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Abstract

The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced
novel methodologies for the detection, classification, prognosis, and treatment evaluation
of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging
continues to evolve, its potential to enhance early detection, refine diagnostic precision, and
optimize treatment strategies becomes increasingly evident. However, despite significant
progress, various challenges remain, particularly in terms of clinical applicability, generaliz-
ability, interpretability, and integration into routine practice. Understanding the current state
of research is crucial for identifying gaps in the literature and exploring opportunities for
future advancements. This literature review aims to provide a comprehensive overview of the
existing studies on AI applications in PDAC, with a focus on disease detection, classification,
survival prediction, treatment response assessment, and radiogenomics. By analyzing the
methodologies, findings, and limitations of these studies, we aim to highlight the strengths of
AI-driven approaches while addressing critical gaps that hinder their clinical translation. Fur-
thermore, this review aims to discuss future directions in the field, emphasizing the need for
multi-institutional collaborations, explainable AI models, and the integration of multi-modal
data to advance the role of AI in personalized medicine for PDAC.

Keywords: artificial intelligence; radiomics; pancreatic ductal adenocarcinoma; medical
imaging; radiogenomics; medical image analysis; computer vision

1. Introduction
Pancreatic cancer (PC) is the third-leading cause of cancer death in men and women

combined. As pancreatic malignant tumors are aggressive, the 5-year survival rate is hovering
at around 5–10%. Such dire statistics are largely attributed to poor prognosis and limited
treatment options. Early detection is critical for improving patient outcomes, as the only
curative therapeutic option is surgical resection [1]. Given the aggressive nature of pancreatic
cancer, many tumors are diagnosed at an advanced stage where surgical resection is not
possible or tumor metastasis has taken place. Consequently, there is a pressing need for
innovative methods to enhance diagnostic accuracy and increase early detection.

Radiomics has emerged as a promising field that capitalizes on advanced image analysis
to quantify tumor phenotypes. Originally developed as a way to mine high-dimensional
data from standard medical images, radiomics allows researchers and clinicians to extract
and interpret complex textural, shape-based, and intensity-based features. In pancreatic
cancer, radiomic techniques have shown potential in discriminating between malignant
and benign lesions, predicting treatment response, and stratifying patient prognosis [2]. By
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transforming medical images into a dataset of quantifiable metrics, radiomics hold the promise
of uncovering imaging biomarkers that can guide personalized clinical decision-making.

Parallel to the rise in radiomics, the field of artificial intelligence (AI) has experienced
rapid growth, particularly with the advent of deep learning approaches. Deep learning,
rooted in neural networks (NNs) capable of automatically learning feature representa-
tions, has revolutionized image-based tasks in medical applications [3]. From detecting
microcalcifications in mammograms to segmenting brain tumors in MRI scans, AI-driven
models—especially convolutional neural networks (CNNs)—have demonstrated a human-
level performance in various diagnostic contexts. When applied to pancreatic cancer, these
systems aim to identify early signs of neoplasia and differentiate subtle morphological
patterns that may be challenging for human observers to detect [4].

An emerging and increasingly explored concept is the combination of radiomics
with deep learning, sometimes referred to as “deep radiomics” [5]. The rationale behind
this integration is clear: while radiomics provide handcrafted, interpretable features that
reflect known statistical or geometric properties, deep learning can uncover latent patterns
and relationships directly from data without explicit feature engineering. By merging
these complementary approaches, researchers hope to maximize predictive performance,
improve model robustness, and expand the range of discovered imaging biomarkers. This
synergistic strategy could enhance early pancreatic cancer detection, refine prognostic
assessments, and facilitate the development of adaptive treatment protocols [6,7].

To this end, this work presents a comprehensive review of advancements in artifi-
cial intelligence and radiomics for pancreatic ductal adenocarcinoma (PDAC). We place
particular emphasis on studies that explore the integration of radiomic features with ma-
chine learning and deep learning methods to improve diagnostic and prognostic accuracy.
Rather than offering a broad overview, this review aims to provide a more focused and
in-depth analysis of how handcrafted radiomic features and learned representations have
been applied, individually and in combination, across a range of clinical applications.
We also highlight the role of multi-modal imaging, multi-omics approaches such as ra-
diogenomics, and advanced preprocessing pipelines to offer a detailed understanding of
current methodologies, challenges, and opportunities in the field.

The rest of this work is structured as follows: Section 2 reviews related works and high-
lights the specific contributions of this study. Section 3 presents the research methodology.
Section 4 provides a detailed overview of the literature organized around clinical applica-
tions, including disease classification, detection, survival prediction, treatment response,
and radiogenomics, along with a focused discussion on deep radiomics approaches due to
their broad applicability across multiple clinical tasks. Section 5 summarizes the datasets,
commonly used features, and methodologies reported in the literature. Section 6 discusses
the role of AI, deep learning, and radiomics in PDAC, along with current challenges and
limitations. Finally, Section 7 concludes the paper.

2. Related Works and Contributions
Several recent reviews have explored the application of radiomics and artificial intelli-

gence (AI) methods in pancreatic cancer imaging, each offering distinct insights but also
exhibiting limitations that our current review addresses comprehensively.

Casà et al. (2022) [8] examined the impact of radiomics on diagnosing and staging pan-
creatic malignancies, with a strong emphasis on feature selection and validation. However,
their focus was confined to CT-based staging and offered little coverage of deep learning
or cross-modality fusion methods, leaving significant gaps that our review addresses by
integrating multi-modality (CT, MRI, and PET) approaches. Castiglioni et al. (2021) [9]
discussed the evolution of AI in medical imaging from conventional machine learning to
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deep learning, outlining the technical advances but not specifically focusing on pancreatic
imaging or the synergy between handcrafted radiomics features and CNN-based embed-
dings. Building upon their technical overview, our review instead tailors these advanced
architectures to pancreatic cancer, showing how radiomics can be merged with learned
representations for improved diagnostic accuracy.

Guiot et al. (2021) [10] offered a generalized discussion on radiomics for personalized
medicine across various disease sites, including broad workflow descriptions and potential
applications. Yet they did not delve into the unique aspects of pancreatic cancer detection and
classification, nor did they explore deep learning–radiomics fusion in depth—both central
themes of our work. Yao et al. (2023) [11] provided a more pancreas-specific survey, reviewing
convolutional neural networks and basic radiomics methods but lacking a thorough exposition
of how handcrafted radiomic and deep learning features can be effectively combined. Our
review aims to fill that gap by demonstrating explicit fusion strategies, detailing interpretability
mechanisms, and illustrating robust external validation steps.

Huang et al. (2024) [12] reviewed AI applications primarily for tumor detection,
segmentation, and prognosis in pancreatic cancer, underscoring high sensitivities that
approached or matched expert radiologists. Despite this valuable insight into AI’s poten-
tial, they did not substantially address the notion of fusing radiomics with deep learning
embeddings. By contrast, we systematically review such integrative models, highlighting
the ways in which combining handcrafted and learned features can boost performance
across multiple imaging modalities. Hayashi et al. (2021) [13] framed artificial intelligence
in the context of pancreatic ductal adenocarcinoma (PDAC), focusing on microenvironmen-
tal factors and early detection via omics-based approaches. Nevertheless, they excluded
benign pancreatic conditions and largely omitted multi-modal or fusion pipelines. Here,
we expand to include benign and cystic lesions and examine advanced model pipelines
that unify radiomics with deep learning to meet real-world challenges.

Abunahel et al. (2020) [14] conducted a systematic review specifically targeting
pancreas-based radiomics, identifying reproducibility issues and commonly used imag-
ing features but stopping short of addressing deep learning or fusion frameworks. Our
work bridges that shortfall by incorporating these cutting-edge methods, exploring how
radiomics can be augmented with deep neural networks to tackle detection, classification,
and survival endpoints. A more introductory paper by Ahmed et al. (2023) [15] presented
fundamental AI concepts (e.g., convolutional architectures, training paradigms), serving as
a helpful primer but offering limited discussion on large-scale external validations, multi-
omics, or the synergy between handcrafted radiomics and CNNs. Our review, therefore,
delves into these advanced topics, demonstrating how multi-institutional data harmo-
nization and integrative pipelines can address heterogeneity and interpretability concerns.
Finally, Avanzo et al. (2017) [16] laid out key concepts in radiomics, highlighting early
insights into reproducibility and the potential for large-scale feature extraction in oncol-
ogy. Although foundational, their work preceded modern deep learning-based feature
extraction and synergy with radiomics specifically for pancreatic cancer, which our current
review covers extensively.

To this end, in this review, we included studies that used radiomics or artificial intelli-
gence techniques to study pancreatic cancer, while also applying more stringent criteria to
identify and analyze studies that implemented fusion models, which are approaches that
combine radiomics with machine learning or deep learning to improve diagnostic and prog-
nostic accuracy. While previous reviews have provided broad overviews of AI-based methods
or radiomics in isolation, we place a greater emphasis on exploring fusion models in depth,
investigating how the combination of handcrafted radiomic features and learned representa-
tions can enhance accuracy, interpretability, and robustness. We also considered multi-modal
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imaging data (CT, MRI, and PET), multi-omics (radiogenomics), and advanced preprocessing
pipelines to provide a comprehensive view of cutting-edge research. This approach allowed
us to highlight developments in emerging applications such as subregional texture analysis,
automated tumor segmentation, and multi-institutional external validations.

3. Research Methodology
A comprehensive literature search was performed using the PubMed database by com-

bining the subject terms “Radiomics”, “Machine Learning”, “Deep Learning”, “Artificial
Intelligence”, and their associations with “Pancreatic Cancer”, “PDAC”, “Tumor Detec-
tion”, “Classification”, “Survival Prediction”, “Treatment Response”, “Radiogenomics”,
and “Fusion Models”. The initial search took place in March 2025, and the aim was to
identify original research articles focusing on radiomics and AI-related methods applied to
pancreatic cancer.

We applied the following inclusion criteria:

1. Studies that implemented radiomics or deep learning-based radiomic analyses.
2. Investigations covering uni- or multi-modality imaging approaches (e.g., CT, MRI,

and PET).
3. Fusion models integrating radiomics with machine learning or deep learning techniques.
4. Research exploring single- or multi-omics (e.g., radiogenomics).
5. English-language publications that reported human subjects’ data on pancreatic cancer.

All titles and abstracts were screened initially to exclude off-topic work. Articles
deemed relevant then underwent an independent full-text review to confirm eligibility
based on the research scope. Exclusion criteria encompassed studies from unrelated fields,
non-English publications, review articles, conference abstracts, case reports, duplicate
citations, and articles lacking human data in the context of pancreatic cancer radiomics.

It should be noted that PubMed was chosen exclusively due to its reliable coverage
of peer-reviewed biomedical studies, ensuring that the included studies were clinically
relevant, human-subject focused, and of high scientific quality. Given our emphasis on
translational applications of AI in medical imaging and oncology, PubMed offered a
rigorous and curated source most aligned with our review’s scope. While multi-database
research may have captured additional publications, we prioritized clinical depth and
reproducibility over broader coverage, believing this strategy could sufficiently support
the objectives of our review.

Our search resulted in 124 papers. The PRISMA 2020 standard was followed, including
the extensive exclusion criteria mentioned above. The PRISMA 2020 flow diagram is
illustrated in Figure 1. A pie chart of the papers regarding their topic of focus is illustrated
in Figure 2. As it can be observed, the main topics identified in the literature are as
follows: disease classification, disease detection, survival prediction, treatment response,
radiogenomics, and deep radiomics fusion models. In what follows, a taxonomy is applied
based on these topics (clinical applications) towards providing a comprehensive review of
related studies. It should be clarified that deep radiomics is a methodological approach,
yet in this work, it is placed within clinical applications due to the fact that deep radiomics
is increasingly applied in real-world clinical tasks.
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Figure 1. The PRISMA 2020 flow diagram.

Figure 2. Topics of the selected literature.

4. Comprehensive Review of the Literature by Clinical Application
4.1. Disease Classification

He et al. (2019) [17] differentiated atypical non-functional pancreatic neuroendocrine
tumors (NF-pNETs) from PDAC in 147 patients using a CT-based radiomics framework
with 647 extracted features, ultimately retaining 7 through LASSO selection. Their inte-
grated model (clinicoradiological + radiomics) achieved an AUC of 0.884, outperforming
a clinicoradiological approach alone (0.775). However, the study itself suggested some
limitations that may have affected their results. According to the author, the study was
retrospective and only images in 5 mm thickness were available. Turning to cystic lesions,
Xie et al. (2020) [18] analyzed 57 cases (31 mucinous cystic neoplasms, 26 macrocystic
serous cystadenomas) and extracted 1942 CT texture features. By combining conventional
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radiological and radiomics information, they reached 98.2% accuracy (AUC = 0.994). On
the drawback, the author pointed out some limitations that may have affected the results
of their study. A selection bias may have been introduced by the inclusion criteria, the
whole study was performed on one single manufacturer, and only portal-phase images
were analyzed. Mashayekhi et al. (2020) [19] then distinguished functional abdominal pain,
recurrent acute pancreatitis, and chronic pancreatitis in 56 patients using 54 radiomic fea-
tures, ultimately selecting 11 key predictors and achieving an 82.1% overall accuracy with
a one-vs-one IsoSVM. Meanwhile, Attiyeh et al. (2018) [20] focused on 103 preoperative
CT scans of branch duct IPMNs, extracting 256 features and employing a Random Forest
that improved risk stratification (AUC = 0.79) when quantitative mural nodularity features
were added.

Liu et al. (2022) [21] integrated multiparametric MRI radiomics (6 selected features
from 960) with clinical biomarkers (CA19-9, CEA) in 102 patients (54 PC, 48 MFCP), boost-
ing the AUC to 0.960 versus 0.799 for clinical data alone. Kulali et al. (2018) [22] used
DWI-MRI in 30 nonfunctional PanNET patients, showing high-grade tumors had signifi-
cantly lower ADC values, aiding preoperative tumor grading. Park et al. (2020) [23] applied
a radiomics-based Random Forest to 182 dual-phase CTs (89 autoimmune pancreatitis,
93 PDAC), attaining a 95.2% accuracy (AUC = 0.975) in distinguishing AIP from PDAC.
Lastly, Wei et al. (2019) [24] used an SVM with 22 selected features (from 409) to differentiate
serous cystic neoplasms from other pancreatic cystic neoplasms in 260 MDCT scans, achiev-
ing an AUC of 0.767 (cross-validation) and 0.837 (independent validation)—all reinforcing
the value of radiomics-driven machine learning for more precise, non-invasive pancreatic
lesion characterization.

Reinert et al. (2020) [25] investigated 95 patients (53 PDAC, 42 PNEN) using portal-
venous phase CT (Siemens SOMATOM), extracting 92 radiomic features with PyRadiomics.
They identified eight key first-/second-order texture features (e.g., median, energy, and
GLCM) and built a multivariate logistic regression model that achieved a 75.8% accuracy
(sensitivity 79.2%, specificity 71.4%). However, the author pointed out some limitations
that may have affected the results in their study. Image data were collected on different
multi-slice scanners, but they used a similar examination and contrast agent injection
protocol. Moreover, morphologic imaging features were not evaluated in the study. Next,
Polk et al. (2020) [26] examined 51 IPMN cases (29 malignant, 22 benign) with multiphase CT,
extracting 39 radiomic features per phase. Their final radiomics + International Consensus
Guidelines (ICG) model reached an AUC of 0.93 (5-fold cross-validation AUC = 0.90), outper-
forming ICG alone (AUC = 0.817). Focusing on MRI, Flammia et al. (2023) [27] studied 50 BD-
IPMN patients (31 low-risk, 19 high-risk) with at least two contrast-enhanced scans, extracting
107 features per sequence. Using LASSO, they obtained up to AUC = 0.99 (T1W pre-contrast)
for predicting malignant potential. Meanwhile, Benedetti et al. (2021) [28] analyzed 39 PanNET
patients’ pre-surgical CT scans, extracting 69 radiomic features (ceCT + non-ceCT) via MATLAB.
Sphericity (AUC = 0.79), tumor volume, and voxel-alignment features were key predictors for
grading and metastasis risk. Tikhonova et al. (2023) [29] then assessed 91 PDAC patients on
arterial/portal/delayed phases using LifEx (376 texture features), selecting 5 via LASSO and
achieving an AUC = 0.75 for grade ≥ 2 tumors.

Zhang et al. (2022) [30] targeted 138 chronic pancreatitis patients (67 MFCP, 71 PDAC)
who underwent contrast-enhanced multidetector CT; after manual 3D Slicer segmentation
and LASSO-driven feature selection, their radiomics-based nomogram reached an AUC
up to 0.93. Kim et al. (2015) [31], in contrast, used no radiomics but examined 167 lesions
from 161 pancreatic neuroendocrine neoplasm patients with dynamic ceCT. They found a
portal enhancement ratio < 1.1 plus imaging features (e.g., poorly defined margins, bile
duct dilatation) accurately distinguished Grade 3 NEC (92.3% sensitivity, 80.5% specificity).
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However, the author reported some limitations. In their study, various CT scanners were
used with a relatively thick reconstruction thickness. Additionally, two contrast agents with
different concentrations were used. Li et al. (2023) [32] automated tumor segmentation in
512 MRI scans (123 PASC, 389 PDAC) to extract radiomic features with PyRadiomics; their
mixed linear discriminant model achieved an AUC = 0.94 in validation, outperforming
clinical-alone or radiomics-alone approaches. Lastly, Chu et al. (2022) [33] investigated
214 patients with confirmed PCNs (IPMNs, MCNs, SCAs, SPNs, and PanNETs), extracting
488 venous-phase ceCT features. A Random Forest classifier attained an AUC = 0.940,
surpassing an expert radiologist’s AUC = 0.895, thereby underscoring the capacity of
radiomics-based AI to enhance pancreatic lesion diagnosis.

Yang et al. (2022) [34] retrospectively analyzed 110 patients (63 SCNs, 47 MCNs,
including 3 mucinous cystadenocarcinomas) who underwent unenhanced and enhanced
CT, using both manual and semi-automatic rectangular segmentation to generate single-
and multi-channel inputs. By comparing multiple feature extraction methods (wavelet,
LBP, HOG, GLCM, Gabor, ResNet, and AlexNet) and classifiers (KNN, Softmax, Bayes,
and Random Forest), their Multi-channel-Multiclassifier-Random Forest-ResNet (MMRF-
ResNet) model achieved the best performance, with AUC = 0.98, 91.63% sensitivity, 93.80%
specificity, and 92.69% accuracy. In a similar context, Chen et al. (2021) [35] employed a
CT-based radiomics nomogram in 89 patients (31 SCNs, 30 IPMNs, and 28 MCNs), ex-
tracting 710 features from plain, arterial, and portal phases. LASSO selection plus logistic
regression yielded a three-phase radiomics signature (AUC = 0.960 in training, 0.817 in valida-
tion), further enhanced when integrated with clinical features. Bian et al. (2021) [36] investigated
MRI-based radiomics in 157 surgically confirmed non-functioning pancreatic neuroendocrine
tumors (NF-pNETs), extracting arterial and portal phase features and using LASSO to build a
seven-feature rad-score linked to tumor grading (AUC = 0.775). Focusing on unenhanced CT,
Ren et al. (2020) [37] examined 109 patients (30 MFP, 79 PDAC) and balanced the dataset via
SMOTE (90 MFP, 120 PDAC). Of the 396 extracted features, four selected by mRMR powered a
Random Forest model with 93.3% accuracy (LGOCV sensitivity = 82.6%, specificity = 80.8%).
The limitations referred to are that, due to the nature of their study, a retrospective study,
selection bias was implemented. The used dataset was relatively small, while two different
scanners were used. Van der Pol et al. (2019) [38] considered 43 resected PNETs vs. 28 resected
pancreatic RCC metastases across multiple centers, noting that PNETs were larger, more
often calcified, and had higher texture entropy (6.32 vs. 5.96, p = 0.004). Their final model
(tumor size + entropy) reached an AUC of 0.77.

Zhang et al. (2023) [39] tackled 143 pathologically confirmed PCNs (SCNs, MCNs,
and IPMNs), splitting them into development (n = 102) and test (n = 41) cohorts, extracting
1218 radiomics features, and achieving up to an 80.4% accuracy for multiclass classification
via a Random Forest. Meanwhile, Chang et al. (2020) [40] analyzed 301 PDAC patients
(split 151/150 for training/test, plus 100 external) using IBEX to extract parenchymal-phase
CT features and build a LASSO-based radiomics signature, reporting AUCs of 0.961/0.910
internally and 0.770 externally for histological-grade prediction. Turning to endoscopic
ultrasound, Zhu et al. (2013) [41] used EUS images from 388 patients (262 PC, 126 CP),
extracting 105 texture features, selecting 16 with SFS, and training an SVM that averaged
a ~94.26% accuracy. Săftoiu et al. (2012) [42] examined EUS elastography in 258 patients
(211 pancreatic adenocarcinoma, 47 chronic pancreatitis) across 13 European centers, using
a multilayer perceptron ANN on hue histogram data and achieving a 91.14% training
accuracy (84.27% testing) with AUC = 0.94. Lastly, Kang et al. (2015) [43] differentiated
pancreatic RCC metastases (37 lesions) from hypervascular PNETs (31 lesions) in 44 patients
using arterial and portal-phase CT; assessing relative percentage washout (RPW), they
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found a cutoff of 19% that yielded a ~84% accuracy, demonstrating a non-invasive means
of discriminating pRCC from pNETs.

Hanania et al. (2016) [44] retrospectively analyzed 53 surgically confirmed IPMNs
(34 high-grade, 19 low-grade), extracting 360 CT-based intensity, texture, and shape fea-
tures. GLCM-based texture metrics proved most discriminative, and a 14-feature logistic
regression model achieved AUC = 0.96, outperforming the Fukuoka criteria. Proietto
Salanitri et al. (2022) [45] then applied a Vision Transformer (ViT) to MRI scans from
139 patients (normal, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma),
surpassing CNNs (AlexNet, DenseNet-121, ResNet18, EfficientNet-b5, and MobileNet-v2)
with 70% accuracy. Focusing on malignancy classification, Gai et al. (2022) [46] studied
77 CECT scans (33 malignant, 44 benign), extracting 1267 features via MaZda, selecting
12 via LASSO, and employing an SVM with leave-one-case-out cross-validation to reach
AUC = 0.750. Meanwhile, Pawlik et al. (2008) [47] analyzed data from 203 patients at a
single-day multidisciplinary clinic, finding that 23.6% of treatment plans changed, high-
lighting the clinical impact of expert re-review.

Chakraborty et al. (2018) [48] investigated 103 BD-IPMNs on preoperative CECT,
extracting both standard texture and radiographically inspired features (EBF, EIF, etc.).
A Random Forest combining imaging and clinical data reached AUC = 0.81, improving
on radiomics alone (AUC = 0.77). Shifting to tumor subtypes, Zhang et al. (2022) [49]
differentiated PDAC (n = 156) from pNET (n = 82) using 48 LIFEx features. Testing
45 feature selection/classifier pairs, they found the GBDT+Random Forest optimal
(AUC = 0.930 in validation). Figure 3 presents an example of disease classification, illus-
trating the differentiation of PDAC and pNET lesions. Ma et al. (2022) [50] then analyzed
175 patients (151 PC, 24 CP) with 1037 CECT radiomics features and clinical biomarkers;
their combined (arterial + venous) logistic model achieved AUC = 0.980. Finally, Vaiya-
puri et al. (2022) [51] proposed IDLDMS-PTC for 500 CT images (250 with pancreatic
tumors, 250 controls), merging Emperor Penguin Optimizer-based segmentation and a
MobileNet autoencoder. Their approach attained 99.35% accuracy, surpassing traditional
CNN variants, and underscoring how deep learning-driven strategies can dramatically
bolster pancreatic pathology classification.

   

Figure 3. Examples of (A) a 51-year-old male with PDAC with a lesion in the pancreatic head;
(B) a 60-year-old female with pNET with a lesion in the pancreatic body. Pink areas in the image
correspond to the delineated ROIs [49].

Wang et al. (2022) [52] examined 139 PNET patients (83 training, 56 validation) using
up to 1133 radiomics features from triple-phase CT scans, selecting eight via LASSO and
integrating them with T-stage and MPD/BD dilation in an SVM-linear model; their best
nomogram (plain-phase CT) achieved an AUC of 0.919 (training) and 0.875 (validation).
The author pointed out, as a major limitation, the relatively insufficient sample size of
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just 139 PNET patients. Shifting to MRI, Shi et al. (2020) [53] assessed 66 cases (31 PNETs,
35 SPTs) with T2WI and DKI (Dapp, Kapp) sequences, extracting 195 features and using a
logistic model (incorporating age, sex, and radiomics signature) that reached an AUC of
0.97 (training) and 0.86 (validation).

Focusing on mass-forming pancreatitis vs. PDAC, Ren et al. (2019) [54] evaluated
109 CECT scans (30 MFP, 79 PDAC), extracting 396 features; a combined model (Sur-
faceArea, Percentile40, LongRunEmphasis, and GLCMEntropy) delivered a 0.98 AUC,
with 94% sensitivity and 92% specificity. For cystic lesions, Yang et al. (2019) [55] studied
78 patients (53 SCAs, 25 MCAs) via LIFEx-derived texture features, training a Random
Forest that achieved an AUC of 0.77 (training) and 0.66 (validation) with 2 mm slices and
0.75 for 5 mm in validation.

Turning to deep learning, Li et al. (2019) [56] employed DenseNet on 206 CECT scans
spanning four subtypes (IPMN, MCN, SCN, and SPT), omitting manual segmentation
altogether; the model attained a 72.8% overall accuracy. Bevilacqua et al. (2021) [57] used
[68Ga]Ga-DOTANOC PET/CT in 51 PanNET patients, extracting first-/second-order SUV
features. Their best model, focusing on normalized homogeneity and entropy, reached an
AUC of 0.90. Similarly, Gu et al. (2019) [58] recruited 138 PNETs from two institutions,
extracting 853 arterial/venous-phase features, then fusing them into a radiomics signature
integrated with a tumor margin. This nomogram yielded an AUC of 0.974 (training) and
0.902 (validation).

Kuwahara et al. (2019) [59], meanwhile, deployed a ResNet50-based CNN on 3970 EUS
images from 50 IPMN patients (27 benign, 23 malignant), achieving AUC = 0.98, notably
surpassing human diagnosis (56% accuracy). Limitations included the nature of the study,
which was retrospective and single-center. Moreover, the sample size was relatively small,
while the authors tried to overcome this issue with a 10-fold cross-validation technique.
Finally, Tobaly et al. (2020) [60] analyzed 408 IPMN patients (181 low-grade, 128 high-
grade, and 99 invasive), extracting 107 features via PyRadiomics and training a LASSO
logistic regression. Their radiomics-only approach reached AUC = 0.84 (training) and
0.71 (validation), while including surgical indication variables boosted the validation AUC
to 0.75—further underscoring the utility of radiomics for IPMN risk stratification.

Li et al. (2018) [61] retrospectively compared 127 patients with PDAC (n = 50) vs.
pNETs (n = 77), extracting histogram-based texture features (e.g., percentiles, skewness)
from portal-phase CT using FireVoxel. Their top combination (fifth percentile + skewness)
reached an AUC = 0.887 (90% sensitivity, 80% specificity) for distinguishing atypical
pNETs. In another risk stratification approach, Hernandez-Barco et al. (2023) [62] analyzed
575 resected IPMN patients (53.4% low-grade) using 18 clinical/imaging variables in a
linear SVM (IPMN-LEARN), scoring an AUC = 0.82 with 77.4% accuracy, potentially
reducing unnecessary IPMN surgeries.

Moving to MRI, Cui et al. (2021) [63] studied 202 BD-IPMN patients across three
centers, extracting 1312 T1-w/T2-w/CET1-w features and selecting 9 via LASSO. Their
radiomic signature, integrated with CA19-9 and MPD size, yielded AUCs up to 0.903 (train-
ing) and 0.884/0.876 (two external validations). Guo et al. (2018) [64] compared 42 CECT
scans (28 PDAC, 14 PNEC) and found PNECs had better defined margins, less parenchy-
mal atrophy, and distinct texture (lower entropy, higher uniformity), with arterial/portal
contrast ratios showing AUC = 0.98–0.99 for discrimination.

Tong et al. (2022) [65] pivoted to a contrast-enhanced ultrasound (CEUS), applying a
ResNet-50 to 558 patients (351 training, 109 internal validation, 2 external cohorts) for PDAC
vs. CP classification, achieving AUCs of 0.953–0.986 and enhancing radiologists’ sensitivity
in independent reader tests. Finally, Liang et al. (2022) [66] examined 193 pancreatic
cystic neoplasm (PCN) cases—serous (n = 99), mucinous (n = 55), and intraductal papillary
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mucinous (n = 39)—extracting 1067 CECT-based radiomics features plus transfer learning-
based deep features. Their fused model (radiomics + DL + clinical/morphological) reached
AUC = 0.916 for SCAs and 0.973 for MCA vs. IPMN, underlining the value of integrated
multi-modal analytics in preoperative PCN classification.

Table 1 includes details of all the selected works on AI-based radiomics for disease
classification, including used datasets, software, extracted features, machine learning (ML)
or deep learning (DL) models, and evaluation results.

Table 1. Details of studies regarding the use of radiomics and AI methods for disease classification.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

He et al.
(2019) [17]

147 patients (80 PDAC, 67
NF-pNET)

ITK-SNAP,
MATLAB, R 7 SVM, Random

Forest Integrated model AUC = 0.884

Xie et al.
(2020) [18] 57 patients (MCN vs. MaSCA) MRIcron 1942 Logistic

Regression AUC = 0.994, Acc. = 98.2%

Mashayekhi
et al. (2020)

[19]
56 patients (FAP, RAP, and CP) N/A ** 54 IsoSVM Acc. = 82.1%, AUC = 0.77–0.95

Attiyeh et al.
(2018) [20] 103 patients (BD-IPMNs) N/A Quantitative

imaging features Random Forest AUC = 0.79

Liu et al.
(2022) [21] 102 patients (PC vs. MFCP) Pyradiomics 6 LASSO

Regression
AUC = 0.973 (train),

0.960 (validation)

Kulali et al.
(2018) [22]

30 patients (NF-pNETs and
hepatic metastases) N/A N/A N/A

Lower ADC values correlated
with high Ki-67 index,

MRI predictive tool
Park et al.
(2020) [23] 182 patients (89 AIP, 93 PDAC) N/A 431 Random Forest AUC = 0.975, Acc. = 95.2%

Wei et al.
(2019) [24] 260 patients (SCNs vs. PCNs) N/A 409 SVM AUC = 0.837 (validation)

Reinert et al.
(2020) [25]

95 patients (53 PDAC,
42 PNENs) Pyradiomics 92 Logistic

Regression AUC = 0.79, Acc. = 75.8%

Polk et al.
(2020) [26] 51 patients (IPMNs) Healthmyne 39 Logistic

Regression AUC = 0.93 (with ICG criteria)

Flammia et al.
(2023) [27] 50 patients (BD-IPMNs) 3D Slicer 107 LASSO

Regression AUC = 0.80–0.99

Benedetti et al.
(2021) [28]

39 patients (pancreatic
neuroendocrine tumors)

CGITA
(MATLAB) 69 N/A

Sphericity AUC = 0.79, tumor
volume AUC = 0.79, and

voxel-alignment
AUC = 0.80–0.85

Tikhonova et al.
(2022) [29] 91 patients (PDAC grading) LifEx 5 LASSO

Regression
AUC = 0.75 (grade ≥ 2),

AUC = 0.66 (grade 3)
Zhang et al.
(2022) [30] 138 patients (MFCP vs. PDAC) Pyradiomics LASSO selected

features
Logistic

Regression
AUC = 0.91 (train),

0.93 (validation)

Kim et al.
(2015) [31]

167 lesions (161 patients,
pancreatic neuroendocrine

neoplasms)
SPSS 18 N/A N/A

Portal enhancement ratio < 1.1
achieved 92.3% sensitivity,

80.5% specificity

Li et al.
(2023) [32] 512 patients (PASC vs. PDAC) Pyradiomics N/A LDA

AUC = 0.94 (validation),
sensitivity = 67.57%, and

specificity = 97.44%
Chu et al.

(2022) [33] 214 patients (PCNs) N/A 488 Random Forest AUC = 0.940

Yang et al.
(2022) [34] 110 patients (SCNs vs. MCNs) N/A N/A MMRF-ResNet AUC = 0.98, Acc. = 92.69%

Chen et al.
(2021) [35] 89 patients (SCNs vs. PCNs) N/A 710 Logistic

Regression
AUC = 0.960 (train),

0.817 (validation)
Bian et al.
(2021) [36]

157 patients
(NF-pNETs grading) N/A 7 LASSO

Regression AUC = 0.775

Ren et al.
(2020) [37] 109 patients (MFP vs. PDAC) N/A 396 Random Forest Acc. = 93.3%, sensitivity = 92.2%,

and specificity = 94.2%
Van der Pol
et al. (2019)

[38]

71 patients (PNETs vs.
RCC metastases) N/A Entropy and

tumor size
Logistic

Regression
AUC = 0.77, sensitivity = 71.4%,

and specificity = 79.1%

Zhang et al.
(2023) [39] 143 patients (PCNs subtypes) N/A 1218 Random Forest

Acc. = 80.4% (train), 70.7%
(test), and binary models

AUC = 0.914–0.926
Chang et al.
(2020) [40] 301 patients (PDAC grading) IBEX LASSO selected

features SVM AUC = 0.961 (train), 0.910 (test),
and 0.770 (external validation)
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Table 1. Cont.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Zhu et al.
(2013) [41] 388 patients (PC vs. CP) N/A 105 SVM Acc. = 94.26%, sensitivity = 96.25%,

and specificity = 93.38%
Săftoiu et al.
(2012) [42]

258 patients (pancreatic cancer
vs. CP) N/A Hue histogram

features
MLP Neural

Network
AUC = 0.94, Acc. = 91.14%
(train), and 84.27% (test)

Kang et al.
(2015) [43] 44 patients (pRCC vs. pNETs) N/A

Relative
Percentage

Washout (RPW)

Threshold-based
classification

Acc. = 83.8%, sensitivity = 83.8%,
and specificity = 83.9%

Hanania et al.
(2016) [44]

53 patients (34 HG-IPMNs,
19 LG-IPMNs) N/A 360 Logistic

Regression
AUC = 0.96, sensitivity = 97%,

and specificity = 88%

Proietto
Salanitri et al.

(2022) [45]

139 patients (normal, LGD,
HGD, and adenocarcinoma)

N4 Bias
Correction,
Gaussian

Smoothing, and
TensorFlow

N/A
Vision

Transformer
(ViT)

Acc. = 70%, precision = 67%,
and recall = 64%

Gai et al.
(2022) [46]

77 patients (33 malignant,
44 benign) MaZda 1267, reduced to

12 SVM
AUC = 0.750, sensitivity = 60.6%,

specificity = 81.8%,
and Acc. = 72.7%

Pawlik et al.
(2008) [47]

203 patients (multidisciplinary
pancreatic cancer review) N/A N/A N/A Treatment plan changed in

23.6% of cases
Chakraborty
et al. (2018)

[48]
103 patients (BD-IPMNs)

Scout Liver
(Analogic

Corp.)

Radiographically
inspired (RiFs) +
texture features

Random Forest
AUC = 0.81 (with clinical

variables), AUC = 0.77
(radiomics alone)

Zhang et al.
(2022) [49]

238 patients (156 PDAC,
82 pNET) LIFEx 48

Gradient
Boosting

Decision Tree
(GBDT) +

Random Forest

AUC = 0.971 (train), 0.930
(validation), sensitivity = 0.804,

and specificity = 0.973

Ma et al.
(2022) [50] 175 patients (151 PC, 24 CP) MITK,

PyRadiomics 1037 LASSO + Logistic
Regression

AUC = 0.980, sensitivity = 94.7%,
and specificity = 91.7%

Vaiyapuri et al.
(2022) [51]

500 CT images (250 tumor,
250 non-tumor) TensorFlow N/A

MobileNet +
Autoencoder +

Emperor
Penguin

Optimizer (EPO)

Acc. = 99.35%, sensitivity = 99.35%,
and specificity = 98.84%

Wang et al.
(2022) [52] 139 patients (PNETs grading) N/A 1133 SVM AUC = 0.919 (train),

0.875 (validation)

Shi et al.
(2020) [53] 66 patients (31 PNETs, 35 SPTs) ITK-SNAP 195 Logistic

Regression

AUC = 0.97 (train), 0.86
(validation), sensitivity = 95%,

and specificity = 91.67%
Ren et al.

(2019) [54] 109 patients (30 MFP, 79 PDAC) AnalysisKit (GE
Healthcare) 396 Logistic

Regression
AUC = 0.98, sensitivity = 94%,

and specificity = 92%

Yang et al.
(2019) [55] 78 patients (53 SCAs, 25 MCAs) LIFEx 22 (2 mm slices)/

18 (5 mm slices) Random Forest
AUC = 0.77 (train, 2 mm), 0.66
(validation, 2 mm), and 0.75

(validation, 5 mm)
Li et al.

(2019) [56]
206 patients (64 IPMNs, 35

MCNs, 66 SCNs, and 41 SPTs) TensorFlow N/A DenseNet CNN Acc. = 72.8% (outperforms
manual reading at 48.1%)

Bevilacqua
et al. (2021)

[57]

51 patients (PanNETs,
G1 vs. G2) ImageJ 1.53f N/A Logistic

Regression

AUC = 0.90 (best model),
sensitivity = 88%, and

specificity = 89%
Gu et al.

(2019) [58]
138 patients (PNETs,

G1 vs. G2/3) N/A 853 Random Forest AUC = 0.974 (train),
0.902 (validation)

Kuwahara et al.
(2019) [59]

206 patients (50 for deep
learning analysis,
3970 EUS images)

TensorFlow N/A ResNet50 CNN
AUC = 0.98, sensitivity = 95.7%,

specificity = 92.6%,
and Acc. = 94.0%

Tobaly et al.
(2020) [60]

408 patients (181 LGD,
128 HGD, and

99 invasive carcinoma)

MedSeg,
PyRadiomics 107 LASSO + Logistic

Regression
AUC = 0.84 (train),

0.71 (validation)

Li et al.
(2018) [61]

127 patients (50 PDAC,
77 pNET) FireVoxel

Histogram-
based texture

features

Threshold-Based
Classification

AUC = 0.887, sensitivity = 90%,
and specificity = 80%

Hernandez-
Barco et al.
(2023) [62]

575 patients
(IPMN surgical cases) N/A

18 clinical and
imaging
variables

Linear SVM
AUC = 0.82, Acc. = 77.4%,

sensitivity = 83%, and
specificity = 72%

Cui et al.
(2021) [63]

202 patients
(BD-IPMN grading)

ITK-SNAP,
MITK 1312 LASSO + Logistic

Regression

AUC = 0.903 (train),
0.884 (validation 1), and

0.876 (validation 2)
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Table 1. Cont.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Guo et al.
(2018) [64] 42 patients (28 PDAC, 14 PNEC) MATLAB Contrast ratio +

texture features
Threshold-Based

Classification
AUC = 0.98–0.99 (contrast ratio),

0.71–0.72 (texture features)

Tong et al.
(2022) [65] 558 patients (PDAC vs. CP) ResNet-50

(DL model) N/A Deep Learning
(CNN)

AUC = 0.986 (train), 0.978
(internal validation), and 0.953

(external validation)
Liang et al.
(2022) [66]

193 patients (99 SCA, 55 MCA,
and 39 IPMN) ITK-SNAP 1067 SVM, CNN

(Hybrid Model)
AUC = 0.916 (SCA), 0.973

(MCA vs. IPMN)

* Note: “Software/Tool/Prog. Lang.” refers to the primary platform, package, or programming environment
used for radiomic feature extraction or model implementation (e.g., PyRadiomics, Python, MATLAB, and LIFEx).
** Not available.

4.2. Disease Detection

Korfiatis et al. (2023) [67] employed a modified 3D ResNet with Squeeze-and-Excitation
and attention modules to detect PDAC on 696 portal-phase CTs (plus 1080 control scans) and
achieved a mean accuracy of 92% (AUROC = 0.97). Their deep learning model, trained in Ten-
sorFlow on NVIDIA GPUs, demonstrated an 84% accuracy (AUROC = 0.91) on pre-diagnostic
CTs acquired up to 36 months before clinical diagnosis. Yet, due to the nature of the study, a
retrospective study, selection bias may have been implemented. Another limitation was that the
output model presented the results intentionally in categories such as cancerous or control in
order to address the need for early-stage PDA detection in asymptomatic patients. Focusing on
blood-based biomarkers, Alizadeh Savareh et al. (2020) [68] analyzed 671 miRNA expression
profiles from four GEO datasets (GSE113486, GSE59856, GSE85589, and GSE106817). They
employed a hybrid feature selection pipeline (PSO, ANN, and NCA) and MATLAB-based
neural networks, identifying a five-miRNA signature (miR-663a, miR-1469, miR-92a-2-5p, miR-
125b-1-3p, and miR-532-5p) with 93% accuracy in distinguishing PC patients from healthy
controls. Shifting to MRI, D’Onofrio et al. (2021) [69] examined 91 preoperative scans
(1.5T Siemens and Philips systems) in IPMN patients, achieving 89.01% accuracy in detect-
ing ≥5 mm mural nodules and finding that ADC-based entropy significantly correlated
with higher tumor dysplasia.

Xia et al. (2023) [70] developed FELIX, a 3D U-Net-based framework for dual-phase
CT imaging, training on 3192 scans (PDAC, PanNETs, cysts, and normal) and validating on
1846 scans from multiple institutions. FELIX reached a 97% sensitivity and 99% specificity
for PDAC detection, maintaining >90% sensitivity externally. Chen et al. (2023) [71] intro-
duced CancerUniT, a Transformer-based, multi-organ, and multi-disease model trained on
10,673 CT cases from eight major cancers plus 1055 normals. By integrating hierarchical
tumor–organ learning, CancerUniT recorded a 93.3% sensitivity, 81.7% specificity, and a
4.5× speed improvement over standard methods. Finally, Zhang et al. (2020) [72] proposed
a ResNet-101-based Faster R-CNN with Augmented Feature Pyramid Networks (AFPNs)
and Self-Adaptive Feature Fusion for 2890 contrast-enhanced CT images from The Affili-
ated Hospital of Qingdao University. Their approach achieved an AUC of 0.9455, 83.76%
sensitivity, and 91.79% specificity, outperforming established detection frameworks like
Faster R-CNN, Mask R-CNN, and YOLO.

Chen et al. (2021) [73] applied a radiomics-based XGBoost classifier to 436 PDAC cases
and 479 controls (National Taiwan University Hospital), plus 182 PDAC and 82 controls (TCIA,
MSD) for external validation. They extracted 88 IBSI-compliant CT features using PyRadiomics
and achieved a 95% accuracy on Taiwanese test data (100% specificity) and 86.5% accuracy on
U.S. data. Chen et al. (2022) [74] then developed a deep learning CAD tool—encompassing
a CNN-based segmentation network and an ensemble classifier—trained on 546 PC and
733 control CTs, with a nationwide validation of 1473 real-world scans. Their model attained
an 89.9% sensitivity and 95.9% specificity (AUC = 0.96) internally and performed compa-
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rably (AUC = 0.95) in external datasets. However, the author reported some limitations.
Firstly, radiologist reports were not available in the NHI dataset they used, so compar-
ison between the CAD tool they proposed and the radiologists was not possible. Also,
variations in imaging parameters and quality were implemented due to the NHI dataset.
Chu et al. (2019) [75] explored radiomics in 190 PDAC vs. 190 healthy donor CTs, extracting
478 features and using mRMR plus a Random Forest (3000 trees) to reach a near-perfect
99.2% accuracy (AUC = 99.9%). Similarly, Liu et al. (2019) [76] employed a Faster R-CNN
(with VGG16) on 4385 training and 1699 validation CT images for automatic cancer detec-
tion, yielding an AUC of 0.9632 and significant time savings compared to radiologists. Abel
et al. (2021) [77] focused on detecting cystic lesions via a two-step nnU-Net in 543 cysts from
221 CTs, achieving up to 87.8% sensitivity for lesions ≥ 220 mm3. Ozkan et al. (2016) [78], by
contrast, applied an ANN to EUS images (332 total, 202 cancer, and 130 non-cancer), extracting
122 texture-based radiomic features and reaching 87.5% accuracy overall, emphasizing age-
specific training. Finally, Zhang et al. (2020) [79] targeted gene-level REOs in 573 PDAC and
multiple normal/pancreatitis tissues from GEO and TCGA, narrowing over 30 million gene
pairs to nine via mRMR, then training an SVM that attained 98.77% accuracy (and 100% speci-
ficity on TCGA), highlighting a robust cross-platform biomarker for early PDAC detection.
Figure 4 illustrates an example of a disease detection case from Zhang et al.

 

Figure 4. Example results of tumor detection. The first row refers to ground truth, and the second
row to the corresponding detection results of the proposed method [79]. Note that numbers in the
images concern detection results presented in [79], and they have no meaning at this point.

Deng et al. (2021) [80] developed a radiomics-based multiparametric MRI model
to distinguish PDAC from mass-forming chronic pancreatitis (MFCP) in a retrospective
cohort of 119 patients (64 training, 55 validation). They extracted features from T1WI, T2WI,
arterial, and portal phases with IBEX and applied LASSO + SVM, achieving AUCs of up
to 0.997 in training and 0.962 in validation—significantly surpassing a clinical model’s
performance. Shifting to subregional analysis, Javed et al. (2022) [81] studied 108 contrast-
enhanced CT scans from healthy, pre-diagnostic, and diagnostic PDAC groups, segmenting
the pancreas into head, body, and tail. Their Naïve Bayes classifier, employing RFE-based
feature selection, reached 89.3% accuracy, outperforming whole-pancreas approaches.
Similarly, Qureshi et al. (2022) [82] analyzed 108 pre-diagnostic CT scans (36 control,
36 pre-diagnostic, and 36 diagnostic) to train another Naïve Bayes model that attained
86% accuracy, underscoring the value of textural changes months to years before a PDAC
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diagnosis. However, the author stated that despite the fact that they made a thorough
exploration of the datasets they used, the amount of eligible data was relatively low. This
may have resulted in an overfitting problem introduced in their analysis and results.

Park et al. (2022) [83] introduced a deep learning model trained on 852 cases, with
two test sets (603 and 589 patients), using a 3D nnU-Net pipeline for lesion segmentation
and ensemble classification. Sensitivity reached 98–100% for solid lesions and 92–93% for
≥1 cm cystic lesions, though specificity remained somewhat lower than that of radiologists.
Moving to pre-diagnostic detection, Mukherjee et al. (2022) [84] extracted 88 radiomic
features from the CT scans of 155 future PDAC patients (3–36 months before diagnosis) and
265 controls. An SVM classifier delivered 92.2% accuracy (AUC = 0.98), notably surpassing
radiologists (AUC = 0.66). Finally, Chen et al. (2023) [85] expanded this approach by analyzing
227 non-CP and 70 CP pre-diagnostic CTs, extracting 111 quantitative imaging features and
classifying with a conditional SVM. Achieving 94–95% accuracy (AUC = 0.98–0.99) in non-CP
and 100% in CP, the model retained strong predictive power even 2–3 years pre-diagnosis,
showcasing the promise of radiomics-based AI for early PDAC detection.

Frøkjær et al. (2020) [86] used an MRI-based radiomics approach in a dataset of
77 chronic pancreatitis (CP) patients and 22 healthy controls, extracting 851 texture features
from diffusion-weighted imaging (DWI) and training a Bayes classifier with a 10-fold
cross-validation. Their model reached 98% accuracy, illustrating the potential of MRI
texture analysis for CP classification. Gonoi et al. (2017) [87] retrospectively evaluated
contrast-enhanced CT scans in 1848 patients (9 of whom later developed pancreatic ductal
adenocarcinoma, PDAC) from a hepatocellular carcinoma (HCC) follow-up cohort, iden-
tifying subtle parenchymal changes and main pancreatic duct (MPD) irregularities up to
34 months before PDAC diagnosis. As a limitation, the authors indicate a bias that may have
been injected in the study, as the cohort included only HCC patients who have received
multiphase CT over a period of years, and the sample size was relatively small. Moving to
deep learning, Si et al. (2021) [88] trained a fully end-to-end model—combining ResNet18
(pancreas localization), U-Net32 (segmentation), and ResNet34 (tumor classification)—on
143,945 training and 107,036 validation CT images from The First and Second Affiliated
Hospitals of Zhejiang University, achieving an AUC of 0.871 for rapid tumor detection.
Similarly, Ma et al. (2020) [89] constructed a convolutional neural network (CNN) using
7245 contrast-enhanced CT images (3494 PDAC vs. 3751 normal) from 412 patients, surpassing
a 95% diagnostic accuracy and matching the performance of experienced gastroenterologists.

Focusing on population-level models, Hsieh et al. (2018) [90] developed both logistic
regression (LR) and artificial neural network (ANN) approaches on the Taiwan National
Health Insurance Research Database (NHIRD), encompassing 1.36 million type 2 diabetes
mellitus (T2DM) patients (3092 with PDAC). The LR outperformed the ANN (AUROC
0.727 vs. 0.605), pointing to the strength of simpler models for large-scale risk prediction.
Conversely, Muhammad et al. (2019) [91] trained an ANN with 18 health variables in
a combined dataset of 800,114 participants from the National Health Interview Survey
(NHIS) and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Trial (898 PDAC cases),
achieving an AUC of 0.85 and proposing a risk stratification framework. Finally, Boursi et al.
(2017) [92] employed a logistic regression in The Health Improvement Network (THIN)
database of 109,385 new-onset diabetes patients (390 PDAC diagnoses within three years),
obtaining an AUC of 0.82. Collectively, these studies underscore the utility of radiomics
and various machine learning or deep learning methods in facilitating early pancreatic
disease detection and risk assessment.

Appelbaum et al. (2021) [93] used logistic regression (LR) and neural networks (NN)
on Boston-area EHR data (1979–2017), comprising 594 PDAC cases vs. 100,787 controls,
plus external validation with 408 PDAC cases and 160,185 controls. LR outperformed NN
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(AUC 0.71 vs. 0.68 in validation) in detecting high-risk PDAC patients up to one year before
diagnosis, demonstrating a cost-effective screening tool by flagging a fraction of patients
with an elevated risk. Das et al. (2008) [94], meanwhile, applied digital image analysis
(DIA) and an ANN to 228 EUS image features in 110 PC, 99 CP, and 110 normal pancreas
cases; after PCA feature reduction, their ANN achieved an AUC of 0.93, including 100%
accuracy in differentiating CP from normal tissue. A limitation of this study was related
to the cohort that consisted of digital EUS images with fixed settings in terms of gain and
contrast; thus, the use and test of different settings was not feasible, possibly hiding a bias
to the final diagnosis and results.

Urman et al. (2020) [95] took a multi-omic route, analyzing 129 bile samples (57 PDAC,
36 CCA, and 36 benign) with mass spectrometry and an NN model. Their final 10-lipid,
5-protein biomarker panel reached an AUC of 1.00, perfectly distinguishing PDAC from
benign biliary strictures. By contrast, Liu et al. (2020) [96] trained a patch-based CNN
on 370 PDAC and 320 controls, achieving near-perfect sensitivity and specificity locally,
but with some performance drop (79% sensitivity, 98% specificity) on a U.S. dataset—still
outperforming radiologists for sub-2 cm tumors. Finally, Săftoiu et al. (2008) [97] integrated
EUS elastography with a multilayer perceptron (MLP) neural network in 68 patients
(32 PC, 11 CP, 22 normal, and 3 NET), achieving up to 90% accuracy (AUC 0.965) in
distinguishing PC from CP, indicating that machine learning-based elastography can be a
robust tool for non-invasive pancreatic lesion characterization. Details of all aforementioned
studies for disease detection are summarized in Table 2.

Table 2. Details of studies regarding the use of radiomics and AI methods for disease detection.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Korfiatis et al.
(2023) [67] 696 PC, 1080 control CTs TensorFlow

2.3.1 N/A ** Modified ResNet +
Attention Modules AUROC = 0.97, Acc. = 92%

Alizadeh
Savareh et al.

(2020) [68]
671 miRNA profiles MATLAB 2019 N/A ANN + PSO +

NCA
Acc. = 93%, Sensitivity = 93%,

and Specificity = 92%

D’Onofrio et al.
(2021) [69] 91 MRI scans MeVisLab,

MATLAB
ADC Histogram
(Entropy-based) N/A Acc. = 89.01%, Sensitivity = 90.77%,

and Specificity = 84.62%
Xia et al.

(2023) [70]
662 PDAC, 450 PanNETs, 458

cysts, and 846 normal N/A N/A 3D U-Net Sensitivity = 97%, Specificity = 99%,
and DSC = 87%

Chen et al.
(2023) [71]

10,673 patients (8 cancers +
1055 controls)

nnUNet,
CTLabler, and

ITK-SNAP
N/A CancerUniT

Transformer
Sensitivity = 93.3%, Specificity

= 81.7%, and DSC = 62.8%

Zhang et al.
(2020) [72] 2890 pancreatic CTs TensorFlow N/A Faster R-CNN +

AFPN

AUC = 0.9455, Acc. = 90.18%,
Sensitivity = 83.76%, and

Specificity = 91.79%
Chen et al.
(2021) [73] 436 PDAC, 479 control CTs PyRadiomics 88 features XGBoost 2.1.0 Acc. = 95.0%, Sensitivity = 94.7%,

and Specificity = 95.4%
Chen et al.
(2022) [74] 546 PC, 733 control TensorFlow N/A Ensemble CNNs AUC = 0.96, Sensitivity = 89.9%,

and Specificity = 95.9%

Chu et al.
(2019) [75] 190 PDAC, 190 controls Velocity 3.2.0 478 features Random Forest

Acc. = 99.2%, AUC = 99.9%,
Sensitivity = 100%, and

Specificity = 98.5%
Liu et al.

(2019) [76] 238 PC, 4385 CTs N/A N/A Faster R-CNN +
VGG16 AUC = 0.9632

Abel et al.
(2021) [77] 221 CTs, 543 cysts SPSS Statistics,

nnUNet N/A CNN (2-step
nnU-Net)

Sensitivity = 78.8%,
Specificity = 96.2%

Ozkan et al.
(2016) [78]

332 EUS images (202 PC,
130 non-PC) MATLAB 122 features ANN Acc. = 87.5%, Sensitivity = 83.3%,

and Specificity = 93.3%

Zhang et al.
(2020) [79]

573 PDAC, 153 adjacent
normal, 10 pancreatitis, and

74 normal
LibSVM v3.23 N/A SVM Acc. = 98.77%, Sensitivity = 98.65%,

and Specificity = 100%

Deng et al.
(2021) [80]

119 MRI scans
(PDAC vs. MFCP) IBEX N/A SVM AUC = 0.997 (Training),

0.962 (Validation)
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Table 2. Cont.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Javed et al.
(2022) [81] 108 CTs ITK-SNAP N/A Naïve Bayes + RFE Acc. = 89.3%, Sensitivity = 86%,

and Specificity = 93%
Qureshi et al.

(2022) [82]
108 CTs (36 pre-diagnostic

PDAC, 36 PC, and 36 control) ITK-SNAP 4000 features Naïve Bayes Acc. = 86%

Park et al.
(2022) [83]

852 training, 603 and
589 test patients nnU-Net N/A 3D CNN AUC = 0.91

Mukherjee
et al. (2022)

[84]

155 pre-diagnostic CTs, 265
normal

3D Slicer,
PyRadiomics 88 features SVM Acc. = 92.2%, AUC = 0.98

Chen et al.
(2023) [85] 227 non-CP, 70 CP MATLAB 111 features SVM AUC = 0.99

Frøkjær et al.
(2020) [86] 77 CP, 22 controls 3D Slicer 851 features Bayes Classifier Acc. = 98%, Sensitivity = 97%,

and Specificity = 100%
Gonoi et al.
(2017) [87] 9 PDAC, 103 controls N/A N/A Kaplan–Meier

survival analysis
Identified Early

Imaging Markers

Si et al.
(2021) [88]

143,945 CT images (319
patients), 107,036 test images

(347 patients)
TensorFlow N/A

ResNet18 (pancreas
detection), U-Net32

(segmentation),
and ResNet34
(classification)

AUC = 0.871, Acc. = 82.7%, and
F1-score = 88.5%

Ma et al.
(2020) [89] 7245 CT images (412 patients) N/A N/A CNN

Acc. = 95.47% (Plain Scan),
95.76% (Arterial Phase),

Sensitivity = 91.58%, and
Specificity = 98.27%

Hsieh et al.
(2018) [90]

1,358,634 patients (3092
pancreatic cancer cases)

Python 3.7
(scikit-learn),
TensorFlow

22 clinical
variables

Logistic Regression,
ANN

AUC = 0.727 (LR), 0.605 (ANN),
and F1-score = 0.997

Muhammad
et al. (2019)

[91]

800,114 respondents (NHIS
and PLCO datasets),

898 pancreatic cancer cases
N/A 18 personal

health features
Artificial Neural
Network (ANN)

AUC = 0.86 (Training), 0.85
(Testing), Sensitivity = 87.3%,

and Specificity = 80.7%

Boursi et al.
(2017) [92]

109,385 new-onset diabetes
patients (390 diagnosed

with PDAC)
N/A N/A Logistic Regression AUC = 0.82, Specificity = 94%,

and Sensitivity = 44.7%

Appelbaum
et al. (2021)

[93]

594 PDAC cases, 100,787
controls (training), 408 PDAC

cases, and 160,185 controls
(validation)

L2-regularized
logistic

regression,
neural network

ICD codes,
comorbidities,

and medication
history

Logistic Regression,
Neural Network

AUC = 0.71 (training),
0.68 (validation)

Das et al.
(2008) [94]

110 normal pancreas, 99 CP,
and 110 PC (EUS images) ImageJ 228 features

reduced to 11
Artificial Neural
Network (ANN)

AUC = 0.93, Sensitivity = 93%,
and Specificity = 92%

Urman et al.
(2020) [95]

129 bile samples (57 PDAC,
36 CCA, and 36 benign)

UHPLC-MS,
HPLC-MS/MS N/A Neural Network AUC = 1.00

Liu et al.
(2020) [96] 370 PC, 320 controls N/A N/A CNN AUC = 1.00 (Local),

AUC = 0.83 (External)

Săftoiu et al.
(2008) [97]

68 patients (32 PC, 11 CP, 22
normal, and 3 PNET) ImageJ 228 features

reduced to 11

Multilayer
Perceptron (MLP)
Neural Network

AUC = 0.932, Sensitivity = 91.4%,
Specificity = 87.9%, and

Acc. = 89.7%

* Note: “Software/Tool/Prog. Lang.” refers to the primary platform, package, or programming environment
used for radiomic feature extraction or model implementation (e.g., PyRadiomics, Python, MATLAB, and LIFEx).
** Not available.

4.3. Survival Prediction

Cheng et al. (2019) [98] retrospectively analyzed 41 unresectable PDAC patients un-
dergoing chemotherapy, extracting texture features (mean, SD, entropy, skewness, and
kurtosis) from TexRAD across multiple spatial scales on pre- and post-treatment CT images.
They found that a higher pre-treatment SD at SSF = 3/4 and skewness at SSF = 3 predicted
longer progression-free and overall survival, while post-treatment features were less pre-
dictive. In a similar radiomics-based survival context, Khalvati et al. (2019) [99] used two
cohorts (training: 30, validation: 68) of resectable PDAC patients, extracting 410 features
from PyRadiomics and discarding low-reproducibility ones. Sum Entropy and Cluster
Tendency (GLCM) were significantly prognostic, yielding hazard ratios up to 1.56 (p = 0.005)
in the validation set. Yun et al. (2018) [100] assessed 88 resected pancreatic head cancer
patients, measuring histogram and GLCM texture on preoperative CT. Lower contrast and
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standard deviation and a higher correlation (indicating homogeneous tumors) correlated
with poorer DFS, highlighting texture heterogeneity as a non-invasive biomarker. However,
the author reported some limitations. Due to the nature of the study, a retrospective study, a
selection bias may have been introduced. Potential variables affecting tumor enhancement
on the contrast-enhanced CT scans, such as cardiac output or body mass, were not taken
into account. Eilaghi et al. (2017) [101] similarly extracted five GLCM-based features (uni-
formity, entropy, dissimilarity, correlation, and IDN) in 30 resectable PDAC cases, finding
dissimilarity and IDN most predictive of overall survival (p < 0.05). Meanwhile, Miyata
et al. (2020) [102] analyzed tumor marker indices (CA19-9, CEA, DUpan-2, and SPan-1) in
183 resected PDAC patients, showing that high Pre-TI (2-3) predicted a worse relapse-free
and overall survival (HR~2.3), offering a straightforward biomarker-based prognostic tool.

Healy et al. (2022) [103] integrated PyRadiomics-derived features with clinical data
in 352 resectable PDAC patients (training) plus 215 external validations, using a LASSO
Cox model that modestly improved the C-index over clinical-only models (0.545 vs. 0.497),
though performance dropped externally. In a similar quantitative CT approach, Attiyeh
et al. (2018) [104] evaluated 161 chemotherapy-naive PDAC cases, extracting texture metrics
in MATLAB and building two Cox models (Model A with CA19-9 + radiomics, Model B
with additional pathological data). Model A attained a C-index of 0.69 and improved to
0.74 in Model B. Figure 5 illustrates representative images of patients with good and poor
overall survival.

 

Figure 5. Representative images of patients with good and poor overall survival. The magnified
tumor region supports the hypothesis that heterogeneously hypo-attenuating tumors are prognostic
of poor survival [104].

Xie et al. (2020) [105] likewise developed a radiomics nomogram (300 extracted
features reduced by LASSO) in 220 resectable PDAC patients (147 training, 73 validation),
achieving C-indexes up to 0.762 for DFS. Turning to the neoadjuvant setting, Kim et al.
(2019) [106] studied 45 PDAC patients who received CCRT or chemotherapy pre-surgery,
extracting texture changes (entropy, GLCM entropy) from pre- and post-therapy CT. Higher
subtracted entropy predicted longer overall survival (HR = 0.159, p = 0.005). Finally,
Choi et al. (2019) [107] examined 66 resected PDACs on a T2-weighted MRI using TexRAD
for the mean, SD, entropy, skewness, and kurtosis, with a higher entropy (SSF4) associated
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with worse overall survival (HR = 4.347, p = 0.002). None of these studies employed deep
learning or advanced ML pipelines; all relied on traditional radiomics/statistical modeling
to highlight texture-derived prognostic biomarkers for PDAC therapy planning.

Parr et al. (2020) [108] analyzed 74 pancreatic cancer patients with pre-SBRT CT scans,
extracting over 800 radiomic features via 3D Slicer. A 6-feature radiomic signature for overall
survival (OS) yielded a C-index = 0.66 (vs. 0.54 for clinical models), while a 7-feature signature
improved local–regional recurrence prediction (AUC = 0.78 vs. 0.66 clinically). Combining
radiomic and clinical variables further improved performance (C-index = 0.68 for OS).
Cozzi et al. (2019) [109] similarly investigated 100 SBRT patients, using LifeX-extracted
CT features in a multivariate Cox model. Their clinical–radiomic signature significantly
predicted OS (C-index = 0.73–0.75) and local control (0.69–0.75), stratifying patients into
risk groups (median OS 9.0 vs. 14.4 months). Both studies relied on standard radiomics
and statistical modeling.

Focusing on multiparametric MRI, Tang et al. (2019) [110] assessed early recurrence
(≤12 months) in 303 resectable pancreatic cancers. Manual segmentations on T1-, T2-, and
contrast-enhanced MRI yielded 328 radiomic features reduced by LASSO; their radiomic
nomogram outperformed clinical models (AUC = 0.87–0.88). Limitations were related
to the nature of the study, a retrospective study, possibly introducing a selection bias.
Moreover, the used sample size was relatively small. Finally, the diffusion-weighted MR
images with different b values were abandoned over a long time period because of poor
consistency between the two hospitals. Wang et al. (2022) [111] then built a CT-based
radiomics–clinical nomogram for 184 resectable PDACs (111 training, 28 internal, and
45 external validations), extracting 1409 PyRadiomics features and integrating CA19-9. This
combined model surpassed TNM staging (C-index = 0.713 vs. 0.616). Chakraborty et al.
(2017) [112] examined 35 patients’ pre-treatment CT scans, extracting 255 texture fea-
tures and using a fuzzy mRMR plus naïve Bayes pipeline; the best performance reached
AUC = 0.90 (82.86% accuracy) via leave-one-image-out validation.

Meanwhile, Kaissis et al. (2019) [113] used DWI-based ADC maps in 132 PDAC
patients (102 training, 30 validation) with a Random Forest on selected PyRadiomics
features (recursive elimination), reaching AUC = 0.90 in predicting above/below-median
OS. In another CNN approach, Zhang et al. (2020) [114] employed a 6-layer deep network
trained on 98 PDAC CT scans (68 training, 30 validation), achieving a C-index = 0.651 (vs.
0.603 for transfer learning-based Cox, 0.491 for radiomics-based Cox). Shi et al. (2021) [115]
integrated CT radiomics (LASSO-derived), CA19-9, the skeletal muscle index, grade, and
chemotherapy status in 299 resectable PDAC patients (210 training, 89 validation). Their
combined Cox model delivered a C-index = 0.74, surpassing clinical-only (0.68) or TNM
staging (0.59). Finally, Rezaee et al. (2016) [116], without any radiomics or AI, tracked
616 IPMN resections at Johns Hopkins, noting that high-grade dysplasia significantly
increases PDAC risk despite not being itself malignant, emphasizing the need for vigilant
surveillance. Table 3 includes details of all reviewed works regarding survival prediction.

Table 3. Details of studies regarding the use of radiomics and AI methods for survival prediction.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Cheng et al.
(2019) [98]

41 patients (unresectable PDAC,
contrast-enhanced CT) TexRAD

Mean intensity,
entropy,

skewness,
kurtosis, and SD

None Higher SD associated with
longer OS (p = 0.04)

Khalvati et al.
(2019) [99]

98 patients (resectable PDAC,
contrast-enhanced CT)

PyRadiomics
v2.0.1

410 extracted,
277 robust

Cox proportional-
hazards regression HR = 1.56, p = 0.005
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Table 3. Cont.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Yun et al.
(2018) [100]

88 patients (pancreatic head
cancer, contrast-enhanced CT)

In-house
software

Histogram and
GLCM texture

features
None Lower SD and contrast are

associated with poor DFS

Eilaghi et al.
(2017) [101]

30 patients (resectable PDAC,
contrast-enhanced CT)

MATLAB
(R2015a)

5 GLCM texture
features None

Dissimilarity (p = 0.045) and
IDN (p = 0.046) significant for

OS

Miyata et al.
(2020) [102]

183 patients (resected PDAC,
tumor markers)

JMP v12
(SAS Institute)

None (clinical
markers only) None

High Pre-TI associated with
worse OS (HR = 2.27,

p < 0.0001)

Healy et al.
(2022) [103]

352 training, 215 validation
(resectable PDAC,

contrast-enhanced CT)

PyRadiomics
v3.0

IBSI-compliant
radiomics
features

LASSO Cox
regression

C-index = 0.545 (radiomics),
0.497 (clinical)

Attiyeh et al.
(2018) [104]

161 patients (resectable PDAC,
contrast-enhanced CT)

MATLAB
(R2015a)

CT texture
features

Cox proportional-
hazards regression

C-index = 0.69 (radiomics),
0.74 (clinical)

Xie et al.
(2020) [105]

220 patients (resectable PDAC,
contrast-enhanced CT) R software 300 radiomics

features LASSO regression AUC = 0.87 (training),
0.85 (validation)

Kim et al.
(2019) [106]

45 patients (PDAC
post-neoadjuvant therapy,

contrast-enhanced CT)
MISSTA GLCM texture

features None Higher entropy (HR = 0.159,
p = 0.005) predicted longer OS

Choi et al.
(2019) [107]

66 patients (PDAC, MRI
T2-weighted imaging) TexRAD Histogram and

GLCM features None Higher entropy (p = 0.002)
correlated with worse OS

Parr et al.
(2020) [108]

74 patients (PDAC, SBRT, and
contrast-enhanced CT) 3D Slicer 800+ radiomics

features None
Radiomics model

outperformed clinical
(C-index = 0.66)

Cozzi et al.
(2019) [109]

100 patients (PDAC, SBRT,
and contrast-enhanced CT) LifeX Radiomics

features Cox regression C-index = 0.73–0.75 for
OS prediction

Tang et al.
(2019) [110]

303 patients (resectable
PDAC, and MRI
multiparametric)

ITK-SNAP, A.K. 328 radiomics
features

LASSO logistic
regression

AUC = 0.87 (training),
0.85 (validation)

Wang et al.
(2022) [111]

184 patients (resectable PDAC,
contrast-enhanced CT) PyRadiomics 1409 extracted,

LASSO selected Cox regression C-index = 0.74 (radiomics),
0.68 (clinical)

Chakraborty
et al. (2017)

[112]

35 patients (PDAC,
contrast-enhanced CT)

MATLAB
(R2015a)

255 texture
features

Naïve Bayes
classifier

AUC = 0.90 (leave-one-out),
0.80 (3-fold CV), and

Acc. = 82.86%

Kaissis et al.
(2019) [113]

102 training, 30 validation
(PDAC, diffusion-weighted MRI) PyRadiomics ADC-based

radiomic features Random Forest
AUC = 0.90 (survival

prediction), 89% acc. for
tumor subtype classification

Zhang et al.
(2020) [114]

68 training, 30 validation
(resectable PDAC,

contrast-enhanced CT)
None None CNN (6-layer) C-index = 0.651, IPA = 11.81%

Shi et al.
(2021) [115]

299 patients (resectable PDAC,
contrast-enhanced CT)

A.K. (GE
Healthcare),
ITK-SNAP

1409 extracted,
LASSO selected Cox regression C-index = 0.74 (radiomics),

0.68 (clinical)

Rezaee et al.
(2016) [116]

616 patients (IPMN,
pancreatic resection) None None None

High-grade dysplasia linked
to increased PDAC risk,
median OS = 92 months

* Note: “Software/Tool/Prog. Lang.” refers to the primary platform, package, or programming environment used
for radiomic feature extraction or model implementation (e.g., PyRadiomics, Python, MATLAB, and LIFEx).

4.4. Treatment Response

Abraham et al. (2021) [117] integrated clinical and next-generation sequenc-
ing data from real-world and the TRIBE2 trial to create a 67-gene FOLFOXai sig-
nature for metastatic colorectal cancer patients. Trained on time-to-next treatment
(TTNT) and validated on PFS and OS, it showed a significant predictive advantage
for oxaliplatin-based (FOLFOX/FOLFOXIRI) regimens in multiple cohorts, extending
to esophageal/gastroesophageal junction cancers and PDAC. In contrast, Ciaravino et al.
(2018) [118] focused on CT texture analysis in PDAC patients (n = 17), downstaged to the
resectable status post-chemotherapy. Using MaZda software, changes in kurtosis distin-
guished responders from those with disease progression, underscoring CTTA’s potential to
track a neoadjuvant response. Figure 6 illustrates indicative CT scans of PDAC before and
after chemotherapy.
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Figure 6. CT study of pancreatic adenocarcinoma before and after chemotherapy: (a) CT study of locally
advanced ductal adenocarcinoma of the pancreatic head; (b) CT control after chemotherapy [118].

Turning to surgical risk, Mu et al. (2020) [119] applied a convolutional neural network
to preoperative CE-CTs of 513 pancreatoduodenectomy (PD) candidates, producing a deep
learning score outperforming the traditional Fistula Risk Score in predicting clinically
relevant postoperative pancreatic fistulas (AUC = 0.85 vs. 0.78). Nasief et al. (2019) [120]
then introduced a machine learning delta-radiomics approach with Bayesian neural net-
works on 2520 daily CTs from 90 patients during CRT, achieving an AUC = 0.94 for early
treatment response prediction. A subsequent study by Nasief et al. (2020) [121] combined
these delta-radiomics features with CA19-9 levels in 24 patients, enhancing the survival
prediction (C-index rising from 0.57 to 0.87).

Focusing on neoadjuvant therapy, McClaine et al. (2010) [122] reviewed 29 borderline
resectable PDAC cases, concluding that gemcitabine-based regimens improved resection rates
(46%) and median survival (23.3 vs. 15.5 months). Yue et al. (2017) [123] leveraged pre-
/post-RT PET/CT in 26 patients (various RT regimens) and found changes in texture features
like homogeneity/variance correlated with survival. The authors reported that the small
cohort size was a major limitation of the study. Meanwhile, Cassinotto et al. (2013) [124]
showed that neoadjuvant therapy reduced the specificity of MDCT-based resectability prediction
(58% vs. 83%) by overestimating the tumor size and vascular invasion.

Chen et al. (2017) [125] explored daily diagnostic CTs in 20 CRT patients for a radiomic
assessment of the treatment response, noting significant changes in the mean CT number and
skewness after two weeks. Rigiroli et al. (2021) [126] aimed to detect the SMA involvement
on CT in 194 PDAC cases (148 post-neoadjuvant), extracting 1695 features and finding a final
five-feature logistic model (AUC = 0.71), surpassing radiologists’ AUC = 0.54. Along similar
lines, Bian et al. (2020) [127] used 1029 portal-phase radiomic features in 181 pancreatic head
cancer cases to predict the SMV resection margin, achieving an AUC = 0.75. Finally, Gregucci
et al. (2022) [128] built a radiomics-based logistic model on 37 LAPC patients before SBRT,
identifying the GLCM25_Correlation and NID25_Busyness as key predictors of a local response
(AUC = 0.851), suggesting a way to tailor dose strategies for improved outcomes. Table 4
summarizes details regarding selected works on treatment response.
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Table 4. Details of studies regarding the use of radiomics and AI methods for treatment response.

Ref. Dataset Software/Tool/Prog.
Lang. * Features ML/DL Model Results

Abraham et al.
(2021) [117]

517 patients (105 training,
412 validation, and
55 FOLFIRI control)

N/A ** 67 gene
signatures

Bayesian
Regularization

Neural Network

OS HR = 0.629 (p = 0.04) for
FOLFOX, 0.483 (p = 0.02) for

FOLFOXIRI

Ciaravino et al.
(2018) [118]

31 patients (17 downstaged,
14 progression) MaZda

Histogram,
texture, and

kurtosis
N/A Kurtosis change (p = 0.0046)

is significant in responders

Mu et al.
(2020) [119]

583 patients (513 training,
70 validation)

3D Slicer,
Keras, Python N/A CNN AUC = 0.85 (train), 0.81 (val),

and 0.89 (test)

Nasief et al.
(2019) [120]

90 patients, 2520 daily
CT scans IBEX 1300+ features

Bayesian
Regularization

Neural Network
AUC = 0.94

Nasief et al.
(2020) [121] 24 patients (672 CT datasets) IBEX 1300+ features Regression Model C-index = 0.87, HR = 0.58

McClaine et al.
(2010) [122]

29 patients (26 neoadjuvant,
12 resected) N/A N/A N/A

Median survival: 15.5 months
(unresected) vs. 23.3 months

(resected), p = 0.015
Yue et al.

(2017) [123]
26 PA patients (19 external-

beam RT, 7 SBRT) N/A Texture features
from PET

Lasso Regression,
Cox Model

OS = 29.3 months (low-risk)
vs. 17.7 months (high-risk)

Cassinotto et al.
(2013) [124] 80 patients (38 neoadjuvant) N/A N/A N/A

CT acc. lower after
neoadjuvant (58% vs. 83%,

p = 0.039)

Chen et al.
(2017) [125] 20 patients, daily CT scans N/A

Mean CT
number, volume,

and skewness
N/A

MCTN decrease (−4.7 HU,
p < 0.001) correlated

with response

Rigiroli et al.
(2021) [126]

194 PDAC patients
(148 neoadjuvant)

Siemens
SyngoVia
Frontier

Radiomics

1695 features Logistic Regression AUC = 0.71, sensitivity = 62%,
and specificity = 77%

Bian et al.
(2020) [127] 181 PDAC patients N/A 1029 features

(portal phase CT) Logistic Regression AUC = 0.75, sensitivity = 64.8%,
and specificity = 74%

Gregucci et al.
(2022) [128]

37 locally advanced
PDAC patients

Imaging
Biomarker
Explorer

27 radiomic
features Logistic Regression AUC = 0.851

* Note: “Software/Tool/Prog. Lang.” refers to the primary platform, package, or programming environment
used for radiomic feature extraction or model implementation (e.g., PyRadiomics, Python, MATLAB, and LIFEx).
** Not available.

4.5. Radiogenomics

McGovern et al. (2018) [129] analyzed 121 PanNET patients on multiphasic CE-CT, noting
that ALT-positive tumors were linked to a lobulated shape (p = 0.001), necrosis (p = 0.002),
vascular invasion (p < 0.001), duct dilatation (p < 0.001), and hepatic metastases (p < 0.001).
Although a multivariate model (including duct dilatation, hepatic metastasis, and size ≥ 3 cm)
only reached an AUC of 0.58, the study highlighted that intratumoral calcifications and
metastatic burden predict worse survival regardless of ALT status. Yet, the relatively small
sample size may have limited the predictive value of specific CT characteristics. Also, CT
technique was not uniform, as 10 studies were performed at external institutions, and
the remaining 111 studies were performed inside the institution the authors worked in.
Shifting to PDAC radiogenomics, Attiyeh et al. (2019) [130] examined 35 resected cases
with targeted sequencing (KRAS, TP53, CDKN2A, and SMAD4) and 255 CT radiomics
features (GLCM, RLM, LBP, FD, etc.), finding 28 and 32 features predictive of SMAD4
and TP53 mutations, respectively. The number of mutated genes correlated with a shorter
survival (p = 0.016), and stromal content estimation (R2 = 0.731) underscored the value
of imaging in characterizing the genotype and microenvironment. Figure 7 illustrates
oncoprints showing genomic alterations from the work of Attiyeh et al. [130].

Lim et al. (2020) [131] then used 18F-FDG PET/CT in 48 PDACs, extracting
35 features with CGITA, and showed KRAS mutations aligned with low-intensity tex-
ture measures (AUC up to 0.829), while SMAD4 mutations were associated with SUV
skewness (AUC = 0.727) and short-run/high-intensity emphases. Reported limitations
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included the retrospective design and the small sample size that may have affected the
results of the study. Also, several technical limitations in the method of PET-based ra-
diomics may have occurred, since textural feature calculations are affected by many factors
such as the signal to noise ratio of volume of interest definition. Similarly, Iwatate et al.
(2020) [132] applied PyRadiomics to 2074 early-/late-phase CT features in 107 PDACs; their
XGBoost model reached AUC = 0.795 for p53 and 0.683 for PD-L1, with the p53 status
strongly predicting worse survival (p = 0.015). In a larger ultrasound-based approach, Tang
et al. (2024) [133] evaluated 151 in-house plus 54 CPTAC-PDAC patients and tested 77 ML
combinations on 1239 radiomics features, achieving AUCs of 0.84–0.85 for lymph node
metastasis; subsequent WGCNA analysis linked key radiomic markers to proliferation
pathways. Hinzpeter et al. (2022) [134] also investigated the mutation status (KRAS, TP53,
SMAD4, and CDKN2A) in 47 PDACs (portal-phase CT, LIFEx), identifying HU_Skewness,
GLZLM_SZLGE and NGLDM_Coarseness as top predictors (Youden indices up to 0.67).
Finally, Iwatate et al. (2022) [135] assessed ITGAV expression in 107 PDACs (3748 CT fea-
tures) via XGBoost, finding predicted high integrin αV levels (AUC = 0.697) associated with
a significantly worse OS (p = 0.048) and suggesting that radiogenomics can non-invasively
profile pivotal molecular targets for precision PDAC management. Table 5 summarizes
details from the selected literature on radiogenomics.

 
(a)  (b) 

Figure 7. Oncoprint taken from the work of Attiyeh et al. [130] showing (a) genomic alterations; (b) status as
determined by genomic alterations and IHC. Columns represent patients in the cohort (n = 35).

Table 5. Details of studies regarding the use of radiomics and AI methods for radiogenomics.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

McGovern et al.
(2018) [129] 121 PanNET patients N/A **

Tumor size, shape,
necrosis, vascular

invasion, and
pancreatic duct

dilatation

Multivariate
Logistic Regression AUC = 0.58, p = 0.006

Attiyeh et al.
(2019) [130] 35 PDAC patients

Scout Liver
Software,
MATLAB

255 features
(GLCM, RLM,
LBP, FD, IH,
and ACM)

Fuzzy Minimum-
Redundancy-

Maximum-
Relevance
(fMRMR)

R2 = 0.731, RMSE = 19.5

Lim et al.
(2020) [131] 48 PDAC patients

MIM v6.4,
MATLAB

(CGITA toolbox)

35 PET-based
radiomic features Logistic Regression AUC = 0.806 (KRAS),

0.727 (SMAD4)

Iwatate et al.
(2020) [132] 107 PDAC patients PyRadiomics

v2.2.0

2074 features
(early- and

late-phase CT)
XGBoost AUC = 0.795 (p53),

0.683 (PD-L1)

Tang et al.
(2024) [133]

205 patients (151 internal,
54 CPTAC-PDAC)

ITK-SNAP,
PyRadiomics 1239 features StepGBM + Elastic

Net AUC = 0.84 (train), 0.85 (val)

Hinzpeter et al.
(2022) [134] 47 PDAC patients LIFEx v6.30

Multiple HU and
texture-based

features
Logistic Regression

Youden Index: 0.67 (TP53),
0.56 (KRAS), and 0.50
(SMAD4, CDKN2A)

Iwatate et al.
(2022) [135]

107 PDAC patients
(RNA-seq: 12) ITK-SNAP 3748 radiomic

features XGBoost AUC = 0.697 (ITGAV),
p = 0.048 (OS correlation)

* Note: “Software/Tool/Prog. Lang.” refers to the primary platform, package, or programming environment
used for radiomic feature extraction or model implementation (e.g., PyRadiomics, Python, MATLAB, and LIFEx).
** Not available.
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4.6. Deep Radiomics Fusion Models

Dmitriev et al. (2017) [136] proposed a hybrid radiomics + deep learning model for
pancreatic cyst classification, applying a Random Forest (RF) with 14 quantitative radiomic
features (patient demographics, lesion shape, and intensities) alongside a 2D CNN for
higher-level feature extraction in a contrast-enhanced CT. They fused both models via
the Bayesian ensemble, achieving an overall accuracy of 83.6% across 134 patients with
IPMNs, MCNs, SCAs, and SPNs. Notably, the RF excelled at smaller cysts, while the CNN
better characterized larger lesions. The authors emphasized that further work should target
earlier malignancy detection and multi-institutional validation.

Ziegelmayer et al. (2020) [137] similarly integrated handcrafted radiomics from PyRa-
diomics (1411 features) and VGG19-based deep features (256) to differentiate PDAC from
autoimmune pancreatitis (AIP) in 86 portal-phase CTs. After segmentation and feature
selection, deep features yielded an AUC = 0.90 (89% sensitivity, 83% specificity), out-
performing radiomics alone (AUC = 0.80). Although they operated on each feature set
separately rather than fusing them, CNN-derived activations captured more nuanced
patterns than traditional radiomics, highlighting the benefit of deep learning in challenging
differential diagnoses.

Zhang et al. (2021) [138] explored a fusion approach for PDAC survival prediction in
98 contrast-enhanced CTs (68 training, 30 validation). They extracted 1428 handcrafted
features (PyRadiomics) plus 35 transfer learning-based deep features (LungTrans CNN).
Testing multiple fusion schemes (PCA, Boruta, Cox, and LASSO), they ultimately intro-
duced a novel risk score method combining radiomics and deep feature Random Forests,
achieving an AUC of 0.84–notably better than traditional methods. However, interpretation
and multi-site validation remain key next steps.

Wei et al. (2023) [139] took a multi-modal path, fusing radiomics and deep learning
features from 18F-FDG PET/CT to distinguish PDAC (n = 64) from AIP (n = 48). Radiomics
captured histogram, texture, and morphology from both PET and CT, while VGG11 CNN
extracted high-level features. Their multidomain fusion model (MF_model) reached an
AUC = 96.4%, outperforming the radiomics-only (89.5%) and deep-only (93.6%) approaches.
The authors noted that a larger, externally validated dataset will be essential to confirm
these strong results. It should be noted that the authors pointed out two major limitations
in their work; the sample size was relatively small, so a 5-fold cross-validation was used
to reduce the risk of model overfitting, while external validation of the model was not
performed with an external dataset.

Yao et al. (2023) [140] applied a multi-institutional MRI pipeline for intraductal
papillary mucinous neoplasm (IPMN) risk stratification, assembling 246 T1-/T2-weighted
MRI scans from five centers. After nnUNet-based pancreas segmentation, 107 radiomics
features were extracted and combined with deep features from five CNN architectures
(DenseNet, ResNet18, AlexNet, MobileNet, and ViT) plus clinical factors. Their weighted-
averaging fusion significantly boosted accuracy from 61.3 to 71.6% (single CNN/radiomics)
to 81.9%. Limitations included cross-center intensity variability; future studies aim to
integrate molecular markers and expand prospective validation.

Finally, Vétil et al. (2023) [141] introduced a mutual-information-minimized (MI)
fusion approach for early PDAC detection using 2319 training and 1094 test CT scans.
Handcrafted radiomics (PyRadiomics) were paired with deep features from a VAE, but crit-
ically, the VAE was trained to minimize redundant information relative to the handcrafted
feature space. This MI-based technique boosted AUC by ~1.13% over handcrafted alone,
indicating that ensuring deep features truly complement radiomics can improve classifier
performance. Further improvements in feature interpretability and unified modeling were
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highlighted as the next steps, especially for large-scale clinical adoption. Details about the
selected literature focused on fusion models are summarized in Table 6.

Table 6. Details of studies regarding the use of radiomics and AI methods for deep radiomics fusion models.

Ref. Dataset Software/Tool/
Prog. Lang. * Features ML/DL Model Results

Dmitriev et al.
(2017) [136]

134 patients (4 pancreatic cyst
types)

Scikit-learn,
Keras (NVIDIA
Titan X GPU)

14 radiomic
features + CNN

deep features

Random Forest +
CNN (Bayesian

Fusion)
Acc = 83.6%

Ziegelmayer
et al. (2020)

[137]
86 patients (44 AIP, 42 PDAC)

PyRadiomics,
pretrained

VGG19

1411 radiomic
features + 256
deep features

Extremely
Randomized Trees

AUC = 0.90, Sens = 89%, and
Spec = 83%

Zhang et al.
(2021) [138]

98 PDAC patients
(68 training, 30 validation)

PyRadiomics
(v2.0.0) + 8-layer

CNN
(LungTrans)

1428 radiomic
features + 35
deep features

Risk Score-Based
Fusion (Random

Forest)
AUC = 0.84

Wei et al.
(2023) [139]

112 patients (64 PDAC, 48 AIP)
with 18F-FDG PET/CT

PyRadiomics +
VGG11 CNN

Radiomics
(texture,

histogram) +
CNN deep

features

Multidomain
Fusion Classifier

AUC = 96.4%, Acc = 90.1%,
Sens = 87.5%, and

Spec = 93.0%

Yao et al.
(2023) [140]

246 multi-center MRI scans
(IPMN risk stratification)

nnUNet, multiple
CNNs (DenseNet,

ViT, etc.)

107 radiomic
features + deep

CNN/ViT +
clinical

Weighted
Averaging-Based

Fusion
Acc = 81.9%

Vétil et al.
(2023) [141]

2319 training + 1094 test CT
scans (9 centers)

PyRadiomics +
Variational

Autoencoder
(VAE)

Handcrafted
radiomics +

MI-minimized
deep features

Logistic Regression
(Fusion)

+1.13% AUC improvement
over radiomics alone

* Note: “Software/Tool/Prog. Lang.” refers to the primary platform, package, or programming environment used
for radiomic feature extraction or model implementation (e.g., PyRadiomics, Python, MATLAB, and LIFEx).

5. Datasets, Features, and Methods
A wide range of both public and private datasets underpins the development of ra-

diomics and AI techniques for pancreatic cancer, encompassing openly available resources
like TCIA, MSD, NIH-Pancreas CT, and GEO profiles, as well as extensive in-house clinical
cohorts from various institutions worldwide.

In parallel, the extracted features commonly include shape descriptors, first-order
intensities, and texture metrics (frequently derived from GLCM, GLRLM, or wavelet
transformations), while deep neural networks provide high-level embeddings that capture
nuanced morphological cues. These approaches—often combined with feature selection
strategies such as LASSO or mRMR—have consistently driven a strong performance in
tasks such as disease detection, lesion classification, survival prediction, and treatment
response assessment.

5.1. Datasets

Across the 126 reviewed studies, a variety of datasets were used, ranging from fully
public repositories to strictly in-house patient cohorts. Several investigations relied on
large, well-known public data resources such as The Cancer Imaging Archive’s TCIA-
CPTAC collection, the Medical Segmentation Decathlon (MSD), NIH-Pancreas CT scans,
GEO profiles, and population databases like NHIS, THIN, LHDB, or CBioPortal. In these
instances, images or molecular data are openly available, allowing other researchers to
replicate or extend the findings. Studies that combined multiple sources often leveraged a
public dataset for external validation while training primarily on local or in-house cases.

A substantial number of investigations, however, used private institutional data
without releasing them publicly—usually because the imaging or clinical records could
not be shared due to privacy or regulatory constraints. In many of these, the institutions
were explicitly named (for example, Johns Hopkins Hospital, National Taiwan University
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Hospital, or Mayo Clinic), underscoring a “private but institution-named” type of data
usage. In other cases, the data source was described only as “in-house,” “local,” or “private,”
with no specific hospital or facility identification.

When categorizing all 126 studies by data type, only 12 studies made use of exclusively
public datasets, often involving well-established collections like TCIA, MSD, NIH-Pancreas,
GEO, or broad population databases (NHIS, THIN, CBioPortal, and LHDB). More than
half of the studies drew on private data while explicitly mentioning the originating in-
stitution (e.g., a specific university hospital or medical center), reflecting collaborations
and retrospective reviews of patient cohorts. The remaining subset relied on non-public,
in-house datasets without naming the hospital or clinical setting, typically referring to them
in generic terms such as “local,” “private,” or “institutional” data. Overall, the majority
were private (with or without a named institution), whereas roughly one in eight leaned
solely on public repositories, illustrating both the opportunities and constraints researchers
face in accessing large-scale pancreatic imaging cohorts. Table 7 includes all public datasets
used in each clinical application defined in this work.

Table 7. Datasets used in each category of the selected literature.

Clinical Application Public Dataset

Disease Detection

The Cancer Imaging Archive CPTAC-PDAC CT set
4 × GEO expression profiles

NIH Pancreas-CT dataset
Public dataset—No name

16 × GEO expression profiles
Longitudinal Cohort of Diabetes Patients (LHDB)–Taiwan NHI

National Health Interview Survey (NHIS)
The Health Improvement Network (THIN) primary-care database

Medical Segmentation Decathlon (MSD)–pancreas task
TCIA pancreas-CT collection (NTU study)

Radiogenomics cBioPortal PDAC sequencing cohorts
CPTAC-PDAC multi-omics set

Disease Classification N/A *

Survival Prediction N/A

Treatment Response N/A

Deep Radiomics Fusion N/A

* No public sources; all studies used only private data.

In order to provide a more complete picture of the used datasets in the selected
literature, in Table 8, the overall used datasets per clinical application are summarized.
Figure 8 graphically illustrates the percentage of public versus private datasets, revealing a
total of 12 public (9.5%) vs. 114 private (90.5%) datasets.

 
(a)  (b) 

Figure 8. Graphical illustrations of (a) public and private datasets per clinical application;
(b) percentage of public vs. private datasets from overall dataset sources.
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Table 8. Number and types of features alongside the used methodology in each clinical application.

Clinical
Application

Number
of Features

Types
of Features

Model
Algorithm

Performance
(Typical Metrics:

AUC/Acc.)
Primary Purpose

Disease Detection

88–1500+
(radiomics) or

additional deep
features

Handcrafted features such
as shape, first-order

intensity, GLCM texture,
wavelet, and

morphological descriptors;
CNN embeddings capture

abstract patterns.

3D CNNs (ResNet
variants, U-Net, and

Faster R-CNN),
patch-based CNNs,

Random Forests, and
SVM ensembles

AUCs: 0.90–0.97;
Acc.: ~90–95%

Automatic detection
of pancreatic cancer
and differentiation

from normal tissue or
benign lesions.

Disease
Classification

22–1000+ (often
reduced to

10–40 key features)

Texture descriptors (e.g.,
GLCM, GLRLM, fractal,

and LBP), intensity
histograms, and

morphological indicators
(volume, diameter, and

shape factors).

SVMs, Random
Forests, Logistic
Regression, deep

CNN classifiers, and
ensemble methods

(e.g., gradient
boosting)

AUCs: 0.80–0.98;
Acc.: ~85–95%

Differentiating
among pancreatic

pathologies such as
PDAC, pancreatitis,

PanNETs, and
various cystic

neoplasms.

Survival Prediction

30–1400+ (often
reduced to <10 or

fused with
clinical data)

Texture features (entropy,
dissimilarity), first-order

statistics, and
morphological

descriptors; often
combined with clinical

biomarkers
(CA19-9, CEA).

Cox proportional
hazards models,
Random Forest

Survival, Bayesian
neural networks, and

deep CNN
survival models

C-index: ~0.65–0.75
(often >0.70); AUC:

~0.80–0.90 for
early response

Predicting
overall/disease-free

survival and risk
stratification in

pancreatic cancer
patients.

Treatment
Response

100–1000
(including

delta-radiomics
from daily scans)

Delta changes in texture
(kurtosis, skewness, and

entropy) and
morphological features

(tumor shrinkage, density
changes) over time.

Logistic or Cox
regression models,

and deep CNN-based
segmentation

networks

AUC/Acc.:
~0.75–0.85

Evaluating early
treatment response

and efficacy in
neoadjuvant,

chemoradiation, or
SBRT settings.

Radiogenomics 2000+–3000+

Comprehensive
radiomics encompassing

texture, shape, and
intensity measures

correlated with genomic
data (e.g., KRAS, TP53,
SMAD4 mutations, and

gene expression).

Random Forest,
XGBoost, and SVM

with recursive feature
elimination and

importance ranking

AUC: ~0.70–0.80

Linking imaging
phenotypes to

molecular/genetic
profiles to guide

precision oncology.

Deep Radiomics
Fusion

14–2000
(handcrafted) plus
~256 deep features

Combination of
interpretable handcrafted

radiomics (GLCM,
wavelet, etc.) and deep

CNN embeddings
capturing high-level

image patterns.

Ensemble methods
(Bayesian fusion,

Random Forest, and
Logistic Regression)

with mutual
information

minimization
techniques

Improvement of
~2–5% (often achieving

AUC up to 0.90+)

Integrating
complementary

imaging biomarkers
to boost performance

in detection,
classification, and

survival prediction.

5.2. Features and Methods

The literature on pancreatic imaging has increasingly integrated advanced computa-
tional techniques, combining both handcrafted radiomics and deep learning approaches.
Researchers extract hundreds to thousands of features—ranging from shape and inten-
sity descriptors to complex texture metrics (such as those derived from the Gray-Level
Co-Occurrence Matrix and wavelet transformations)—which are then distilled using fea-
ture selection methods like LASSO or mRMR. Concurrently, deep convolutional neural
networks (CNNs) capture abstract, high-level representations from imaging data, with
architectures often augmented by attention mechanisms or fusion strategies. Together,
these methodologies not only enhance tumor detection and classification but also improve
prognostic predictions and treatment response assessments, demonstrating the potential
for more accurate, non-invasive clinical decision support in pancreatic cancer.

In pancreatic cancer detection, researchers have developed models that harness both
handcrafted radiomic features and deep learning methods from CT and MRI scans. Ra-
diomics approaches typically extract hundreds of features—such as shape descriptors,
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first-order intensity metrics, and texture measures (often derived from matrices like GLCM,
GLRLM, GLSZM, and NGTDM)—using standardized protocols and feature selection meth-
ods like LASSO, mRMR, or PCA. In parallel, deep learning methods employ 2D or 3D
convolutional neural networks (e.g., modified ResNet, U-Net, and Faster R-CNN), often
pre-trained on large image datasets to automatically extract high-level features that capture
subtle morphological and textural details. Many studies report a robust performance
with AUCs above 0.90, underscoring the effectiveness of these techniques—especially the
frequent use of GLCM-based features and attention mechanisms—to accurately distinguish
pancreatic cancer from benign conditions and healthy tissue.

For classifying various pancreatic pathologies—including PDAC, autoimmune pan-
creatitis, chronic pancreatitis, PanNETs, and cystic neoplasms—researchers have employed
both handcrafted radiomics and deep learning methods. Handcrafted approaches typically
extract hundreds of features, which are then reduced via feature selection to a subset of
10–40 key descriptors such as GLCM correlation, entropy, and run-length measures, along-
side morphological features like tumor volume and shape. Deep learning techniques, using
patch-level or fully 3D CNNs, further enhance segmentation and subtype classification,
often with ensemble methods boosting overall performance. Integrating radiomic features
with deep learning embeddings or clinical variables (e.g., CA19-9, CEA) consistently yields
high accuracy, with many studies reporting AUC values between 0.80 and 0.95.

Survival prediction studies typically rely on radiomic features extracted from pre-
operative CT or MRI scans, often combined with clinical biomarkers (e.g., CA19-9, CEA,
and tumor grade) or body composition metrics like the skeletal muscle index. Researchers
usually extract hundreds to thousands of features—including first-order statistics, texture
measures (such as those from GLCM and GLRLM), and morphological descriptors—and
then reduce these features using methods like LASSO or the univariate Cox analysis. These
refined features are integrated into multivariable survival models, most commonly us-
ing the Cox proportional hazards framework, though some studies have experimented
with Random Forest survival or neural network-based models. A consistent finding is that
greater tumor heterogeneity—often indicated by higher entropy or dissimilarity—correlates
with poorer overall survival, and incorporating changes in these features (delta-radiomics)
can further improve prognostic accuracy. Overall, combining imaging biomarkers with
clinical data generally yields a superior survival prediction performance, with concordance
indices frequently exceeding 0.70.

For treatment response, researchers analyze changes in radiomic and deep learning
features during therapies such as neoadjuvant chemotherapy, chemoradiation, or SBRT. By
tracking delta-radiomics metrics from daily or weekly CT scans, they observe longitudinal
changes in texture features—such as kurtosis, skewness, and entropy—that can signal early
treatment response. Deep learning segmentation networks further assist by monitoring
morphological changes in tumor volume and density. Notably, combining these imaging
biomarkers with clinical indicators, like CA19-9 decline, often enhances prediction accu-
racy, with consistent findings that increased post-therapy entropy or irregular texture is
associated with resistance or an incomplete response.

Radiogenomics studies connect imaging features to genetic and molecular profiles in
pancreatic cancer. Researchers extract extensive sets of radiomic features (often over 2000)
from contrast-enhanced CT, MRI, or PET/CT images and correlate them with sequencing
data for key mutations (e.g., KRAS, TP53, SMAD4, and CDKN2A) or gene-expression mark-
ers (e.g., integrin αV, p53 status, and PD-L1). Using feature selection methods like recursive
elimination and Random Forest rankings, these studies often identify texture features—such
as GLCM entropy and coarseness—as markers of high-risk molecular profiles. Additionally,
some deep learning pipelines have shown that CNN-derived embeddings can track specific
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mutation subtypes, suggesting that non-invasive imaging biomarkers may partially predict
molecular phenotypes and eventually guide targeted therapies.

Deep radiomics fusion models combine handcrafted radiomic features (such as shape,
texture, and intensity-based descriptors) with high-dimensional deep learning features
extracted from CNNs. By integrating these complementary data sources using ensemble
techniques like Random Forests, gradient boosting, or logistic regression, these models
consistently achieve 3–5% gains in accuracy or AUC over single-method approaches. Some
studies even use mutual information minimization to ensure that deep features add unique
value beyond traditional radiomics. Overall, this integrated approach enhances the early
detection of PDAC, differentiates benign from malignant cysts, and improves survival
prediction when sufficient data and careful feature engineering are available.

A number of common themes emerge across the selected literature, with a widespread
reliance on GLCM-based texture metrics—such as correlation, entropy, and homogeneity—that
consistently rank among the top-performing radiomics features across detection, classifica-
tion, and prognostic tasks. Despite the initial extraction of hundreds or even thousands of
features from imaging data, rigorous feature reduction methods, including LASSO, mini-
mum redundancy maximum relevance (mRMR), and Random Forest ranking, typically
reduce these to a focused set of fewer than 10–40 high-impact features that drive model
performance. Deep learning methods, particularly those that extract CNN embeddings,
complement these handcrafted features by capturing nuanced morphological cues and
abstract patterns that are often missed by traditional techniques, thereby enhancing the
predictive power when fused with radiomics. Moreover, key clinical biomarkers such as
CA19-9 frequently appear in these models, providing valuable complementary information
for treatment response and survival prediction, while additional markers like CEA or
diabetic status are occasionally integrated to further refine the predictions. Although most
models report accuracies or AUCs above 0.80, indicating a strong potential, variability in
CT or MRI acquisition protocols can affect generalizability, which underscores the critical
need for standardized imaging protocols in order to achieve consistent and reliable results
across studies.

In Table 8, the feature sets and main objectives across various pancreatic imaging
studies are gathered.

The literature reveals that specific radiomic features consistently serve as robust mark-
ers across multiple tasks in pancreatic imaging. Handcrafted texture metrics derived from
the GLCM—particularly entropy, correlation, and homogeneity—frequently emerge as
strong predictors for both detection and prognosis. In addition, wavelet-transformed
features are routinely found among the top-performing subsets for classifying various
pancreatic conditions, while shape features like sphericity and elongation are crucial for
differentiating cystic from solid lesions and monitoring morphological changes during treat-
ment. Deep CNN features add another layer of detail by capturing abstract patterns related
to tumor boundaries and texture complexity, effectively complementing the traditional
radiomics set.

Moreover, fusion models that integrate both handcrafted radiomics and deep learning
embeddings consistently demonstrate incremental gains in performance, underscoring the
complementary nature of these approaches. By combining imaging biomarkers with clinical
variables such as CA19-9, these models achieve superior accuracy in detecting, classifying,
and prognosticating pancreatic diseases. Overall, the integration of traditional feature
extraction methods with data-driven deep learning techniques offers a comprehensive and
robust framework for improving clinical decision-making in pancreatic imaging.

Overall, the reviewed studies highlight a consistent reliance on texture features—particularly
those derived from the gray-level co-occurrence matrix (GLCM), such as entropy, contrast, cor-
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relation, and homogeneity—as well as morphological and shape descriptors including volume,
surface area, compactness, and sphericity. These features were repeatedly identified as among the
most discriminative across a range of clinical tasks, from disease detection and classification to
survival prediction and treatment response assessment. Texture features were particularly
valuable in capturing intratumoral heterogeneity, which is a key imaging correlate of tumor
aggressiveness, while shape features helped quantify tumor invasiveness and spatial char-
acteristics. Despite their frequent use, there remains considerable variation in how radiomic
features are extracted and selected across studies. Differences in image acquisition protocols,
segmentation methods, image preprocessing (e.g., resampling, intensity normalization),
and feature definitions (e.g., IBSI-compliant vs. non-standard metrics) all contribute to
variability in reported results. Feature selection strategies also differ widely—ranging from
univariate statistical filtering to complex machine learning-based ranking—resulting in a
limited overlap of retained features across studies, even when similar clinical endpoints
are examined. This inconsistency underscores the urgent need for harmonized radiomics
workflows, standardized feature definitions, and external validation on multi-institutional
datasets to ensure the reproducibility and clinical credibility of radiomic biomarkers in
PDAC. Without such standardization, the development of reliable, generalizable radiomic
signatures for clinical use remains challenging.

In Figure 9, the horizontal range bar chart shows the approximate feature count ranges
and AUC performance ranges across different clinical applications in pancreatic cancer.
Each bar represents the minimum-to-maximum values reported in the selected literature
for a given task category.

 

Figure 9. Dual-panel horizontal range bar chart illustrating feature count ranges and AUC ranges per
clinical application.

In order to understand not only the methodological diversity but also the practical
reproducibility of AI and radiomics studies in PDAC, we catalog and analyze the soft-
ware platforms, standalone tools, and programming environments reported across the
literature. For this scope, the column “Software/Tool/Programming Language” exists in
each table, aiming to provide readers with a transparent overview of the technical ecosys-
tem used across the literature for different clinical applications and the deep radiomics
fusion methodology. Specifically, this column helps identify which software tools (e.g.,
ITK-SNAP, 3D Slicer), radiomic feature extraction platforms (e.g., PyRadiomics, MaZda),
and programming environments (e.g., MATLAB, Python, and TensorFlow) are most com-
monly employed in various stages of the AI pipeline, ranging from image segmentation
and preprocessing to feature extraction and model implementation. By capturing every
reported segmentation package (e.g., ITK-SNAP, 3D Slicer, and nnUNet), feature extraction
framework (e.g., PyRadiomics, MaZda, and LIFEx), and modeling library or language (e.g.,
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TensorFlow, MATLAB, R, and scikit-learn), we aim to present prevailing trends in technol-
ogy adoption, highlight emerging standards, and expose gaps in the reporting literature.
Specifically, the inclusion of programming languages serves to provide insight into the
computational environments most commonly adopted in the reviewed literature, since
programming language often reflects the underlying technological framework, community
support, and evolution of development practices in the field. For example, the frequent
use of Python, especially in conjunction with libraries like PyRadiomics or TensorFlow,
reflects the current trend toward open-source, flexible, and well-supported development
environments in radiomics and deep learning research. Meanwhile, the continued presence
of MATLAB indicates its longstanding role in image processing despite being a more tradi-
tional proprietary environment. Tracking the adoption of these programming languages
allows readers to understand the technological shifts in the field, anticipate tool compatibil-
ity, and assess the reproducibility and accessibility of published pipelines, especially for
researchers aiming to replicate or build upon prior work. In this way, the programming
language information complements the software/tool listings and offers broader context
about the ecosystem surrounding radiomics research.

To this end, this tool-level survey serves three key purposes: (1) It reveals which systems
researchers most often rely on for delineating tumor boundaries, computing radiomic features,
and building predictive models; (2) it contextualizes shifts in the field—such as the movement
from proprietary environments toward open-source, Python-based ecosystems; and (3)
it identifies opaque or under reported workflows that may hinder reproducibility and
impede external validation. Therefore, these insights provide a concrete roadmap for future
authors towards documenting their computational pipelines with greater clarity, and for
the community to coalesce around interoperable, well-supported tools that accelerate the
translation of radiomics-driven AI into clinical practice.

Regarding software and tools, the distribution of software usage is far from uni-
form across all reviewed studies. With almost one out of every eight studies citing it,
PyRadiomics is by far the most widely used platform. This dominance is a result of its
open-source nature, rigorous adherence to IBSI feature definitions, and smooth integration
with machine learning workflows based on Python. A second tier of popularity is formed
by ITK-SNAP (~10%) and MATLAB (~9%); the former is preferred for its easy-to-use, semi-
automated segmentation features that simplify lesion delineation before feature extraction,
while the latter is still widely used in academic imaging labs because of its sophisticated
image processing toolboxes and extensive institutional licenses. TensorFlow (approximately
8%), which most frequently supports CNN-based feature learning or complete classification
pipelines that supplement manually created descriptors, represents the gradual infiltration
of deep learning frameworks into PDAC radiomics. About 5% of papers use 3D Slicer,
which offers a flexible, GUI-driven solution for teams that prefer a point-and-click setting. It
also benefits from community extensions like SlicerRadiomics. However, despite these clear
leaders, the majority of studies fall into the “Other” category, which includes proprietary
vendor software, one-off institutional tools, and, most alarmingly, papers that make no
reference to their computational environment at all. This widespread lack of transparency
continues to be a major limitation in the current body of PDAC research, impeding direct
replication, cross-study benchmarking, and ultimately undermining the explainability
and reproducibility of suggested radiomic signatures. Figure 10 illustrates the general
distribution of the most commonly used software/tools across all clinical applications.
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Figure 10. General distribution of the most used software/tools.

By breaking down Figure 10 by purpose, three additional figures (Figures 11–13) are
extracted, aiming to provide an overview of the software/tools used for feature extraction,
ML/DL, and segmentation. Figure 11 illustrates the percentage of software and tools
used for segmentation purposes. The segmentation pie chart reveals that ITK-SNAP is the
predominant tool, used in 28% of studies for manual or semi-automated ROI delineation,
likely reflecting its robust 3D brush and thresholding features. The nnUNet and 3D
Slicer each account for 12%, indicating a growing adoption of deep learning-based auto-
segmentation and an extensible GUI platform with numerous community plugins. The
remaining 48% is split among over a dozen niche packages, such as CTLabler, Scout Liver,
Healthmyne, MITK, MedSeg, and A.K. (AnalysisKit), each at roughly 4%. This long tail
underscores both the methodological diversity in segmentation approaches and the absence
of a single, field-wide standard, which may contribute to inter-study variability in ROI
definition and downstream feature consistency.

 

Figure 11. Distribution of the most used software/tools for segmentation purposes.
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Figure 12. Distribution of the most used software/tools for feature extraction purposes.

Figure 13. Distribution of the most used software/tools for Modeling/ML/DL purposes.

Figure 12 presents the percentage of software and tools used for feature extraction
purposes. For radiomic feature computation, PyRadiomics dominates with 33% usage,
reflecting its open-source, IBSI-compliant implementation and seamless Python integration.
LIFEx captures the next largest slice at 14%; this standalone application offers a GUI for
the rapid extraction of first-order, shape, and texture features. IBEX and TexRAD each
contribute about 10%, highlighting their roles in specialized texture analyses. A series of
smaller segments, MaZda, MISSTA, CGITA, LifeX, and A.K. (AnalysisKit), and in-house
tools like Imaging Biomarker Explorer, round out the landscape, each appearing in 5% or
fewer studies. The prominence of a handful of platforms suggests an emerging consensus
on feature extraction standards, yet the diversity of lesser-used packages points to ongoing
experimentation with novel metrics and proprietary workflows.

Figure 13 presents the percentage of software and tools used for Modeling/ML/DL
purposes. In predictive modeling, the “DL Models” category encompassing custom CNNs,
autoencoders, and transfer learning architectures, accounts for 24% of reported frame-
works, highlighting the rapid shift toward end-to-end deep learning. Keras (12%) and
TensorFlow (6%) are the most cited high-level DL libraries, prized for their flexibility and
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GPU acceleration. The remaining third of the pie is a patchwork of statistical and machine
learning environments such as MATLAB, R, SPSS, JMP, scikit-learn, LibSVM, and even
mass-spectrometry analyzers (UHPLC-MS), each used by about 6% of studies. This mix
signals that, while deep learning is on the rise, a significant portion of research still relies
on traditional ML toolkits and statistical software, often for tasks like survival analysis or
classical classifier comparisons.

5.3. Radiomics and Deep Radiomics Comparison

The evolution from traditional radiomics to deep radiomics marks a significant shift in
how imaging features are extracted, represented, and modeled in medical image analysis.
Both approaches have been widely applied in pancreatic ductal adenocarcinoma (PDAC)
research, but they differ substantially in methodology, interpretability, and computational
demands. This section presents a comparative discussion of traditional and deep radiomics
pipelines, followed by a graphical and tabulated summary highlighting their key differences
and areas of synergy.

Traditional radiomics follow a well-defined, multi-step pipeline that typically includes
image acquisition, manual or semi-automated tumor segmentation, image preprocessing
(e.g., resampling, normalization), handcrafted feature extraction, feature selection, and
model development. The extracted features are mathematically defined and include first-
order statistics (e.g., mean, skewness), texture features (e.g., GLCM-based entropy, contrast,
and homogeneity), shape descriptors (e.g., volume, compactness), and higher-order trans-
formations such as wavelets. This pipeline emphasizes interpretability and reproducibility,
especially when tools such as PyRadiomics and standardized feature definitions (e.g., IBSI)
are used.

Deep radiomics, on the other hand, incorporate deep learning, typically CNNs, to
learn hierarchical, abstract features directly from the image data. These deep features are
not predefined but are learned from training data through backpropagation, often from
intermediate CNN layers. The deep radiomics workflow may still involve segmentation and
preprocessing, but often uses automated segmentation (e.g., nnU-Net), data augmentation,
and end-to-end modeling. In fusion models, handcrafted features are combined with deep
features through concatenation or attention mechanisms, providing a hybrid representation
that captures both domain-specific and data-driven imaging characteristics.

The fundamental differences between traditional radiomics and deep radiomics lie in
how imaging features are generated, interpreted, and applied. Traditional radiomics relies
on handcrafted features that are explicitly defined using mathematical formulas, such as
first-order statistics, shape descriptors, and texture measures like GLCM or wavelets, which
make the extracted features inherently interpretable and easier to correlate with known
clinical or pathological characteristics. In contrast, deep radiomics use CNNs to automati-
cally learn abstract, hierarchical representations from raw imaging data without predefined
formulas. While this allows deep radiomics to capture complex, non-linear patterns that
may not be easily modeled with handcrafted features, it also introduces challenges in inter-
pretability, as the resulting feature maps are often opaque and difficult to link to specific
image traits. Deep radiomics typically require larger datasets to generalize effectively and
often rely on high-performance computing infrastructure for model training. Traditional
radiomics, by contrast, are more modular and less resource intensive, making it suitable
for smaller datasets and standard computing environments. In terms of reproducibility,
handcrafted radiomics benefit from standardized extraction tools (e.g., PyRadiomics) and
feature definitions (e.g., IBSI compliance), whereas deep radiomics pipelines are more
sensitive to architectural choices, training parameters, and data variability. Despite these
differences, both approaches can be integrated with clinical or genomic data, and fusion
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models that combine handcrafted and deep features are increasingly used to leverage the
strengths of both methodologies.

Figure 14 illustrates a typical radiomics workflow, whereas Figure 15 shows a deep
radiomics approach.

 

Figure 14. Radiomics workflow [3].

Figure 15. Deep radiomics workflow [140].

6. Discussion
The application of artificial intelligence (AI), deep learning, and radiomics in pancre-

atic ductal adenocarcinoma (PDAC) detection and management has significantly advanced,
yet critical gaps persist across multiple aspects of its clinical translation. While AI-driven ap-
proaches have shown promise in disease detection and classification, significant challenges
remain in survival prediction, treatment response assessment, and radiogenomics. Address-
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ing these limitations is crucial to bridging the gap between research-based advancements
and real-world clinical utility.

One of the most pressing gaps is the limited use of AI models for early PDAC detection.
Current studies predominantly focus on diagnosing fully developed tumors rather than
identifying subtle pre-diagnostic changes that may indicate early malignancy. Most AI
models are trained on datasets consisting of patients with advanced disease, making
it difficult to detect small, pre-cancerous lesions that could enable earlier intervention.
Furthermore, distinguishing early-stage PDAC from normal or inflamed pancreatic tissue
remains a challenge, as radiomics features often overlap between benign and malignant
conditions. Future research should focus on refining AI models to recognize minute
morphological and textural changes that indicate early-stage PDAC, potentially integrating
pre-diagnostic imaging data and circulating biomarkers to enhance accuracy.

Beyond detection and classification, AI-based survival prediction models face signifi-
cant limitations in generalizability and robustness. Many existing models rely solely on
imaging-derived features, ignoring the potential of integrating molecular, clinical, and
treatment-related data. The majority of AI-based survival prediction models do not account
for the dynamic nature of disease progression, as they typically analyze imaging data from
a single time point rather than incorporating longitudinal changes over time. Additionally,
overfitting is a common issue, as many models extract thousands of radiomic features,
only a fraction of which hold clinical significance. To improve survival prediction, future
research should focus on developing multi-modal AI models that integrate radiomics with
genomic, proteomic, and metabolomic data. Large-scale, multi-institutional datasets are
also needed to enhance the generalizability of AI-driven survival prediction tools.

Another crucial gap in AI-based PDAC research is the limited ability to predict treatment
response effectively. Current models struggle to assess how an individual patient will respond
to chemotherapy, radiation therapy, or immunotherapy, leading to suboptimal treatment
selection. Many AI-driven treatment response models rely solely on pre-treatment imaging,
neglecting the importance of tumor biology, immune system interactions, and metabolic
changes that influence therapy efficacy. Moreover, most studies define treatment response
using broad, retrospective criteria, making it difficult to standardize and validate predictive
models. There is a need for AI-driven frameworks that incorporate serial imaging, liquid
biopsy markers, and transcriptomic data to predict real-time tumor response to therapy.
Additionally, few AI models focus on predicting treatment-related toxicity, which is crucial for
personalizing therapy and minimizing adverse effects. Future research should explore AI-
driven toxicity prediction models that integrate imaging features with clinical and biochemical
markers to optimize treatment decisions.

Radiogenomics, which combines radiomics-based imaging biomarkers with genomic
and molecular data, remains an underdeveloped area in PDAC research. Although radio-
genomics has shown potential in other cancers, its application in PDAC has been limited
due to the lack of large, well-annotated datasets linking imaging phenotypes with genetic
alterations. Existing radiogenomics studies focus on a small subset of mutations, such
as KRAS, TP53, and CDKN2A, while neglecting other emerging biomarkers, including
epigenetic modifications and immune-related gene expression. Furthermore, radiogenomic
studies are often conducted in a static manner, failing to account for tumor evolution over
time. Future research should emphasize the development of longitudinal radiogenomic
models that integrate serial imaging and multi-omics data to track tumor progression and
therapy resistance. Additionally, integrating liquid biopsy biomarkers, such as circulating
tumor DNA (ctDNA) and exosomal RNA, with imaging features could enhance the ability
to detect minimal residual disease and predict recurrence more accurately.
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Another key limitation in AI-based PDAC detection is the difficulty in distinguishing
PDAC from benign pancreatic lesions, such as chronic pancreatitis and pancreatic cystic neo-
plasms. Many AI models exhibit a high sensitivity but relatively low specificity, leading to false
positives that result in unnecessary biopsies and surgeries. The challenge lies in the similarity
of radiomic features between PDAC and benign lesions, which complicates accurate classifi-
cation. Future research should focus on developing hybrid AI models that integrate imaging
with histopathological and molecular profiling to enhance specificity. Additionally, AI models
should be designed to function as assistive tools rather than standalone diagnostic systems,
incorporating radiologist feedback to refine classification accuracy.

Compounding these technical and scientific gaps is a notable imbalance in data ac-
cessibility. Although a handful of public resources, such as The Cancer Imaging Archive
(TCIA) or large epidemiological datasets, are available, the majority of studies rely on local,
private datasets locked within specific institutions. This widespread preference for private
data poses multiple problems: it restricts opportunities for external validation, prevents the
uniform benchmarking of AI models, and can perpetuate biases if the private cohorts are
demographically narrow or come from a single geographical region. Consequently, many
research teams end up training algorithms on data that may not fully represent different
imaging protocols, patient populations, or disease subtypes, undermining generalizability.
Collaboration across institutions and the willingness to share anonymized imaging and
clinical data at scale—admittedly challenging due to privacy regulations—would markedly
enhance reproducibility, encourage the standardized evaluation of AI models, and foster a
global consensus on best practices for PDAC imaging analysis.

Despite the progress in AI-driven PDAC research, clinical validation remains a major
obstacle. Most AI models are trained and tested retrospectively, with only a few studies
evaluating their prospective impact in real-world settings. Without clinical trials assessing
AI-assisted PDAC diagnosis and prognosis, regulatory approval and widespread adoption
remain limited. Healthcare providers require real-world evidence demonstrating that AI
can enhance diagnostic accuracy, reduce false positives, and improve clinical workflow
efficiency before integrating these tools into standard practice. To bridge this gap, prospec-
tive validation studies should be conducted in clinical settings where AI models assist
radiologists in real-time decision-making. These studies should assess not only diagnostic
accuracy but also the impact of AI on patient outcomes, including early diagnosis rates,
survival benefits, and treatment efficacy.

Beyond technical challenges, workflow integration remains a significant barrier to the
clinical adoption of AI in pancreatic imaging. Many AI algorithms are developed in research
environments with minimal consideration for how they will be implemented in real-world
radiology workflows. Current AI tools often require additional steps for image preprocessing,
segmentation, and feature extraction, which disrupt the efficiency of clinical workflows. To
overcome this challenge, AI models should be designed for seamless integration into radiology
information systems and picture archiving and communication systems (PACS). Cloud-based AI
platforms that provide automated, real-time image analysis with minimal manual intervention
could help facilitate the transition from research to clinical practice.

Finally, ethical concerns and bias in AI-driven PDAC research require further attention.
Many AI models are trained on datasets that may not be representative of the global popu-
lation, leading to potential biases in diagnostic performances across different demographic
groups. AI models must be rigorously tested for fairness and robustness to ensure that they
perform equitably across diverse patient populations. Additionally, patient data privacy
and informed consent must be prioritized in AI research to build trust among clinicians
and patients. Future studies should implement fairness-aware AI training techniques and
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conduct demographic-specific performance analyses to identify and mitigate potential
biases in AI-driven pancreatic cancer detection.

Beyond technical and data-related challenges, several real-world factors hinder the
clinical adoption of AI tools for PDAC. First, the majority of AI models lack regulatory
approval (e.g., FDA, CE marking), which is essential before clinical deployment. Addition-
ally, hospitals face challenges in integrating AI outputs into existing radiology workflows,
including PACS/RIS systems, reporting tools, and clinical decision pathways. Radiologists
may be hesitant to adopt AI tools that lack transparent reasoning or interpretability, partic-
ularly when decisions carry diagnostic or legal consequences. There is also no established
reimbursement model for AI-assisted analysis, which limits institutional investment. Fi-
nally, liability in the event of misdiagnosis remains legally unclear when AI is involved in
decision-making. Addressing these system-level and human-integration barriers is just as
crucial as improving technical model performance and will determine whether AI solutions
meaningfully impact clinical care in PDAC [10,13,15,142,143].

Table 9 summarizes the key limitations and gaps in the literature alongside possible
future directions per defined research category.

Table 9. Limitations, gaps in the literature, and future research directions for different categories in focus.

Category Key Limitations/Gap Possible Future Directions

Early
Detection

Limited focus on early-stage PDAC;
poor differentiation from
benign/inflamed tissue

Develop models using pre-diagnostic data
and biomarkers; enhance sensitivity to

subtle features

Survival
Prediction

Lack of multi-modal data; single time
point analysis; and overfitting

Use longitudinal data; integrate clinical,
genomic, proteomic, and
metabolomic information

Treatment
Response

Inability to predict individual therapy
outcomes; limited data types used

Incorporate serial imaging, transcriptomics,
and immune/metabolic markers

Radiogenomics Narrow mutation scope; no temporal
tracking; and limited datasets

Develop longitudinal radiogenomic models;
include liquid biopsy and multi-omics data

Specificity and
False Positives

Overlap with benign lesions; high
false-positive rates

Combine imaging with
histopathology/molecular profiling; design

models with radiologist feedback

Data
Availability

Predominant use of private data; poor
reproducibility and benchmarking

Promote multi-institutional data sharing;
build large, diverse, and publicly

available datasets
Clinical

Validation
Mostly retrospective studies; limited

real-world testing
Conduct prospective trials; measure impact
on diagnostic accuracy and patient outcomes

Workflow
Integration

Models not designed for clinical
systems; workflow disruptions

Develop plug-and-play AI tools integrated
with PACS/RIS; utilize cloud-based

real-time platforms

Bias and
Ethics

Lack of fairness testing; biased
datasets; and privacy issues

Ensure demographic diversity; apply
fairness-aware training; and enforce strong

data governance

Regulatory and
Adoption Barriers

Lack of regulatory approvals (e.g.,
FDA, CE); unclear reimbursement;

and clinician trust issues

Establish clear validation pathways and
regulatory standards; include explainability

mechanisms; align with reimbursement
models; and promote clinician–AI

co-pilot systems

It should be highlighted that the transition from traditional radiomics to deep ra-
diomics represents a pivotal advancement in medical image analysis, particularly within
PDAC research. Traditional radiomics employs predefined, mathematically derived fea-
tures that enhance interpretability and reproducibility, while deep radiomics leverages
CNNs to learn abstract, data-driven representations directly from images. Though deep
radiomics offers a greater modeling flexibility and captures complex patterns, it faces
challenges in interpretability and computational demand. Yet, both pipelines report com-
plementary strengths and are increasingly used in fusion models that integrate handcrafted
and learned features.
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In conclusion, while AI and radiomics have demonstrated an immense potential in
PDAC detection, classification, survival prediction, treatment response assessment, and ra-
diogenomics, significant gaps remain in clinical validation, generalizability, interpretability,
and workflow integration. Future research should prioritize multi-institutional collabora-
tions, prospective validation studies, and explainable AI techniques to enhance trust and
adoption. Additionally, the integration of multi-omics data, liquid biopsies, and real-time
AI-driven decision support systems could revolutionize personalized medicine in PDAC.
Only through rigorous validation and seamless clinical integration can AI-based PDAC
detection and prognosis models transition from experimental research to transformative
tools in oncology.

7. Conclusions
The present review underscored the remarkable potential of advanced imaging

techniques—ranging from radiomics and machine learning to deep learning and fusion-
based methodologies—in tackling the multifaceted challenges of pancreatic cancer. By
melding detailed radiomic data with powerful computational algorithms, investigators
have begun to illuminate subtle tumor phenotypes that were previously undetectable,
thereby improving the detection, classification, survival forecasting, and treatment re-
sponse evaluations. Such insights hold the promise of more accurately stratifying patient
risk, tailoring therapeutic interventions, and ultimately moving the field closer to truly
individualized care. In order to translate these advances into clinical impact, future work
should prioritize external and prospective validation, adopt clinically meaningful evalua-
tion metrics such as specificity and calibration, and design AI tools that can be integrated
seamlessly into radiology workflows. Fusion models combining radiomics with deep
learning embeddings and multi-modal inputs have shown particular promise and warrant
deeper investigation. Addressing data sharing, regulatory standards, and interpretability
will also be essential to enable broader adoption. With continued multidisciplinary col-
laboration and methodological rigor, radiomics-driven AI solutions have the potential to
significantly improve outcomes for individuals facing pancreatic cancer.
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