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Abstract: Magnesium (Mg) and its alloys can degrade gradually up to complete dissolution in
the physiological environment. This property makes these biomaterials appealing for different
biomedical applications, such as bone implants. In order to qualify Mg and its alloys for bone
implant applications, there is a need to precisely model their degradation (corrosion) behavior
in the physiological environment. Therefore, the primary objective develop a model that can be
used to predict the corrosion behavior of Mg-based alloys in vitro, while capturing the effect of
pitting corrosion. To this end, a customized FORTRAN user material subroutine (or VUMAT) that
is compatible with the finite element (FE) solver Abaqus/Explicit (Dassault Systemes, Waltham,
MA, USA) was developed. Using the developed subroutine, a continuum damage mechanism (CDM)
FE model was developed to phenomenologically estimate the corrosion rate of a biocompatible
Mg-Zn—Ca alloy. In addition, the mass loss immersion test was conducted to measure mass loss over
time by submerging Mg-Zn—Ca coupons in a glass reactor filled with simulated body fluid (SBF)
solution at pH 7.4 and 37 °C. Then, response surface methodology (RSM) was applied to calibrate
the corrosion FE model parameters (i.e., Gamma (v), Psi (1), Beta ($3), and kinetic parameter (Ky)).
The optimum values for v, 1\,  and K, were found to be 2.74898, 2.60477, 5.1, and 0.1005, respectively.
Finally, given the good fit between FE predictions and experimental data, it was concluded that the
numerical framework precisely captures the effect of corrosion on the mass loss over time.

Keywords: biodegradable alloys; magnesium alloy; finite element modeling; corrosion model

1. Introduction

Magnesium (Mg)-based alloys are attractive for bone implant applications, as they corrode
gradually in vivo with an appropriate host response, and then degrade completely after the healing of
the bone tissue [1-3]. These alloys can be designed to degrade within a desired period of time through
alloying elements and coating techniques, thus allowing for the regeneration of the surrounding
soft or hard tissues [4,5]. When compared with other metallic materials, Mg-based alloys, either
crystalline or amorphous, do not significantly interfere with magnetic resonance imaging (MRI), hence
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allowing for the accurate assessment of the device function and surgical outcome to be made after the
surgery [6]. Crystalline Mg-based alloys offer a relatively high mechanical strength (~135-285 MPa)
that is suitable in load-bearing applications. On the other hand, amorphous Mg-based alloys have
disordered atomic (glass-like) structure. Amorphous Mg-based alloys have been studied for bone
fixations applications due to their superior strength and corrosion resistance in comparison with
traditional crystalline Mg-based alloys [2,7]. As an instance, the amorphous Mg-Zn-Ca-based alloys
showed a range of tensile strength from 675 MPa to 894 MPa [7]. In addition, the adverse effect of stress
shielding is prevented, as the amorphous Mg alloys enjoy Young’s modulus values (45 GPa) close to
that of the human bone [8-10]. Moreover, these alloys have close to bone density (~1.7-2.0 g/cm?),
while conventional titanium-based alloys, such as Ti-6Al-4V, have much higher density (~4.42 g/cm?)
when compared to that of natural bone (1.8-2.1 g/cm?) [11,12]. Magnesium is naturally present in the
human body (~25 g in total, 50-60% of which exist in the bone) [13]. Approximately 380-850 mg of
Mg is provided daily via different intake sources such as grains, nuts, and green leaves/vegetables.
Most importantly, while Mg-based alloys provide the unique property of enhancing the cell attachment
and proliferation through generating magnesium-containing calcium phosphate, , they are considered
biocompatible in vivo alloys that can receive acceptable responses from the host environment [14-16].

As stated previously, magnesium alloys are interesting because they can degrade over time
and leave the human body after the needed period of functionality. However, it is important to
understand and control the degradation process of the implemented bioparts. The most common
means of assessing the degradation can be performing experiments and doing numerical simulations
to have a better insight into their degradation behavior. In general, the numerical modeling of
biodegradation is of great interest, since it enables the analysis of structures and performance, which
cannot be evaluated in vivo or in vitro. It also reduces the time and cost required for manufacturing
large numbers of prototypes [17-19]. Finite element (FE) continuum damage mechanics (CDM) models
are the most favorable tools for predicting the performance of complex biodegradable geometries,
as they are more sensitive to mesh resolution [20]. These models evaluate the corrosion properties
of components by means of arbitrary state variables without referring to an explicit description of
microscopic phenomena and their evolution. Here, at the end of each time increment, a portion
of elements could be removed by FE deletion [21-23]. Since a CDM-based FE model is generally
phenomenological-based, rather than physical/chemical-based, it does not capture physical/chemical
processes related to the factors such as electrochemical surface reactions, species evolution, or species
diffusion. Therefore, for each material, the model has to be recalibrated based on the corresponding
experimental data [24].

In the literature, only a few research groups have focused on the field of phenomenological
modeling of biodegradable alloys through FE modeling based on CDM approaches. Grogan et al. [20]
developed a corrosion model to predict the corrosion behavior of AZ31, which is a biodegradable
Mg alloy, using pitting corrosion dp models (i.e., a non-uniform breaking down of the sample).
In their research, they have considered the calibration of three parameters (K, v, and (3) based
on the experimental data (mass loss after a certain periods of times up to 72 h) obtained from the
immersion test. They have used “tuning technique” to find these unknown pitting parameters and
reported 0.00042, 0.2, and 0.8 for K, v, and f3, respectively. Gastaldi et al. [25] also developed
a phenomenological CDM-based FE model to simulate the biodegradation properties of ZK60,
ZM21, AZ31, AZ61, and AZ80. Unlike the study done by Grogan et al. [20], they captured the effect
of uniform corrosion d, instead of pitting corrosion dp, as they observed almost linear behavior in
immersion testing for all five alloys for different periods of times up to 100 h. Therefore, they only have
reported K, parameter for the alloys, which ranged from 10~2 to 10~!. Specifically, for AZ31 Mg-based
alloy, the value of K,, was reported to be 0.00500. However, it is believed that a uniform model for
predicting corrosion in immersion testing is not precise compared to a pitting corrosion model [20].
Later, Oppeel et al. [26] also captured the effect of pitting corrosion dp using CDM-based FE approaches
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to develop their model for AZ31 Mg-based alloy. After modeling the immersion test results and the
subsequent tuning, they reported the values of Ky, v, and {3 as 0.00650, 0.2, and 0.5, respectively.

The major challenge associated with the developed corrosion models in literature is that they
have used arbitrary tuning techniques to report their model parameters, which is time-consuming,
imprecise, and unrepeatable. In addition, they have neglected the shape factors parameter Psi (1)
and only considered parameters K, v, and 3. To close this gap, we first developed a customized
FORTRAN user material subroutine (VUMAT) code based on CDM FE approaches to include the effect
of the pitting corrosion Dy, of Mg—Zn—Ca alloy. In this study, we considered all main four parameters
(i.e., v, ¥, B, and Ky) for the calibration of the model rather than only three. Finally, we implemented
response surface methodology (RMS), rather than an arbitrary tuning technique, to tune and calibrate
the four effective parameters.

2. Materials and Methods

2.1. Sample Preparation and In Vitro Immersion Corrosion Testing

An Mg-1.2Zn-0.5Ca (wt.%) alloy was produced by casting using pure Mg, pure Zn, and a 15 wt.%
Ca-Mg master alloy. This alloy composition was found to result in an optimized mechanical and
corrosion properties based on our previous studies [27,28]. The melting process was conducted in
a steel crucible at 720 °C for 15 minutes under a CO; + 0.5% SF¢ atmosphere. Then, the melt was cast
into a steel permanent mold to create as-cast cylindrical ingots of 16-mm diameter by 100-mm length.
Finally, seven samples (coupons of 15-mm diameter and three-mm thickness) were machined from the
created ingots for the purpose of immersion testing. The machined samples were then polished using
SiC papers (600-2000 grit) and cleaned using ethanol. The polished and ethanol-degreased samples
were then connected to a plastic holder from one end, and then submerged in a simulated body fluid
(SBF) solution at a monitored pH of 7.4 and a fixed temperature of 37 °C (Figure 1). The composition
of the SBF solution is presented in Table 1.

Figure 1. The setup for the glass reactor and the peristaltic pump.
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Table 1. Amounts of reagents for the preparation of 1000 mL solution of the simulated body fluid (SBF),
adopted from Oyane et al. [29].

Reagent Amount
NaCl 5403 g
NaHCO3 0.504 g
Na2C03 0.426 g
KCl 0.225¢
K,HPOy4-3H,O 023¢g
MgC12'6H20 0.311 g
0.2 mol L~! NaOH 100 mL

HEPES 17892 g
CaCl, 0293 ¢g
Na2804 0.072 g
1 mol L~! NaOH 15 mL

As presented in Equations (1)—(3), the corrosion reaction of Mg in an aqueous environment
(physiological environment) produces Mg ions, hydroxyl group (OH), and hydrogen (H;). The OH
quickly reacts with Mg ions to create a layer of magnesium hydroxide Mg(OH), on the surface of
the sample. Mg(OH), may convert into soluble magnesium chloride (MgCl,). The overall reaction
consumes H' and produces OH™ from the medium, leading to an increase in the pH value [15,29-31].

Mg + 2H,0 = Mg?t +2(OH) ™ + H, 1)
Mg?t +2(OH)~ = Mg(OH), )
Mg(OH), + Cl~ = MgCl, + 2(OH) ®3)

To maintain the pH between 7.3-7.8 throughout the experiments, a diluted hydrochloric acid
(bM-HCL) was titrated into the SBF every eight hours, and the SBF solution was replenished every
two days. The level of temperature was also maintained constant (at 37 °C) by placing the samples in
an incubator throughout the period of the tests. The immersion tests were performed on seven coupons,
and for each, the mass loss was recorded for five intervals; 0 days, seven days, 14 days, 21 days,
and 28 days. For each interval, the mass of the seven samples were recorded and averaged after rinsing
the corrosion products on the surface of the samples using a mixture of CrO3 (20%) and AgNO; (1%)
(Chromic acid) and ethanol [32]. Then, the mass loss (mg/cm?) related to each interval was calculated

using Equation (4):

m; — My

Mass Loss = 4
ass Loss A 4)

where mass loss is in (mg/ cm?), m; is the initial mass of sample before immersion test (mg), my is the
final mass of each sample after immersion test (mg), and A is the sample’s surface area exposed to the
SBF solution (cm?).

It should be pointed out that H, pockets are formed during corrosion in the rate of one mL for
every one mg of Mg, as reported in Equation (1). Hence, measuring the mass loss is enough to simulate
the corrosion rate of the Mg samples in addition to being a representation of the amount of H; released.

2.2. Damage Model Development

A FORTRAN user material subroutine or VUMAT was developed to investigate the degradation
behavior of biodegradable alloys in the FE solver Abaqus/Explicit (Dassault Systemes, Waltham,
MA, USA). Abaqus/Explicit has an interface that allows the user to implement the constitutive
relationships of any given arbitrary complexity in addition to the already existed material models in
the Abaqus material library. An FE model was used for the phenomenological investigation of the
influence of pitting damage on the mechanical behavior of Mg-based alloys. In this study, the corrosion
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model was developed based on CDM theory, which was proposed by Lemaitre et al. [22], through
the introduction of a scalar damage parameter dp to assess the overall damage as corrosion proceeds.
According to Wenman et al. [24], the values of dp range from zero to one, corresponding to the intact
and fully corroded material element. Therefore, the elements with dp = one should be eliminated
from the FE mesh, simulating the mass loss of the corroded alloys. However, Abaqus does not allow
elements to be deleted. In order to solve this issue, the mechanical properties of corroded elements
were set to nearly zero, and for virtual representation, the corroded elements were set to be invisible.

The following steps and equations are utilized in order to apply the defined model to the
investigations. In Equation (5), Ku(h_l) is the kinetic parameter representing the uniform corrosion
process, &y is the material characteristic, Le (mm) is the FE model characteristic length, and A, is
an element-specific dimensionless pitting parameter, all of which are initially assigned to each element:

=2k ©

To assign Ap values to all elements on the initial exposed surface, a probability density function
(PDF) f(x) of a Weibull random variable was used (Equation (6)). Y and 1 are dimensionless distribution
shape factors characterizing the probability density function (PDF). The probability of the value of
Ap ranging from “a” to “b” is given by Equation (7). In Abaqus, when an element is effectively
removed, the neighboring elements (?\;)) inherit the value of the pitting parameter A, of the completely
corroded and eliminated elements. {3 is the dimensionless scaling parameter controlling pitting growth

acceleration. Equation (8) explains how the pitting parameter is assigned to neighboring elements.

x\Y7! —(x/p)Y
f(x: ¥, v) = %($) e (/Y x20 (6)
0 x <0
b
Pla<A, <b] = / £(x)dx @)
Ap = B Ap ®)

The flowchart presented in Figures 2 and 3 demonstrate the implementation of this user-defined
material model, as well as the details related to each step.

!
i ™
Update effective stress Gyar
- -y
| A, At
i ™
Updating damage factor d,, ;. T
L A
l Abaqus Solver
e ™
Updating effective stress factor
Orrar = Oprar X (1 —dpsne)

Figure 2. Schematic overview of the steps toward generating the VUMAT code.
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Figure 3. Schematic overview of the subroutine.

2.3. Boundary Conditions and Simulations

Coupons that were 15 mm in diameter and three mm in thickness were modeled using
SOLIDWORKS (Dassault Systemes, Waltham, MA, USA), and then were imported to Abaqus/Explicit
for FE Analysis. Next, the developed VUMAT, which was compatible with the FE solver
Abaqus/Explicit, was implemented into the FE model to simulate the corrosion behavior of the
Mg-1.27n-0.5Ca (wt.%) alloy. The coupons were meshed in Hypermesh (Hyperworks, Troy, MI, USA)
with an eight-node linear brick (C3D8), which represents three-dimensional (3D), solid, hexagonal,
and deformable element types. In addition, mesh convergence studies were conducted to guarantee
a minimal influence of the mesh on the simulation results. In order to reproduce the mass loss versus
time period curves, corrosion degradation process was evaluated for different periods of time (0 days,
three days, seven days, 14 days, 21 days, and 28 days).

2.4. Calibration Strategy through RSM

The aim of this section is to propose a method to calibrate the four effective corrosion parameters
to results in an acceptable match between the mass loss—time curves predicted by the model and the
observed ones from the immersion experiments presented in Section 2.1. The common calibrating
approach in the literature for the corrosion parameters is based on the trial and error techniques. In such
approaches, a set of corrosion parameters are initially considered, and the FE results are compared
with those of the experimental works. The parameters are then changed, and the modeling data are
regenerated to the point that the FE results are in accordance with the experimental findings. Although
the outcomes of these techniques seem to be close enough, time consumption, cost inefficiency;,
non-repeatability, and lack of needed accuracy for the intended applications reduce their applications.
In this research, the root mean square error (RMSE) technique is implemented to calibrate the
corrosion parameters. MiniTab v16 was used to generate the design of experiment (DOE) matrix
and analyze the response surface models. In this technique, a three-level, four-factor Box-Behnken
design was selected, because it was capable of evaluating the quadratic interactions between pairs of
corrosion parameters while minimizing the number of required experiments (cheaper, more accurate,
and time-efficient) [33,34].

Here, experimental data (mass loss versus time) of immersion tests for the fabricated
Mg-1.2Zn-0.5Ca alloy were used. The effective parameters of the immersion tests were as following;:
Gamma (), Psi (), Betha (), and Kinetic (K, ). Using the RSME technique, the impact of parameters
and their interactions were evaluated. The selected ranges for these factors are presented in Table 2.
To define the discrepancy between the experimental and modeling results, the Chi-square value (x?)
was calculated for each run based on Equation (9). A total number of 27 combinations of effective
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corrosion parameters were considered, and x2 was measured for each experiment. These combinations
are indicated for the Mg-1.27n-0.5Ca alloy,, as listed in Table 3.

2 (observed—predicted)?
X = observed

= a1y + axV + a3P + agUy + asy? + agh? + azp? + agUs + agy )
+a10YB + a1 YUy +app +abUy +aj4fUy +ags

Table 2. The ranges of effective pitting parameters: (Mg—1.2Zn-0.5Ca—Immersion test).

Range and Levels

Variables, Unit
—x 0 [0
Y 0.1 2.6 5.1
VP 0.1 2.6 5.1
B 0.1 5.1 10.1
Ku 0.001 0.1005 0.2

Table 3. The 27 suggested sets of pitting parameters obtained from the response surface
methodology (RSM) technique to be able to predict the Chi-square value (x?) for each experiment:
(Mg-1.2Zn-0.5Ca—immersion test).

Case (%) W) B) Ky

1 2.6 51 51 0.001
2 2.6 2.6 51 0.1005
3 2.6 0.1 51 0.2

4 0.1 0.1 51 0.1005
5 51 2.6 5.1 0.2

6 2.6 0.1 5.1 0.001
7 0.1 2.6 5.1 0.2

8 51 0.1 51 0.1005
9 2.6 2.6 0.1 0.001
10 2.6 5.1 10.1 0.1005
11 2.6 2.6 10.1 0.001
12 2.6 0.1 10.1 0.1005
13 2.6 2.6 5.1 0.1005
14 0.1 2.6 0.1 0.1005
15 0.1 51 5.1 0.1005
16 2.6 2.6 51 0.1005
17 0.1 2.6 51 0.001
18 2.6 0.1 0.1 0.1005
19 51 2.6 51 0.001
20 2.6 5.1 5.1 0.2

21 5.1 2.6 0.1 0.1005
22 5.1 51 51 0.1005
23 2.6 2.6 0.1 0.2

24 51 2.6 10.1 0.1005
25 0.1 2.6 10.1 0.1005
26 2.6 5.1 0.1 0.1005
27 2.6 2.6 10.1 0.2

3. Results

3.1. Degradation Behavior of Mg—Zn—Ca Alloy

Figure 4 shows the mass loss of the Mg—1.2Zn-0.5Ca (wt.%) coupon obtained from immersion
test in corrosive environment (SBF solution) at a pH of 7.3-7.8 and temperature of 37 °C for a period of
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28 days. The in vitro mass loss of the coupon was recorded to be 0.94%, 10.80%, 35.33%, 62.22% and
89.27 after three days, seven days, 14 days, 21 days, and 28 days, respectively.

Time 0-day Day 3 Day 7 Day 14 Day 21 Day 28

Mass loss 0 (%) 0.94 (%) 1080 (%) 3533 (%)  6222(%)  89.27 (%)

Coupon

Figure 4. Mass loss of Mg-1.2Zn-0.5Ca (%) coupon as a function of time during immersion testing in
SBF at pH 7.3-7.8 and 37 °C for a period of 28 days.

3.2. Mesh Analysis

Figure 5 shows the mesh convergence studies as well as the virtual representation of the meshed
coupon for the simulation of immersion testing in corrosive environment (SBF solution) for the
Mg-1.2Zn-0.5Ca (wt.%) alloy. The FE mesh is also shown in the outset. The eight-node linear brick
elements (C3D8) was used to mesh the coupons to provide higher element metrics (quality) and better
modal analysis. Mesh convergence study was conducted to evaluate the sensitivity of the resultant
FE damage factor to the element size, as well as other effective parameters (i.e., v, ). To this aim,
a single coupon was meshed using 12 different element numbers, ranging from 365 to 64750 elements,
as well as nine different combinations between 1 (range from 0.2 to 1.8) and vy (range from 0.5 to 2).
Each of the 108 models was run using Abaqus, and the resultant damage factor was recorded after
a constant time. An aspect ratio of close to one was considered for all of the elements, as the most
suitable value to model degradation-induced mass loss [26]. As it is seen, a mesh leading to errors less
than 5% was acceptable while it resulted in a comparable damage factor to that of utilizing a very fine
mesh, i.e., 64,750 elements. The final mesh was composed of 3600 elements.

1
0.9
0.8
0.7
0.6
0.5
0.4 1
0.3
0.2
0.1

Damage

a 22} &8 23] 8

0 10000 20000 30000 40000 50000 60000 70000
Number of Elements

OPsi= 0.2,Gamma=0.5 OPsi= 0.2,Gamma=1.25 +Psi= 0.2,Gamma=2.0

OPsi= 1.0,Gamma=0.5 OPsi= 1.0,Gamma=1.25 +Psi= 1.0,Gamma=2.0

OPsi= 1.8,Gamma=0.5 OPsi= 1.8,Gamma=1.25 + Psi= 1.8,Gamma=2.0

Figure 5. Mesh convergence analysis of the corroding Mg-1.2Zn-0.5Ca (wt.%) coupon in corrosive
environment (SBF solution) at 37 °C. The meshed coupon is also presented in the figure.
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3.3. Determination of Model Parameters

Table 4 represents the 27 combinations between the effective pitting corrosion parameters
(v, ¥, B, Ky) defined by Minitab v16 software. The results of immersion experiment (see Section 3.1)
were also used as a reference for calibration of these parameters. Next, 27 different runs in Abaqus were
conducted until the acquired mass loss exceeded 89.27%, which was the maximum mass loss of the
experiment recorded after 28 days. Then, for each condition, the x2 was calculated using Equation (9).
Finally, the set of pitting parameters that resulted in the lowest x> = 0.034 was proposed as following:
(y = 2.74898,19 = 2.60477, p = 5.1, and K,, = 0.1005). This set of pitting parameters was defined as
the model parameters for simulating the corrosion behavior of Mg—1.2Zn-0.5Ca (wt.%) in immersion
testing. For a better clarification, the mass loss versus dimensionless time are plotted in Figure 6 for
the 27 different conditions as well as the immersion experiment.

Figure 7 also demonstrates the contour plots, representing the distribution of x?, as the result of
using different sets of pitting parameters. As it is clear in the figure, each of the pitting parameters
(i.e., v, P, B, and Ky) has a significant effect (i.e., p value less than 0.05) on the resultant mass loss.
Here, the regions in blue color are preferable compared to those in green, as they are attributed to
lower x? values, and therefore, there is a lower discrepancy between the experimental results and FE
modeling. The selected optimum values for the effective parameters (y = 2.74898, 1 = 2.60477, 3 = 5.1,
and K, = 0.1005) are also shown as a red circle in Figure 7.

Table 4. Obtained x? for 27 different set of pitting parameters obtained from the RSM technique. The
optimized pitting parameters are provided based on the lowest value observed for x>.

Case ) W) B) Ky x>

1 2.6 5.1 5.1 0.001 1.42
2 2.6 2.6 5.1 0.1005 0.43
3 2.6 0.1 5.1 0.2 1409.05
4 0.1 0.1 5.1 0.1005 342.21
5 51 2.6 5.1 0.2 6.31
6 2.6 0.1 5.1 0.001 703.62
7 0.1 2.6 5.1 0.2 0.96
8 5.1 0.1 5.1 0.1005 460.68
9 2.6 2.6 0.1 0.001 0.59
10 2.6 5.1 10.1 0.1005 1.52
11 2.6 2.6 10.1 0.001 1.16
12 2.6 0.1 10.1 0.1005 1096.31
13 2.6 2.6 5.1 0.1005 0.43
14 0.1 2.6 0.1 0.1005 0.42
15 0.1 5.1 5.1 0.1005 1.67
16 2.6 2.6 5.1 0.1005 0.43
17 0.1 2.6 5.1 0.001 0.36
18 2.6 0.1 0.1 0.1005 634.60
19 5.1 2.6 5.1 0.001 6.41
20 2.6 5.1 5.1 0.2 1.71
21 5.1 2.6 0.1 0.1005 0.68
22 5.1 5.1 5.1 0.1005 0.59
23 2.6 2.6 0.1 0.2 0.56
24 5.1 2.6 10.1 0.1005 0.47
25 0.1 2.6 10.1 0.1005 0.47
26 2.6 5.1 0.1 0.1005 0.70
27 2.6 2.6 10.1 0.2 0.32

Optimized  2.74898  2.60477 5.1 0.1005 0.034
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Figure 6. The mass loss (%) vs. dimensionless time obtained from the immersion experiment of
Mg-1.27Zn-0.5Ca as well as the 27 finite element (FE) model proposed by the RSM technique.

* * K, =

; ind By 020 . x
< 0
A 0.15- W ¢= 1
B - 10

3

0.10- W 10— 500
2 . 500 — 1000
| 0.05 | || > 1000

Hold Val

| A | old Values

15 30 45 15 30 45 L5 30 45 14 26
ﬁ * d) Ku * w ’l’ 26
k I 51
K,  0.1005
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Figure 7. Contour plots representing the distribution of x? as a function of the pitting parameters (y, 1,
B, and Ky).

3.4. Evaluation of the Model

Figure 8 shows the evolution of the damage parameter throughout the Mg-1.2Zn-0.5Ca (wt.%)
coupon volume as a function of corrosion time (0 days, three days, seven days, 14 days, 21 days,
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and 28 days), while the suggested parameters in Section 3.3 are used in the model. It can be observed
that the pitting-like material is simulated by means of the developed numerical framework. In Figure 9,
the FE results using the optimum parameters are also compared to the experimental results obtained
from immersion testing for the alloy. It is clear that the use of optimum pitting parameters in the
developed model accurately reproduce the obtained experimental results (x? = 0.034; p value = 0.012).

Table 5 demonstrates a collection of reported model parameters by the research groups in the
literature (Grogan et al. [20], Gastaldi et al. [25], and Oppeel et al. [26]), as well as the parameters
presented in this work.

Damage factor distribution

Figure 8. FE experimental results for immersion testing of Mg—1.2Zn-0.5Ca. The color code represents
the value of the damage parameter d ranging from 0 to 1.
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Figure 9. Mass loss (%) vs. dimensionless time as measured in immersion test of Mg—1.2Zn-0.5Ca alloy
(n =7) and corresponding FE simulation predictions.
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Table 5. The calibrated parameters by different groups in the literature. Gamma (y), Psi (1), Beta (j3),
and kinetic parameter (K ).

Parameter Grogan etal. [20]  Gastaldi et al. [25]  Oppeel et al. [26] Our Simulation
Material AZ31 AZ31 AZ31 Mg-Zn-Ca AZ31
Y (=) 0.2 - 0.2 2.74898 0.5846
¥ (—) - - - 2.60477 0.93003
B (=) 0.8 - 0.5 5.1 0.2505
Ky (h™1) 0.00042 0.00500 0.00650 0.1005 0.005
X 34.83 48.73 25.14 0.034 0.0399

4. Discussion

In this study, a phenomenological corrosion model based on the CDM approach has been
developed to simulate the degradation of Mg-based alloys, including Mg-1.2Zn-0.5Ca (wt.%). Hence,
the simulation is based on the overall macroscopic behavior of the alloy rather than taking into account
the micro and/or nanoscale physical mechanisms that govern degradation. Therefore, calibrating the
effective degradation constant parameters for each particular biodegradable alloy is needed. Due to
the phenomenological basis of the developed model, it does not physically capture the effect of
the electrochemical processes on the corrosion behavior, meaning that its predictions are specific to
a given alloy.

As presented in Table 5, a significant discrepancy is observed between the FE modeling predictions
in literature and the corresponding experimental data (the calculated x? was at least 25.14, which was
reported by Oppeel et al. [26]). However, the presented model in this work demonstrated a negligible
discrepancy between the modeling and experimental results (the calculated x? was 0.034).

To evaluate the time efficiency and accuracy of our model compared to the one by Oppeel et al. [26],
the proposed model was recalibrated in order to acquire the pitting parameters for three AZ31
components using their immersion testing data. A similar approach as explained in Section 2.3 was
implemented to calibrate the four effective parameters for AZ31 alloy (note: In their work, the mass
loss was collected from immersion testing on five samples after a period of 96 h). Finally, the set of
pitting parameters that resulted in the lowest x> = 0.0399 was proposed as following: (y = 0.5846,
P = 0.93003, p = 0.2505, and K, = 0.005). However, the calculated x? for the immersion prediction
by Oppeel et al. [26] was about 25.14. This means that the proposed corrosion model closely matches
the observed results in experiment. Figure 10 shows the modeling results of our model versus their
modeling and experimental data.

In summary, this model enables the prediction of the in vitro corrosion behavior of degradable
alloys (crystalline and amorphous) through recalibrating the four effective parameters using the RSM
approach. These four parameters include 3 (the dimensionless scaling parameter controlling pitting
growth acceleration), v (the dimensionless distribution shape factors characterizing the probability
density function (PDF)), 1 (the dimensionless distribution shape factors characterizing the probability
density function (PDF)) and K, (the kinetic parameter representing the uniform corrosion process).
The values of mass loss over time have to be collected for the purpose of obtaining these parameters.
It should be pointed out that the model that was developed in this study has a number of limitations.
Due to its phenomenological basis, it is required to recalibrate the effective degradation parameters for
each particular biodegradable alloy. Also, as the model predictions are not generated based on the
alloy microstructure, hence, the model cannot be used in predicting the effects of precipitate formation
or grain size on corrosion. In addition, the model does not capture the effects of tissue coverage on
alloy corrosion if implanted inside the body.
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Figure 10. Experimental (n = 3) and FE representation of the AZ31 alloy using the developed model
versus Oppeel et al [26]. (Immersion testing).

5. Conclusions

This work focuses on the development and calibration of a model capable of precisely predicting
the corrosion behavior of Mg-based alloys using the RSM approach. To calibrate the pitting parameters
(v, ¥, B, Ky), an immersion experiment was also performed on Mg—Zn—Ca coupons. The results
predicted by the developed model demonstrated a close matching between the modeling and
experimental results of (RMSE = 2.8 x 107, p value = 0.001). Therefore, the presented method
enables us to predict the corrosion behavior of Mg-based alloys more accurately with a reduction in
cost and time of calculations.
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