <2 (pq,p(xp)> (6)
q=1 p=1

where ¢, : [0,1] — R are continuous univariate functions for the input dimensions, and
®; : R — R are continuous univariate functions for the output dimension.
This theorem can also be expressed in matrix form as follows:

f(x) = Pouto Pin 0 x, ?)
where the input transformation matrix ®;, and the output transformation matrix @ are
defined as:

$¢11() 0 Pal)
Gu=| 1 | =B e Gun()] ®

$2a411(1) 0 Pray1a(’)
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Building upon this theorem, the Kolmogorov—Arnold Network (KAN) was pro-
posed [11]. The core idea of KAN is to replace the fixed activation functions used in
traditional neural networks with learnable edge activation functions. For a KAN layer with
din-dimensional input and d,y¢-dimensional output, its computational form is:

din din

f(x) =®Pox= [Zi:l Pia(xi) - Ly (Pi,dout(xi):| ©)

where the parameterized matrix ® contains all the edge activation functions:
$11() o Prg, ()
D= : : (10)
()bdoutr1 ( ’ ) U (pdoutrdin ()
In practice, each activation function ¢(x) is a linear combination of the SiLU function

and B-spline functions:

¢(x) = wy - SILU(x) + w; - spline(x) (11)

where SiLU(x) = 17—~
represents the B-spline basis function expansion.

is the self-gated activation function, and spline(x) = Y_; ¢;B;(x)

The entire KAN network is constructed by stacking multiple layers of composite
transformations:

KAN(xp) =®; 10®] 0---0Pyox (12)

4. Methodology

In this section, we introduce our proposed end-to-end MI-EEG decoding model,
MCTGNet. Section 4.1 provides an overview of the overall architecture, followed by
detailed descriptions of its main modules.

4.1. Algorithm Overview

Figure 2 illustrates the architecture of MCTGNet. The model comprises three func-
tional modules. The Multi-Scale Feature Extraction Module (MPE-CNN) captures temporal
and spectral patterns at different scales by applying parallel convolutions with varying
kernel sizes, enabling rich representation of neural rhythms. The KAT with Local-Global
Attention Module (LG-KAT) integrates local temporal details and global contextual cues
through a hybrid attention mechanism, enhancing the model’s ability to distinguish fine-
grained neural patterns. Finally, the Classification Layer Module employs a high-capacity
decision function to map the fused features into task labels, supporting robust decoding
across complex conditions. In the following subsections, we present a detailed description
of each module.

4.2. Multi-Scale Feature Extraction Module

MI-EEG signals exhibit diverse neural activity patterns across different frequency
bands. This is particularly evident in MI tasks, where neural rhythms display strong non-
stationarity and multi-scale characteristics. Traditional single-scale convolutional structures
often struggle to fully extract key features from different frequency ranges, thereby limiting
decoding performance. To address this issue, we propose a multi-scale feature extrac-
tion module that adopts a multi-branch convolutional design. It consists of three parallel
temporal processing paths tailored to model low-frequency (long time window), medium-
frequency (moderate window), and high-frequency (short window) neural dynamics. The
goal is to construct a cross-frequency, cross-scale neural representation space, enhancing



Bioengineering 2025, 12, 775

8 of 24

EEG Data /

/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! —_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

J—

Trial*Channel<Time 1>CxT \

BCI IV 2a

BCI'IV 2b

the model’s ability to capture complex EEG patterns and providing more discriminative
inputs for the subsequent attention and classification modules.

Multi-Scale Feature Extration h ’KAT with Local-Global Attention

Dp: Dropout
BN&ELU BN: Batch Normalization

|

|

1th Avgl;’ool&Dp ELU: Exponential linear unit |

—~ 2th AngooI&Dp i
|

|

|

|

>N
[ Norm ]
// ’; L
V . - ) — - __
/ y (F1D)3T/64] (F1D)x1qT/64] Local Global
[ Multi-head| |[Multi-head

e . .
/ (F1D)>14T/64] Attention Attention

|
|
|
|
F1 D)=1XT/8 ;
|
1 D)><1><T Temporal Convolutional layer Other Convolutional Iayerr : Reshape
Small Kernel @ channel Depth-wise |
Py Middle Kernel Spatial dimension ]
Large Kernel Feature fusion ]
( Norm )
: GR-KAN ]
|
|
|
Flatten :
|
: 4
| (F1D)x1>{T/64]
]

Figure 2. The framework consists of three core modules: the multi-scale patch embedding convolu-
tional module, the local-global attention mechanism encoder based on KAT, and the classification
layer based on GR-KAN.

Specifically, the raw EEG signal is passed through three parallel temporal convolution
branches, each with a distinct kernel size K; = {Kg, Kp1, K1 } to capture neural oscillations
at multiple temporal scales. Smaller kernels are effective in detecting high-frequency,
short-duration patterns, while larger kernels capture long-range, low-frequency dynamics.
Each branch outputs a set of frequency-domain feature maps using F; convolutional filters,
encoding neural information specific to its receptive scale.

Next, spatial patterns across EEG channels are modeled using depthwise separable
convolutions with kernel size (C,1), where C denotes the number of input channels.
The output dimensionality is expanded via a depth multiplier D, allowing richer spatial
representations to emerge. To reduce temporal redundancy and computational burden, two
stages of average pooling with stride parameters P; and P, are sequentially applied along
the temporal axis. These operations compress the temporal resolution while preserving
salient features, preparing the signal for downstream processing.

To further strengthen short- and medium-range temporal modeling, a convolutional
layer with kernel size Kj is inserted after the first pooling operation. This step enables the
network to better capture semantic dependencies within a typical window of approximately
500 ms, enhancing sensitivity to transient MI-related patterns.

Finally, the outputs of all three convolution branches are concatenated along the
channel dimension, forming a joint feature representation that integrates temporal char-
acteristics across multiple scales. A 1 x 1 convolution is then applied for compact fusion
and channel compression, effectively learning cross-scale interaction weights and reducing
redundancy. The fused feature maps are reshaped into a sequential format (L, E), where
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L is the temporal length and E is the embedding dimension, serving as the input to the
subsequent module. The key hyperparameter settings for this module are summarized in
Table 1.

Table 1. Hyperparameter settings in the multi-scale feature extraction module.

Parameter Value Description
F 8 Number of filters in temporal convolution branch
D 2 Depth multiplier in channel depth-wise convolution
K1 = {Ks,Kp, Kp} {32, 64, 96} Multi-scale kernel sizes (short/medium/long)
P 8 Pooling size for first temporal downsampling
K> 16 Kernel size for spatial dimension convolution
P, 8 Pooling size for second temporal downsampling

4.3. KAT with Local-Global Attention Module

After the multi-scale feature extraction module constructs rich frequency-domain and
temporal features, challenges still remain in modeling cross-scale temporal dependencies
and preserving local details. These difficulties primarily stem from the inherent limita-
tions of traditional Transformer architectures, where the commonly used MLPs exhibit
insufficient expressive power and weak nonlinearity. To further enhance the model’s
ability to capture complex motor imagery EEG patterns, we propose a KAT with Local-
Global Attention module. The core idea of this module is to introduce a dual-branch
attention mechanism that explicitly models both fine-grained short-term dynamics and
long-range global dependencies, while leveraging the KAT architecture to improve the
model’s nonlinear representation capacity and overall expressiveness.

As illustrated in Figure 2, the module is composed of three key substructures. First,
the local attention branch extracts multi-scale temporal dynamics using 1D convolutions
with different kernel sizes and incorporates them into the attention computation, thereby
enhancing sensitivity to short-term nonstationary rhythms. Second, the global attention
branch directly applies standard self-attention to capture long-range temporal dependencies
from the input sequence. Finally, GR-KAN layers replace the traditional MLPs, utilizing
grouped rational activation functions to achieve improved nonlinearity and parameter
efficiency. This design enhances the model’s capacity for capturing intricate EEG dynamics
while maintaining computational efficiency.

Specifically, in the local attention path, to effectively capture dynamic patterns at
multiple time scales, the input feature map X € RE*C*L (where B is the batch size, C the
number of channels, and L the temporal length) is processed through several parallel 1D
convolution branches, each using a different kernel size k;. Zero-padding is applied to
preserve the temporal dimension (as shown in Figure 3). Each convolution operation is
defined as:

y; = ConvlD(X, k;, p;) (13)

where k; denotes the kernel size and p; the corresponding padding. The resulting fea-
ture maps y; are concatenated along the channel dimension to construct a multi-scale
representation for the key matrix:

KeYlocal = Concat(y1 ’ y2) (14)
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Figure 3. The structure of local attention.

These representations are combined with the query and value matrices and passed into
the standard scaled dot-product attention mechanism to produce local attention outputs:

Vg

Meanwhile, the global attention path uses the same input features to directly generate

. QKjpeal
Attention;y., = Softmax| —=22 | .V (15)

Q, Kgiobal, and V via linear projections, and computes attention as:

. QKngobal
Attentiong)ypa) = Softmax W -V (16)

The local and global attention outputs are fused via element-wise addition:
Xatt = Attentionygea + Attentionglobal 17)

On top of this fused representation, we introduce the GR-KAN module to replace
conventional MLPs for nonlinear transformation. GR-KAN reformulates classification as a
high-order function approximation using group-wise rational functions, which replace the
B-spline bases in traditional KANs to enhance expressiveness and support efficient parallel
computation on modern GPUs. To reduce parameter overhead, it shares activation weights
and basis functions within neuron groups, while variance-preserving initialization ensures
stable activation flow across layers. The learnable activation function is defined as the safe
Padé unit:

P(x)
1+[Q(x)]

where P(x) = Y a;x' and Q(x) = Y b;x' are learnable polynomials, and w is a scaling

px) =w- (18)

coefficient. This formulation avoids division-by-zero and enhances the expressive power of
the network.

To reduce parameter size and computational cost, GR-KAN adopts a grouping mech-
anism. The input vector is divided into ¢ groups, each with dy = d;,,/ ¢ dimensions, and
each group shares the same rational function parameters. The operation is written as:

din
GR-KAN(x) = ®ox = Z Wit Fji/a,) (%) Z Wi do Fli/a, ) (Xi) (19)
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Alternatively, in matrix form:
wip o Wigy, FLl/ng (x1)
GR-KAN(x) = WF(x) = : : . : (20)
Zvdoutr1 e wdout/dir\ FLdin/ng (xd,'n>
This can be implemented as:
GR-KAN(x) = linear(group(x)) (21)
To ensure training stability, the parameters are initialized by estimating;
o =RE[F(x)?] - Var[lx] = w~ N(o, d"‘) (22)
in

This ensures that Var[¢p(x)] = Var[x], stabilizing the learning process.

4.4. Classification Layer Module

To achieve the final classification of motor imagery EEG signals, we design a classi-
fication module based on GR-KAN at the end of the model. This module is responsible
for receiving the sequential features output by the attention encoder and mapping them to
the category space. Since high-dimensional sequential features are inherently difficult to
classify directly, and traditional MLPs with linear structures often exhibit limited expressive
power when dealing with non-stationary and multi-scale EEG patterns—failing to capture
discriminative structural information—we adopt the idea of GR-KAN and introduce the
GroupKANLinear structure. This structure follows a “nonlinear activation first, then linear
transformation” approach, utilizing learnable rational functions to enhance the model’s
capacity to fit complex EEG patterns.

Specifically, we first perform a residual connection (element-wise addition) between
the output features from LG-KAT, denoted as Xatt € RB*LXD ‘and the initial embedded
features from MPE-CNN, denoted as Xembed € RE*L*PD, to form a fused representation:

Xfused = Xembed + Xatt (23)

This operation not only preserves the fundamental information from the initial fea-
tures but also incorporates the contextual semantics modeled by the attention mechanism,
resulting in a semantically richer input representation.

Next, we flatten the fused 3D tensor X¢,seq into a 1D vector:

x = Flatten(Xseq) € RE*(L-D) (24)

This vector aggregates contextual information across all time steps, serving as the final
high-dimensional feature representation for each sample.

Subsequently, we proceed with the equations from Equations (18)—(22). This design
not only improves the model’s expressive power but also reduces the parameter size from
O(din X dout) 10 O((din/g) X dout + m + n), where m and n are the degrees of the numerator
and denominator polynomials, respectively. Here, m and n are fixed at default values of 5
and 4.

During training, we use the cross-entropy loss function as the optimization objective:

| M N
L= Y Z; Z;yij log(7ij) (25)
i=1j=
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where M denotes the number of MI-EEG trials, N is the number of classes, Yijis the ground-
truth label for the j-th class of the i-th sample, and 7;; is the predicted probability for
that class.

Figure 4 illustrates how MI-EEG features evolve through each stage of the MCTGNet
architecture, showing progressively improved class separability from raw inputs to final
classification outputs via t-SNE projections.
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Figure 4. t-SNE visualization of feature evolution across the MCTGNet pipeline.

5. Performance Evaluation
5.1. Evaluation Setup

We implemented MCTGNet using Python 3.9 and PyTorch 2.1.2, running on Ubuntu
22.04 with an NVIDIA GeForce RTX 4090 GPU. We employed the Adam optimizer with
a fixed learning rate of 0.001 throughout the training process. The optimizer parameters
were set as f1 = 0.5 and S = 0.999, which were selected based on a grid search for optimal
performance in similar tasks. We set the number of training epochs to 2000 and a batch size
of 72. Cross-entropy loss was used as the objective function, and model parameters were
updated via backpropagation.

A subject-dependent evaluation strategy was adopted, where the model is indepen-
dently trained and tested for each subject, ensuring no data leakage between training and
test sets. To evaluate performance, we reported both classification accuracy and standard
deviation (Std), which together reflect the model’s effectiveness and robustness across
subjects.
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5.1.1. Dataset

We conducted experiments on three publicly available motor imagery (MI) EEG
datasets: BCI Competition I'V-2a (IV-2a) [45], BCI Competition I'V-2b (IV-2b) [46], and
OpenBMI [47]. All datasets are widely used for benchmarking MI-EEG decoding models.
IV-2a and IV-2b were both sampled at 250 Hz and preprocessed using a 0.5-100 Hz bandpass
filter and a 50 Hz notch filter. For each trial, a four-second segment of motor-relevant EEG
was extracted, resulting in a feature matrix of size C x 1000, where C denotes the number
of channels. IV-2a comprises 22-channel EEG recordings across two sessions for four-
class classification (left hand, right hand, feet, and tongue), IV-2b contains 3-channel EEG
recordings from five sessions for binary classification (left vs. right hand), while OpenBMI
comprises 62-channel EEG recordings across two sessions for binary classification (left
hand, right hand). The original 1000 Hz signals of OpenBMI were downsampled to 250 Hz,
aligning with the sampling rate of IV-2a and IV-2b. In our experiments, earlier sessions were
used for training and later sessions for testing. Key details of both datasets are summarized
in Table 2.

Table 2. The information about the datasets.

IV-2a IV-2b OpenBMI
Number of Subjects 9 9 54
Number of Sessions 2 5 2
Number of Channels 22 3 62
Length of Time points 1000 1000 4000
Frequency of Samples 250 Hz 250 Hz 1000 Hz
Number of Classes 4 2 2
Size of Train Datas 288 x 22 x 1000 400 x 3 x 1000 100 x 62 x 1000
Size of Test Datas 288 x 22 x 1000 320 x 3 x 1000 100 x 62 x 1000

5.1.2. Data Augmentation

In MI-EEG decoding tasks, the number of training samples for each subject is often
limited, which poses a risk of overfitting and hinders the learning of robust representations.
To solve this problem, MCTGNet adopts a class-consistent data augmentation strategy [48]
based on time-series slicing and recombination (S5&R). As illustrated in Figure 5, each EEG
trial is first divided into eight equal-length segments (each 500 ms or 125 time points). Then,
new synthetic trials are generated by randomly selecting segments from different trials
of the same class and concatenating them in chronological order. This process increases
sample diversity while preserving essential class characteristics.

Triall [ 11 | 12 | 13 | 14 | 15 | 16 [ 1.7 | 18 |
Trial2 (22 [ 22 | 28 | 244 [ 25 [ 26 [ 27 | 28 |
Trial3 [ 31 [ 32 | 38 | 34 | 35 [ 36 | 37 | 38 |
Trial4 [ 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
Trials [ 52 [ 52 | 58 | 54 [ 55 [ 56 [ 57 | 58 |
Trial6 [ 61 | 62 | 63 | 64 | 65 [ 66 | 67 | 68 |
Trial7 (71 [ 72 | 783 | 744 [ 75 [ 76 [ 77 | 78 |
Trial8 [ 81 | 82 | 83 | 84 | 85 | 86 | 87 [ 88 |
Ar}'rf;fl'aH 10 | 22 [ 33 | 44 [ 55 [ 66 77 [ 88 |

Figure 5. The principle of data augmentation.
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5.2. Overall Performance

To comprehensively evaluate the effectiveness of the MCTGNet model, we conducted
repeated experiments against several state-of-the-art methods, including EEGNet [19],
Conformer [27], ATCNet [49], CTNet [50], and TMSA-Net [51]. All models were evaluated
under consistent experimental settings, such as identical data preprocessing procedures,
train—test splits, and data augmentation strategies.

Performance on I'V-2a Dataset: As shown in Table 3, MCTGNet achieved the highest
average classification accuracy of 88.93% on the IV-2a four-class dataset, outperforming the
second-best model ATCNet (85.61%) by a margin of 3.32% and EEGNet (77.74%) by 11.19%.
Notably, MCTGNet also achieved the lowest standard deviation (7.64), indicating superior
consistency and robustness across subjects.

Table 3. Comparison of the proposed method with other state-of-the-art methods on IV-2a dataset.

A01

A02 A03 A04 A05 A06 A07 A08 A09 Average Std

EEGNet
Conformer
ATCNet

CTNet
TMSA-Net
MCTGNet (ours)

86.81
82.99
87.85
91.67
84.38
94.10

67.36 9132 66.67 7396 68.06 8264 7882 84.03 7774 9.15
5486 9479 7396 7638 6250 85.07 8854 8194 7789 12.64
7118 95.83 8299 8264 7639 9583 90.62 8715 85.61 8.29
7396 96.88 85.07 81.60 6597 9340 8819 86.46  84.80 9.77
6458 9549 83.68 7951 66.67 9271 8854 83.68 8214 10.58
79.51 9757 89.24 84.72 7535 96.53 90.62 9271 88.93 7.64

Note: Bold denotes the best performance in this table.

At the individual level, MCTGNet attained outstanding accuracies for subjects A03
(97.57%), A07 (96.53%), and A09 (92.71%), reflecting strong adaptability to typical neural
response patterns. Even in subjects with low signal-to-noise ratios (e.g., A02 and A06), it
still surpassed prior methods by a significant margin. These results confirm the strong
classification capability of MCTGNet, which largely stems from its integrated multi-scale
feature encoding and the advanced classifier design tailored for MI-EEG decoding.

Performance on IV-2b Dataset: Table 4 presents the results for the binary classification
task on the IV-2b dataset. MCTGNet again achieved the highest average accuracy of
91.42%, outperforming CTNet (89.59%) and EEGNet (87.98%) by margins of 1.83% and
3.44%, respectively. Its standard deviation (7.91) was also the lowest, indicating reliable
performance across subjects.

Table 4. Comparison of the proposed method with other state-of-the-art methods on IV-2b dataset.

B0O1

B02 B03 B04 B05 B06 B07 B08 B09  Average Std

EEGNet
Conformer
ATCNet

CTNet
TMSA-Net
MCTGNet (ours)

78.75
80.93
80.31
79.37
82.50
85.00

69.29 87.19 9875 9343 8938 9375 94.06 8719 8798 9.04
74.64 8531 9844 9875 8750 9281 9313 8875 8892 7.93
7035 86.25 98.13 9781 9063 9531 91.88 8938  88.89 8.96
7071 8688 9875 98.13 9031 9500 9562 9156  89.59 9.32
71.07 8750 98.13 9844 89.37 9313 9563 8750  89.25 8.67
7429  89.69 99.06 9938 91.25 95.63 96.25 92.19 91.42 791

Note: Bold denotes the best performance in this table.

In particular, MCTGNet yielded nearly perfect accuracies for subjects B04, BO5, and
B08, demonstrating its ability to effectively model well-defined MI-EEG patterns. For
more challenging cases, such as B02, MCTGNet still achieved 74.29%, surpassing EEGNet
(69.29%) and ATCNet (70.35%). This also confirms the model’s robustness in capturing
discriminative features under subject variability and noisy conditions.
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Performance on OpenBMI Dataset: To further evaluate the generalization capability
of MCTGNet, we conducted experiments on the OpenBMI dataset—a binary classification
benchmark comprising 54 subjects with diverse data characteristics and experimental
setups. This dataset poses a stringent challenge for cross-subject generalization. As shown
in Table 5, MCTGNet achieved an average accuracy of 80.07%, outperforming CTNet
(77.96%) by 2.11%, and significantly surpassing EEGNet (74.22%) and ATCNet (75.23%).
Notably, MCTGNet also achieved the lowest standard deviation (13.29%), indicating strong
robustness under heterogeneous conditions.

Table 5. Comparison of the proposed method with other state-of-the-art methods on
OpenBMI dataset.

Method Average Std

EEGNet 74.22 14.59
Conformer 77.29 13.75
ATCNet 75.23 14.49
CTNet 77.96 13.55
TMSA-Net 76.66 13.57
MCTGNet (ours) 80.07 13.29

Note: Bold denotes the best performance in this table.

The cumulative distribution function (CDF) is shown in Figure 6 to further characterize
MCTGNet’s performance distribution across subjects. It reveals that MCTGNet maintains
a clear advantage at key percentiles: at the 50th percentile, it outperforms the second-best
method by approximately 3%; at the 80th percentile, the margin increases to over 4%;
and at the 90th percentile, MCTGNet leads by nearly 5%. These results demonstrate that
MCTGNet not only delivers high average performance but also generalizes consistently
across a broad range of subjects, particularly in the high-accuracy regime.

CDF of Accuracy on OpenBMI

100%] —— EEGNet
Conformer
ATCNet

CTNet
TMSA-Net
MCTGNet(ours)

Cumulative Probability

0 60 70 80 90 100
Accuracy (%)

Figure 6. Subject-wise accuracy distribution (CDF) on OpenBMI Dataset.

Confusion Matrix Analysis: To further examine the discriminative performance
of MCTGNet, we visualized the average confusion matrices for all datasets in Figure 7.
On IV-2a, the classification accuracies for the four classes—left hand, right hand, feet,
and tongue—were 89.51%, 91.20%, 89.04%, and 85.96%, respectively. The most frequent
confusion occurred between left and right hand imagery, a known challenge in MI-EEG
decoding. On IV-2b, left-hand imagery was correctly identified with 92.17% accuracy and
right-hand imagery with 90.65%. For the OpenBMI dataset, left-hand imagery achieves a
correct identification rate of 79.46%, with 20.54% misclassified as right-hand; right-hand
imagery has an 80.69% correct classification rate, and 19.31% are misidentified as left-hand.
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The low misclassification rates further affirm MCTGNet’s capacity to differentiate between

closely related EEG patterns.

IV-2a_Confusion Matrix - All Subjects

Left hand JCERIRZNE  4.32%
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Left handRight hand Foot Tongue
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(a) IV-2a dataset.
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Figure 7. Average confusion matrix of MCTGNet on IV-2a, IV-2b, and OpenBMI datasets.

5.3. Ablation Experiments

To assess the effectiveness and necessity of each core module within MCTGNet, we
conducted systematic ablation experiments to quantitatively evaluate the contribution of

individual components to the model’s overall performance. We tested five ablation settings.

The performance metrics are summarized in Tables 6 and 7.

* Removing the time-series slicing and recombination data augmentation strategy

(No Augmentation),

¢  Replacing the multi-scale convolutional structure with a single-scale version (No

Multi-Scale CNN),
¢  Excluding the LG-KAT module (No LG-KAT),
*  Replacing the GR-KAN with conventional MLPs (No GR-KAN),

¢  Simultaneously removing both the multi-scale CNN and LG-KAT (No Multi-Scale

CNN & LG-KAT).

Table 6. Performance of ablation study on IV-2a dataset.

Augmentation Multi-Scale CNN LG-KAT GR-KAN Accuracy Std
v X X v 81.64 11.01
X v v v 84.72 8.41
v X v v 82.99 9.75
v v X v 83.53 9.25
v v v X 86.50 8.55
v v v v 88.93 7.64

Note: v" means the corresponding module is adopted; x means the corresponding module is not adopted; Bold

denotes the best performance in this table.

Table 7. Performance of ablation study on IV-2b dataset.

Augmentation Multi-Scale CNN LG-KAT GR-KAN Accuracy Std
v X X v 90.09 8.54
X v v v 90.33 8.32
v X v v 90.51 8.00
v v X v 90.26 8.75
v v v X 90.33 8.32
v v v v 91.42 7.91

Note: v' means the corresponding module is adopted; x means the corresponding module is not adopted; Bold

denotes the best performance in this table.
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From Table 6, we observe that the full MCTGNet model achieves the best performance
on IV-2a with 88.93% average accuracy and the lowest standard deviation of 7.64. Removing
the data augmentation module leads to a performance drop to 84.72%, particularly for
subject A02, which drops from 79.51% to 73.61%. This indicates the effectiveness of the
S&R strategy in improving generalization, especially for noisy data.

Removing the GR-KAN module reduces accuracy to 86.50%, and for subject A06, the
drop is significant (from 75.35% to 71.88%), demonstrating GR-KAN's superior ability in
modeling nonlinear features. Similarly, removing the multi-scale CNN module leads to a
larger decline (82.99% overall, with A02 and A06 dropping to 70.14% and 64.58%), high-
lighting the importance of multi-scale temporal receptive fields in EEG feature extraction.

As shown in Table 7, the full model also yields the best results on IV-2b. When
comparing with ablated versions, all removed components cause a performance drop.
Notably, GR-KAN improves separability even in a simpler binary classification setting, as
B06’s accuracy improves from 89.38% (without GR-KAN) to 91.25%.

Figure 8 visually confirms these results across all subjects, showing consistent per-
formance drops when individual modules are removed. The most drastic degradation
occurs when both the multi-scale CNN and LG-KAT are removed, emphasizing their
complementary roles in hierarchical temporal modeling.
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(a) IV-2a dataset.
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(b) IV-2b dataset.

Figure 8. Performance comparison of different architecture configurations in ablation experiments.

To further investigate the impact of GR-KAN on the learned representation quality, we
apply t-SNE to visualize the distribution of features before classification. Figure 9 displays
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the 2D feature projections of selected subjects from IV-2a and IV-2b, with and without
GR-KAN.

In the absence of GR-KAN (Figure 9a,c), different class clusters show significant over-
lap, particularly in complex subjects. In contrast, with GR-KAN integrated (Figure 9b,d),
features become more compact and separable, clearly delineating category boundaries. This
confirms GR-KAN’s capacity to enhance semantic separability and structural clustering in
the latent feature space.
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(a) t-SNE without GR-KAN on IV-2a dataset. (b) t-SNE with GR-KAN on IV-2a dataset.
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Figure 9. t-SNE visualization of features before and after introducing GR-KAN. Top: Subject 5 (IV-2a);
Bottom: Subject 6 (IV-2b). GR-KAN results in more compact and discriminative clusters.

These ablation results collectively demonstrate that each module in MCTGNet—data
augmentation, multi-scale convolution, LG-KAT, and GR-KAN—plays a crucial and irre-
placeable role in boosting decoding performance and generalization in MI-EEG tasks.

5.4. Classifier Performance Comparison

To evaluate the effectiveness of GR-KAN as the classification head and the nonlinear
layers in MCTGNet, we replace it with several commonly used alternatives, including
MLPs, polynomial kernel-based SVMs, and conventional KANs. Key metrics such as
classification accuracy, training time, and test loading time are analyzed.

As shown in Table 8, GR-KAN achieves the highest classification accuracy across both
datasets, reaching 88.93% on IV-2a and 91.42% on IV-2b—representing relative gains of
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2.43% and 1.12% over the next best-performing method. Meanwhile, GR-KAN consistently
delivers superior performance in both IV-2a and IV-2b datasets, demonstrating its ability
to effectively model complex EEG patterns while maintaining lower test loading times
and more efficient training. This makes GR-KAN a promising solution for real-time
BCI applications.

Table 8. Performance comparison of different classifiers.

Performance Indicators

MLPs SVMs KANs GR-KAN
IV-2a IV-2b IV-2a IV-2b IV-2a IV-2b IV-2a IV-2b

Model Total Parameter Size (MB) 9.47 291 9.63 291 9.64 2.94 9.68 3.16
Training Time per Epoch (epoch/s) 0.613 0.476 0.686 0.525 0.806 0.889 0.601 0.617
Model Test Loading Time (ms) 53.5 126.5 51.1 126.7 435 1001.4 35.8 191.2
Average Classification Accuracy (%)  86.50 90.24 84.65 90.30 84.49 90.24 88.93 91.42

Note: Bold denotes the best performance in this table.

5.5. Impact Factors

This section investigates the influence of critical hyperparameters on the model’s
classification performance in a subject-dependent setting. Specifically, we explore the
impact of (1) different combinations of multi-scale convolution kernel sizes, (2) the number
of LG-KAT layers, and (3) the group number in the GR-KAN module.

5.5.1. Effect of Convolution Kernel Size Combinations

To evaluate how different temporal receptive field settings affect model performance,
we tested four kernel size combinations in the multi-scale convolution module: (16,32, 64),
(32,64,96), (16,64,128), and (64,96,128). The results are shown in Figure 10, where
accuracy trends across subjects are plotted for both datasets.
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Figure 10. Classification accuracy of MCTGNet with different kernel size combinations.
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On the IV-2a dataset, the combination (32, 64,96) achieved the highest average accu-
racy (88.93%) and the lowest standard deviation (7.64). For IV-2b, the best performance
(91.42%) was obtained with (16,32, 64). These results were adopted as the default settings
in our final model.

Despite the strong average performance, individual differences remained notable.
For instance, Subject A01 performed best with (16,32, 64) (94.79%), while A02 preferred
(16,64,128) (79.86%). Similarly, BO1 and B03 in IV-2b achieved top accuracies using the
(16,32, 64) configuration. This highlights the variability in optimal kernel scales, likely due
to inter-subject differences in temporal and spectral characteristics of MI-EEG signals.

5.5.2. Effect of the Number of LG-KAT Layers

We further evaluated how varying the number of LG-KAT layers influences classifi-
cation accuracy. Four configurations were tested: 1, 3, 5, and 7 layers. The experimental
results are illustrated in Figure 11.
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(a) IV-2a dataset. (b) IV-2b dataset.

Figure 11. Performance of MCTGNet with different numbers of LG-KAT layers.

For IV-2a, the best accuracy (88.93%) was obtained with only one LG-KAT layer, along
with the lowest standard deviation (7.64). Increasing the number of layers slightly degraded
the performance, with only marginal accuracy differences observed. Additionally, more
layers led to longer training times.

In contrast, IV-2b benefited slightly from deeper attention modeling: five layers
yielded the highest accuracy (91.42%), outperforming the single-layer configuration by
0.47%. Given the lower complexity of binary classification, this trade-off was considered
acceptable. Hence, we adopted one layer for IV-2a and five layers for IV-2b in the final
model, balancing efficiency and effectiveness across task types.

5.5.3. Effect of Group Number in GR-KAN

The group number in GR-KAN determines how the input channels are partitioned
for rational function learning and plays a crucial role in balancing expressiveness and
computational cost. We examined group values of 1, 4, 8, and 16 on both datasets. The
subject-wise and average accuracies are shown in Figure 12.

For IV-2a, the average accuracy increased from 87.69% (Group = 1) to 88.93%
(Group = 8), with a concurrent drop in standard deviation from 8.00 to 7.64. Notably,
Subjects A01, A03, and AQ7 achieved top accuracies at Group = 8. Similar trends were ob-
served in IV-2b, where Group = 8 led to the best average accuracy of 91.42%, outperforming
both Group =1 and Group = 16.

These results suggest that Group = 8 achieves the best trade-off between parameter
sharing and feature representation. In contrast, setting the group number too high (e.g., 16)
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can overly fragment the input features, thereby impairing the model’s ability to learn
coherent patterns and degrading performance.
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(a) IV-2a dataset. (b) IV-2b dataset.

Figure 12. Classification performance of MCTGNet under different group numbers in GR-KAN. Red
dots indicate the mean accuracy across subjects.

6. Discussion

The proposed MCTGNet model significantly improves classification accuracy and
cross-session generalization in MI-EEG decoding by integrating multi-scale convolutional
modules, hybrid attention mechanisms, and the GR-KAN classifier. Although the model
achieves strong performance across multiple public datasets, its robustness still has room
for improvement—for instance, whether it can demonstrate consistent performance gains
in cross-subject scenarios remains to be validated.

First, while the multi-scale feature extraction module effectively captures neural
rhythms across different frequency bands, the frequency components induced by MI vary
considerably among individuals. As a result, fixed convolutional kernel combinations
may fail to fully capture critical subject-specific neural variations. Second, we confirm
that the integration of GR-KAN enhances nonlinear modeling capabilities. Although
its computational efficiency significantly outperforms conventional KANS, its structural
complexity still exceeds that of traditional MLPs. Furthermore, during the training phase,
computational overhead may vary depending on GR-KAN'’s parameter configurations,
suggesting potential avenues for optimizing its efficiency.

Moreover, dataset bias remains a notable issue. Existing EEG datasets predominantly
focus on specific population groups, and EEG signals exhibit substantial variability across
different time points, physiological states, and psychological conditions. These factors
may undermine the model’s temporal stability and generalization. To address this, future
work will involve constructing a more diverse, self-collected MI-EEG dataset to improve
adaptability across demographic variations and session intervals.

In addition, integrating MCTGNet with other physiological modalities, such as eye
movement and electromyography (EMG), is expected to extend its decoding capacity
under multimodal input settings, thereby further enhancing robustness and discriminative
power. To meet the requirements of large-scale real-time BCI systems, future efforts will
also focus on optimizing model architecture and inference strategies to ensure low-latency
performance. These efforts collectively pave the way for applying MCTGNet to large-scale,
real-time brain—computer interface systems.

7. Conclusions

This paper presents MCTGNet, a novel end-to-end deep neural network for MI-
EEG decoding. The proposed architecture combines a multi-scale convolutional module
for extracting temporal features across diverse frequency bands, a local-global attention
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encoder based on the Kolmogorov—Arnold Transformer for modeling both local and long-
range dependencies, and a GR-KAN-based classification layer that enhances nonlinearity
and representational capacity. Evaluations on the BCI Competition IV-2a and IV-2b datasets
show that MCTGNet achieves average accuracies of 88.93% and 91.42%, respectively,
outperforming state-of-the-art methods by 3.32% and 1.83%.

Author Contributions: Formal analysis, H.Z. and X.S.; investigation, H.Z. and X.S.; software, H.Z,;
resources, H.Z. and P.L.; data curation, H.Z. and P.L.; writing—original draft preparation, H.Z.;
writing—review and editing, X.L. and P.L.; supervision, Z.L.; project administration, Z.L.; funding
acquisition, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Anhui Natural Science Foundation (No. 2108085MF207), the
Natural Science Research Project of Anhui Educational Committee under Grant (No. 2024AH050054),
the Distinguished Youth Foundation of Anhui Scientific Committee (No. 2208085]J05), and the National
Natural Science Foundation of China (NSFC) (No. 62476004), and the Cloud Ginger XR-1 platform.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this study are publicly available. The IV-2a dataset
can be accessed at https://www.bbci.de/competition/download /competition_iv/BCICIV_2a_gdf.
zip (accessed on 9 October 2024), the IV-2b dataset is available at https://www.bbci.de/competition/
download/competition_iv/BCICIV_2b_gdf.zip (accessed on 9 October 2024), and the OpenBMI
dataset is available at https://gigadb.org/dataset/view/id /100542 /Files_page/1 (accessed on 15
June 2025). No new data were generated in this study.

Acknowledgments: The authors thank the Anhui Natural Science Foundation (No. 2108085MF207),
the Natural Science Research Project of Anhui Educational Committee (No. 2024AH050054), the Distin-
guished Youth Foundation of Anhui Scientific Committee (No. 2208085]05), the National Natural Science
Foundation of China (NSFC) (No. 62476004), and the Cloud Ginger XR-1 platform for support.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Chaudhary, U.; Birbaumer, N.; Ramos-Murguialday, A. Brain—-computer interfaces for communication and rehabilitation. Nat.
Rev. Neurol. 2016, 12, 513-525. [CrossRef] [PubMed]

2. Nicolas-Alonso, L.F.; Gomez-Gil, ]. Brain computer interfaces, a review. Sensors 2012, 12, 1211. [CrossRef] [PubMed]

3. Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J]. EEG-based brain-computer interfaces using motor-imagery: Techniques
and challenges. Sensors 2019, 19, 1423. [CrossRef] [PubMed]

4. Alonso-Valerdi, L.M.; Salido-Ruiz, R.A.; Ramirez-Mendoza, R.A. Motor imagery based brain—-computer interfaces: An emerging
technology to rehabilitate motor deficits. Neuropsychologia 2015, 79, 354-363. [CrossRef] [PubMed]

5. Wierzgala, P.; Zapata, D.; Wojcik, G.M.; Masiak, J. Most popular signal processing methods in motor-imagery BCI: A review and
meta-analysis. Front. Neuroinformatics 2018, 12, 78. [CrossRef] [PubMed]

6. Roy, Y,; Banville, H.; Albuquerque, 1.; Gramfort, A.; Falk, T.H.; Faubert, ]. Deep learning-based electroencephalography analysis:
A systematic review. J. Neural Eng. 2019, 16, 051001. [CrossRef] [PubMed]

7. Lotte, F; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, E. A review of classification algorithms for
EEG-based brain—computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [CrossRef] [PubMed]

8.  Riyad, M,; Khalil, M.; Adib, A. A novel multi-scale convolutional neural network for motor imagery classification. Biomed. Signal
Process. Control. 2021, 68, 102747. [CrossRef]

9. Li, J.; Shi, J.; Yu, P; Yan, X; Lin, Y. Feature-aware domain invariant representation learning for EEG motor imagery decoding. Sci.
Rep. 2025, 15, 10664. [CrossRef] [PubMed]

10. Zhao, W.; Zhang, B.; Zhou, H.; Wei, D.; Huang, C.; Lan, Q. Multi-scale convolutional transformer network for motor imagery

brain-computer interface. Sci. Rep. 2025, 15, 12935. [CrossRef] [PubMed]


https://www.bbci.de/competition/download/competition_iv/BCICIV_2a_gdf.zip
https://www.bbci.de/competition/download/competition_iv/BCICIV_2a_gdf.zip
https://www.bbci.de/competition/download/competition_iv/BCICIV_2b_gdf.zip
https://www.bbci.de/competition/download/competition_iv/BCICIV_2b_gdf.zip
https://gigadb.org/dataset/view/id/100542/Files_page/1
http://doi.org/10.1038/nrneurol.2016.113
http://www.ncbi.nlm.nih.gov/pubmed/27539560
http://dx.doi.org/10.3390/s120201211
http://www.ncbi.nlm.nih.gov/pubmed/22438708
http://dx.doi.org/10.3390/s19061423
http://www.ncbi.nlm.nih.gov/pubmed/30909489
http://dx.doi.org/10.1016/j.neuropsychologia.2015.09.012
http://www.ncbi.nlm.nih.gov/pubmed/26382749
http://dx.doi.org/10.3389/fninf.2018.00078
http://www.ncbi.nlm.nih.gov/pubmed/30459588
http://dx.doi.org/10.1088/1741-2552/ab260c
http://www.ncbi.nlm.nih.gov/pubmed/31151119
http://dx.doi.org/10.1088/1741-2552/aab2f2
http://www.ncbi.nlm.nih.gov/pubmed/29488902
http://dx.doi.org/10.1016/j.bspc.2021.102747
http://dx.doi.org/10.1038/s41598-025-95178-5
http://www.ncbi.nlm.nih.gov/pubmed/40148520
http://dx.doi.org/10.1038/s41598-025-96611-5
http://www.ncbi.nlm.nih.gov/pubmed/40234486

Bioengineering 2025, 12, 775 23 of 24

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Solja¢i¢, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-arnold networks.
arXiv 2024, arXiv:2404.19756. [PubMed]

Aggarwal, S.; Chugh, N. Signal processing techniques for motor imagery brain—computer interface: A review. Array 2019,
1, 100003. [CrossRef]

Miiller-Gerking, J.; Pfurtscheller, G.; Flyvbjerg, H. Designing optimal spatial filters for single-trial EEG classification in a
movement task. Clin. Neurophysiol. 1999, 110, 787-798. [CrossRef] [PubMed]

Ang, KK.; Chin, Z.H.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In
Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), Hong Kong, China, 1-8 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2390-2397.

Thomas, E.; Gautheret, D.; Clerc, M.; Maby, E.; Mattout, J. A new discriminative common spatial pattern method for classification
of motor imagery EEG. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Minneapolis, MN, USA, 3-6 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 5378-5381.

Zhang, Y.; Zhou, G,; Jin, ].; Wang, X.; Cichocki, A. Optimizing spatial patterns with sparse filter bands for motor-imagery based
brain—computer interface. |. Neurosci. Methods 2015, 255, 85-91. [CrossRef] [PubMed]

Morlet, J.; Arens, G.; Fourgeau, E.; Giard, D. Wave propagation and sampling theory—Part II: Sampling theory and complex
waves. Geophysics 1982, 47, 222-236. [CrossRef]

Schirrmeister, R.T.; Springenberg, ].T.; Fiederer, L.D.].; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard,
W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017,
38, 5391-5420. [CrossRef] [PubMed]

Lawhern, V.J.; Solon, A.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural
network for EEG-based brain-computer interfaces. J. Neural Eng. 2018, 15, 056013. [CrossRef] [PubMed]

Tao, W.; Wang, Z.; Wong, C.M,; Jia, Z.; Li, C.; Chen, X.; Chen, C.P; Wan, F. ADFCNN: Attention-based dual-scale fusion
convolutional neural network for motor imagery brain—computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2023,
32,154-165. [CrossRef] [PubMed]

Zhang, H.; Zhao, Z.; Liu, C.; Duan, M,; Lu, Z.; Wang, H. Classification of motor imagery EEG signals using wavelet scattering
transform and Bi-directional long short-term memory networks. Biocybern. Biomed. Eng. 2024, 44, 874-884. [CrossRef]

Ananthi, A.; Subathra, M.S.P; Thomas, G.S.; Sairamya, N.J. Enhanced Eeg Signal Classification for Motor Imagery Based Brain
Computer Interface: A Fusion Approach Using Discrete Wavelet Transform and Quad Binary Pattern. Preprint 2024. [CrossRef]
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4-9 December
2017; Volume 30.

Roy, S.K,; Jamali, A.; Chanussot, J.; Ghamisi, P.; Ghaderpour, E.; Shahabi, H. SimPoolFormer: A two-stream vision transformer
for hyperspectral image classification. Remote. Sens. Appl. Soc. Environ. 2025, 37, 101478. [CrossRef]

Kasoju, A.; Vishwakarma, T. Optimizing Transformer Models for Low-Latency Inference: Techniques, Architectures, and Code
Implementations. Int. J. Sci. Res. (IJSR) 2025, 14, 857-866. [CrossRef]

Shaker, A.; Maaz, M.; Rasheed, H.; Khan, S.; Yang, M.H.; Khan, ES. Swiftformer: Efficient additive attention for transformer-based
real-time mobile vision applications. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris,
France, 1-6 October 2023; pp. 17425-17436.

Song, Y.; Zheng, Q.; Liu, B.; Gao, X. EEG conformer: Convolutional transformer for EEG decoding and visualization. IEEE Trans.
Neural Syst. Rehabil. Eng. 2022, 31, 710-719. [CrossRef] [PubMed]

Zhang, D.; Li, H,; Xie, ]. MI-CAT: A transformer-based domain adaptation network for motor imagery classification. Neural Netw.
2023, 165, 451-462. [CrossRef] [PubMed]

Tan, X.; Wang, D.; Chen, J.; Xu, M. Transformer-based network with optimization for cross-subject motor imagery identification.
Bioengineering 2023, 10, 609. [CrossRef] [PubMed]

Jiang, R.; Sun, L.; Wang, X; Xu, Y. Application of transformer with auto-encoder in motor imagery EEG signals. In Proceed-
ings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China,
1-3 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1-7.

Ying, A.; Lv, J.; Huang, J.; Wang, T.; Si, P; Zhang, Y.; Zhang, J.; Zuo, G.; Xu, ]J. A Feature Fusion Network with Spatial-
Temporal-Enhanced Strategy for the Motor Imagery of Force Intensity Variation. Front. Neurosci. 2025, 19, 1591398. [CrossRef]
[PubMed]

Hong, Y.; Zeng, X.; Wu, F; Wang, ]. MAFNet: Multi-domain Features Attention-Based Fusion Network for Cross-Subject Motor
Imagery Classification. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama,
Japan, 30 June-5 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1-7.


http://www.ncbi.nlm.nih.gov/pubmed/40242606
http://dx.doi.org/10.1016/j.array.2019.100003
http://dx.doi.org/10.1016/S1388-2457(98)00038-8
http://www.ncbi.nlm.nih.gov/pubmed/10400191
http://dx.doi.org/10.1016/j.jneumeth.2015.08.004
http://www.ncbi.nlm.nih.gov/pubmed/26277421
http://dx.doi.org/10.1190/1.1441329
http://dx.doi.org/10.1002/hbm.23730
http://www.ncbi.nlm.nih.gov/pubmed/28782865
http://dx.doi.org/10.1088/1741-2552/aace8c
http://www.ncbi.nlm.nih.gov/pubmed/29932424
http://dx.doi.org/10.1109/TNSRE.2023.3342331
http://www.ncbi.nlm.nih.gov/pubmed/38090841
http://dx.doi.org/10.1016/j.bbe.2024.11.003
http://dx.doi.org/10.21203/rs.3.rs-3921313/v1
http://dx.doi.org/10.1016/j.rsase.2025.101478
http://dx.doi.org/10.21275/SR25409073105
http://dx.doi.org/10.1109/TNSRE.2022.3230250
http://www.ncbi.nlm.nih.gov/pubmed/37015413
http://dx.doi.org/10.1016/j.neunet.2023.06.005
http://www.ncbi.nlm.nih.gov/pubmed/37336030
http://dx.doi.org/10.3390/bioengineering10050609
http://www.ncbi.nlm.nih.gov/pubmed/37237679
http://dx.doi.org/10.3389/fnins.2025.1591398
http://www.ncbi.nlm.nih.gov/pubmed/40620352

Bioengineering 2025, 12, 775 24 of 24

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

Kang, R.; Li, Y. MSA-TFN: Multi-Scale Attention Two-step Fusion Network for EEG-fNIRS Motor Imagery Classification.
In Proceedings of the 2024 2nd International Conference on Computer Network Technology and Electronic and Information
Engineering (CNTEIE), Changchun, China, 6-8 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 64-68.

Xu, H.; She, Q.; Meng, M.; Gao, Y.; Zhang, Y. EFDFNet: A multimodal deep fusion network based on feature disentanglement for
attention state classification. Biomed. Signal Process. Control. 2025, 109, 108042. [CrossRef]

Ma, X.; Chen, W.; Pei, Z.; Zhang, Y.; Chen, ]J. Attention-based convolutional neural network with multi-modal temporal
information fusion for motor imagery EEG decoding. Comput. Biol. Med. 2024, 175, 108504. [CrossRef] [PubMed]

Yang, G.; Liu, J. A novel multi-scale fusion convolutional neural network for EEG-based motor imagery classification. Biomed.
Signal Process. Control. 2024, 96, 106645. [CrossRef]

Jin, J.; Chen, W,; Xu, R.; Liang, W.; Wu, X.; He, X.; Wang, X.; Cichocki, A. Multiscale spatial-temporal feature fusion neural
network for motor imagery brain-computer interfaces. IEEE ]. Biomed. Health Inform. 2024, 29, 198-209. [CrossRef] [PubMed]
Wang, P; Jiang, A.; Liu, X.; Shang, J.; Zhang, L. LSTM-based EEG classification in motor imagery tasks. IEEE Trans. Neural Syst.
Rehabil. Eng. 2018, 26, 2086-2095. [CrossRef] [PubMed]

Luo, Tj.; Zhou, C.1; Chao, F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent
neural network. BMC Bioinform. 2018, 19, 1-18. [CrossRef] [PubMed]

Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,
2,359-366. [CrossRef]

Han, X,; Jiang, F.; Wen, S.; Tian, T. Kolmogorov-Arnold Network-based Enhanced Fusion Transformer for Hyperspectral Image
Classification. Inf. Sci. 2025, 717, 122323. [CrossRef]

Galitsky, B.A. Kolmogorov-Arnold network for word-level explainable meaning representation. Preprints 2024.

Hu, Y,; Liang, Z.; Yang, F; Hou, Q.; Liu, X.; Cheng, M.M. KAC: Kolmogorov-Arnold Classifier for Continual Learning. In
Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 11-15 June 2025; pp. 15297-15307.
Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the International Conference on
Neural Networks, San Diego, CA, USA, 21-24 June 1987; IEEE Press: New York, NY, USA, 1987; Volume 3, pp. 11-14.

Brunner, C.; Leeb, R.; Miiller-Putz, G.; Schlogl, A.; Pfurtscheller, G. BCI Competition 2008-Graz data set A. IEEE Dataport 2008,
16, 34.

Leeb, R.; Brunner, C.; Miiller-Putz, G.; Schlogl, A.; Pfurtscheller, G. BCI Competition 2008-Graz data set B. IEEE Dataport 2008,
16, 1-6.

Lee, M.H.; Kwon, O.Y,; Kim, YJ.; Kim, HK.; Lee, Y.E.; Williamson, J.; Fazli, S.; Lee, S.W. EEG dataset and OpenBMI toolbox for
three BCI paradigms: An investigation into BCI illiteracy. GigaScience 2019, 8, giz002. [CrossRef] [PubMed]

Lotte, F. Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain—computer
interfaces. Proc. IEEE 2015, 103, 871-890. [CrossRef]

Altaheri, H.; Muhammad, G.; Alsulaiman, M. Physics-informed attention temporal convolutional network for EEG-based motor
imagery classification. IEEE Trans. Ind. Inform. 2022, 19, 2249-2258. [CrossRef]

Zhao, W,; Jiang, X.; Zhang, B.; Xiao, S.; Weng, S. CTNet: A convolutional transformer network for EEG-based motor imagery
classification. Sci. Rep. 2024, 14, 20237. [CrossRef] [PubMed]

Zhao, Q.; Zhu, W. TMSA-Net: A novel attention mechanism for improved motor imagery EEG signal processing. Biomed. Signal
Process. Control. 2025, 102, 107189. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.bspc.2025.108042
http://dx.doi.org/10.1016/j.compbiomed.2024.108504
http://www.ncbi.nlm.nih.gov/pubmed/38701593
http://dx.doi.org/10.1016/j.bspc.2024.106645
http://dx.doi.org/10.1109/JBHI.2024.3472097
http://www.ncbi.nlm.nih.gov/pubmed/39352826
http://dx.doi.org/10.1109/TNSRE.2018.2876129
http://www.ncbi.nlm.nih.gov/pubmed/30334800
http://dx.doi.org/10.1186/s12859-018-2365-1
http://www.ncbi.nlm.nih.gov/pubmed/30268089
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/j.ins.2025.122323
http://dx.doi.org/10.1093/gigascience/giz002
http://www.ncbi.nlm.nih.gov/pubmed/30698704
http://dx.doi.org/10.1109/JPROC.2015.2404941
http://dx.doi.org/10.1109/TII.2022.3197419
http://dx.doi.org/10.1038/s41598-024-71118-7
http://www.ncbi.nlm.nih.gov/pubmed/39215126
http://dx.doi.org/10.1016/j.bspc.2024.107189

	Introduction
	Related Work
	Feature Extraction in MI-EEG Decoding
	Feature Fusion Strategies
	Classifier for MI-EEG Decoding

	Preliminary
	Transformer Encoder
	Kolmogorov–Arnold Representation Theorem and Network

	Methodology
	Algorithm Overview
	Multi-Scale Feature Extraction Module
	KAT with Local-Global Attention Module
	Classification Layer Module

	Performance Evaluation
	Evaluation Setup
	Dataset
	Data Augmentation

	Overall Performance
	Ablation Experiments
	Classifier Performance Comparison
	Impact Factors
	Effect of Convolution Kernel Size Combinations
	Effect of the Number of LG-KAT Layers
	Effect of Group Number in GR-KAN


	Discussion
	Conclusions
	References

