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Abstract: X-ray computed tomography (CT) is widely used in clinical practice. The involved ionizing
X-ray radiation, however, could increase cancer risk. Hence, the reduction of the radiation dose
has been an important topic in recent years. Few-view CT image reconstruction is one of the main
ways to minimize radiation dose and potentially allow a stationary CT architecture. In this paper,
we propose a deep encoder-decoder adversarial reconstruction (DEAR) network for 3D CT image
reconstruction from few-view data. Since the artifacts caused by few-view reconstruction appear in
3D instead of 2D geometry, a 3D deep network has a great potential for improving the image quality
in a data driven fashion. More specifically, our proposed DEAR-3D network aims at reconstructing
3D volume directly from clinical 3D spiral cone-beam image data. DEAR is validated on a publicly
available abdominal CT dataset prepared and authorized by Mayo Clinic. Compared with other
2D deep learning methods, the proposed DEAR-3D network can utilize 3D information to produce
promising reconstruction results.

Keywords: deep encoder-decoder adversarial network (DEAR); generative adversarial network
(GAN); few-view CT; sparse-view CT; machine learning; deep learning

1. Introduction

X-ray computed tomography (CT) is one of the most essential imaging modalities widely used in
clinical practices [1]. Even though CT brings overwhelming healthcare benefits to patients, it could
potentially increase the patients’ cancer risk due to the involved ionizing radiation. The data from
the National Lung Screening Trial indicate that annual lung cancer screening with low dose CT could
significantly reduce lung cancer related mortality [2]. If the effective dose of a routine CT examination
is reduced to less than 1 mSv, the long term risk of CT scanning can be negligible. In the past years,
numerous deep learning based CT denoising methods were proposed to reduce radiation dose with
excellent results [3–5]. In parallel, few-view CT is also being actively investigated to reduce the
radiation dose, especially for breast CT [6] and C-arm CT [7].

Few-view CT is a challenging problem. Due to the requirement imposed by the Nyquist sampling
theorem [8], reconstructing high quality CT images from under-sampled projection data was previously
considered an unsolvable problem. With sufficient projection data, analytical methods such as filtered
back-projection (FBP) [9] can be used for accurate image reconstruction. However, FBP will introduce
severe streak artifacts when projection data are limited. Numerous iterative reconstruction algorithms
were proposed to incorporate prior knowledge for suppressing image artifacts in few-view scans. Well
known methods include the algebraic reconstruction technique (ART) [10], the simultaneous algebraic
reconstruction technique (SART) [11], expectation maximization (EM) [12], etc. Even though these
iterative methods do improve image quality, they are usually time consuming and still not able to
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produce clinically acceptable results in many cases. In the context of this article, clinically acceptable
images are reconstructed few-view images that can be used for diagnosis with minimal streak artifacts
and clearly shown lesions/subtle details. However, traditional image quality metrics have been used
in our paper to quantify image quality. Recently, with the assistance of the graphics processing unit
(GPU) and big data, deep learning has become a new frontier of tomographic imaging and gives new
opportunities for few-view CT reconstruction [13,14].

Deep learning has been now well recognized in the field of medical tomographic imaging [15].
Several methods were proposed to resolve few-view CT issues in a data driven fashion. For example,
based on convolutional neural network (CNN) [16], Jin et al. [17] proposed a FBPConvNet algorithm to
remove streak artifacts in the 2D image domain, which utilized FBP measurements as input. Lee et al.
used a similar CNN structure to eliminate artifacts in the sinogram domain [18]. Chen et al. designed
a Learned Experts’ Assessment-Based Reconstruction Network (LEARN) [19] to map sparse sinogram
data directly to a tomographic image, which combines a CNN [16] and a classic iterative process under
a data driven regularization. Inspired by the FBP workflow, Li et al. published their iCT-NET [20],
which is a deep learning method with a common CNN architecture, to perform CT reconstruction in
various special cases and consistently obtain decent results. Our recently published Dual Network
Architecture (DNA) network [21] addressed the few-view CT issue by learning a network based
reconstruction algorithm from sinogram data. However, none of these proposed methods were
designed to perform 3D image reconstruction, subject to potential loss in 3D context.

There are a few publications in the literature trying to use 3D convolutional layers to preserve 3D
information during image reconstructions. Low-Dose X-ray Tomography with Generative Adversarial
Networks (TomoGAN) [22], proposed by Liu et al., is a novel deep learning based method for low
dose CT denoising and few-view CT de-striping. On the other hand, our previous work, Contracting
Path-based Convolutional Encoder-decoder (CPCE) network [2], transfers a 2D trained network to a
3D counterpart. Both ways take 3D image patches as input and use 3D convolutional layers to extract
3D feature maps. However, both methods aim at generating a single output image from multiple
input slices. Put differently, their methods are a hybrid network consisting of 2D and 3D convolutions,
which is also called 2.5D in some papers. The innovative aspect of our paper lies in that, instead
of generating a signal 2D output image from multiple adjacent slices, the proposed DEAR aims at
generating 3D images directly from few-view 3D input. Since multiple image slices are generated at
once through reconstruction during both training and testing phases, our proposed method not only
takes advantage of 3D convolutional layers to extract spatial information, but also allows a higher
computational efficiency than the TomoGAN and CPCE.

In this paper, we propose a deep encoder-decoder adversarial reconstruction network (DEAR)
for 3D CT from few-view data, featuring a direct mapping from a 3D input dataset to a 3D image
volume. In diagnosis, radiologists need to extract 3D spatial information by looping adjacent slices and
form contextual clues. Therefore, it is reasonable and even necessary to use 3D convolutional layers
for maximally avoiding streak artifacts in a batch of adjacent reconstructed image slices. The main
contributions of our DEAR-3D network are summarized as follows:

(1) DEAR-3D utilizes 3D convolutional layers to extract 3D information from multiple adjacent slices
in a generative adversarial network (GAN) [23] framework. Different from reconstructing 2D
images from 3D input data [2], DEAR-3D directly reconstructs a 3D volume, with faithful texture
and image details; and

(2) An extensive comparative study was performed between DEAR-3D and various 2D counterparts
to demonstrate the merits of the proposed 3D network.

The rest of this paper is organized as follows. Section 2 introduces the DEAR-3D model, its 2D
counterparts, and the GAN framework utilized in the proposed model. Section 3 describes our
experimental design and results, in comparison with other state-of-the-art models for few-view CT.
Finally, Section 4 presents discussions and concludes this paper.
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2. Methodology

3D CT image reconstruction can be expressed as follows:

I = R−1(S) (1)

where I ∈ RNs×N×N denotes a 3D image volume reconstructed from sufficient projection data, where
N and Ns denote the width/height of input images and number of images acquired from a particular
patient, respectively. S ∈ RNv×Nd×Nr denotes the corresponding interpolated 3D sinogram from a
spiral cone-beam scan. Nv, Nd, and Nr denote the number of views, the number of detectors per
row, and the number of detector rows, respectively, and R−1 is the inverse operator to reconstruct
the CT image volume, such as a typical cone-beam reconstruction formula or algorithm [24–27] when
sufficient projection data are obtained. However, when the number of data (linear equations) is
not sufficient to resolve all the unknown voxels in the few-view CT setting, streak artifacts will be
introduced in the reconstructed images, and it becomes highly non-trivial to reconstruct high quality
images. Deep learning (DL) promises to extract features in reference to extensive knowledge hidden in
big data. With a large amount of training data, task specific and robust prior knowledge can be taken
advantage of in establishing a relationship between few-view data/images and the corresponding
full-view images. Such a deep network can be formulated in Equation (2),

IFullV = T(IFewV) (2)

where IFullV and IFewV denote a 3D image volume reconstructed from sufficient projection data and the
counterpart reconstructed from insufficient projection data, respectively, and T denotes our DEAR-3D
network to remove artifacts caused by the few-view problem.

2.1. Proposed Framework

The overall network architecture is shown in Figure 1. The proposed DEAR-3D network is
optimized in a Wasserstein generative adversarial network (WGAN) framework [28], which is currently
one of the most advanced frameworks. In this study, the proposed framework consists of two
components: a generator network G and a discriminator network D. G aims at directly reconstructing
a 3D image volume from a batch of 3D few-view image slices. D receives images from both G and
the ground truth dataset, trying to distinguish whether the input is real. Both networks optimize
themselves during the training process. If an optimized network D can hardly distinguish fake images
(from G) from real images (from the ground truth dataset), then the generator network G fools the
discriminator D successfully. By design, the introduction of D also helps to improve the texture of
reconstructed images.

Different from the vanilla generative adversarial network (GAN) [23], WGAN replaces the
logarithm term in the loss function with the Wasserstein distance, improving the training stability.
In WGAN, the one-Lipschitz function is assumed with weight clipping. However, the work in [29]
pointed out that weight clipping may be problematic in WGAN and suggested to replace it with a
gradient penalty term, which is used in our proposed method. Hence, the objective function of the
GAN framework is expressed as follows:

max
θG

min
θD
{EIFewV [D(G(IFewV))]−EIFullV [D(IFullV)]︸ ︷︷ ︸

Wasserstein distance

+λE Ī(α)[(‖∇( Ī(α))‖2 − 1)2]}︸ ︷︷ ︸
gradient penalty

(3)

where IFewV and IFullV represent few-view 3D image volume and full-view 3D image volume,
respectively, Ea[b] denotes the expectation of b as a function of a, θG and θD denote the trainable
parameters of the networks G and D, respectively, and Ī(α) = α · IFullV + (1− α) · G(IFewV). α is
uniformly sampled from the interval [0,1]. In other words, Ī represents another batch of 3D image
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slices between fake and real images. Furthermore, ∇( Ī(α)) denotes the gradient of Ī with respect
to θD. Lastly, λ is a parameter used to balance the Wasserstein distance and the gradient penalty.
The networks G and D are updated in an iterative manner as suggested by [23,28,29].
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Figure 1. The overall structure of the proposed generator network G in the DEAR-3D network. Note
that the numbers beside each rectangular block represent the dimensionality of the feature maps, and
the dotted blue lines represent conveying paths. The images are the input and output examples for
the proposed method. The numbers above each solid blue arrow, separated by a comma, indicate the
dimensionality of the convolutional kernel and the corresponding number of filters. Solid black, red,
green, and purple arrows represent conveying paths inside dense blocks.

2.2. Generator Network

The input to the generator G is a batch of 3D image slices with dimensionality of Nb×Ns×N×N
where Nb, Ns, and N denote the batch size, number of adjacent input slices, and dimension of each
input image slice. Intuitively, Ns should be equal to the total number of image slices of a particular
patient, and tissues in all the different 2D planes should relate to each other. However, this is not
practical due to an extremely large memory cost. Hence, Ns is experimentally adjusted to nine.
The structure of the generator G is inspired by the U-net [30], originally proposed for biological image
segmentation. Since then, the U-net has been utilized for various applications in the field of medical
imaging. For example, the work in [2,3] used U-net with conveying paths for CT image denoising;
the work in [17,18,21] applied U-net for few-view CT; and the work in [31] for compressed sensing
MRI. In DEAR, G is a revised U-net with conveying paths and built in reference to DenseNet [32].
The generator G consists of four 3D convolutional layers for down-sampling and four 3D transpose
convolutional layers for up-sampling a batch of 3D image slices. The dimension of the 3D kernel
for down-sampling and up-sampling was set as 1× 3× 3. In the original U-net [30], a stride of two
was used in each down-sampling or up-sampling layer to extract features in different dimensions for
segmentation. However, for image reconstruction, down-sampling input images severely may result in
a compromised performance because convolutional layers may not be able to recover the images from
low-dimensional feature maps accurately. Therefore, a stride of one was used in all the convolutional
layers of G, and zero-padding was not applied in down-sampling and up-sampling layers. A rectified
linear unit (ReLU) activation function was used after each 3D convolutional layer.

A dense block was added after each down-sampling and up-sampling layer. Each dense block
contained five 3D convolutional layers to extract 3D image features from the input feature maps. Note
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that zero-padding was used in all 3D convolutional layers to maintain the dimensionality of the input
feature maps. Inspired by ResNet [33], shortcuts were applied to connect early and current feature
maps, allowing gradients to flow directly to the current layer from the corresponding earlier layer.
Different from ResNet, DenseNet further improves the information flow between layers by connecting
all the earlier feature maps to the current layer. Consequently, the lth layer receives all the feature maps
from all previous layers, x0, x1, x2, ... , xl−1, as the input:

xl = Tl([x0, x1, x2, . . . , xl−1]) (4)

where [x0, x1, x2, . . . , xl−1] represents the concatenation of all the feature maps produced by the layers
0, 1, 2, . . . , l − 1, Tl denotes the operation performed by the lth layer, and is defined as a composite
function of a 3D convolutional operation and a ReLU activation. The kernel size and stride were set
as 3× 3× 3 and one, respectively for all the 3D convolutional layers in the proposed dense block.
Note that the purpose of DEAR-3D is to learn the inverse amplitude of artifacts in the input images,
and therefore, input images are directly added to the last convolutional layer as presented in Figure 1.

2.3. Discriminator Network

The discriminator network D takes input from either G or the ground truth dataset, trying
to classify whether the input images are real. In DEAR-3D, the discriminator network has six
convolutional layers with 64, 64, 128, 128, 256, and 256 filters, followed by two fully connected
layers with the numbers of neurons 1024 and one, respectively. The leaky ReLU activation function is
used after each layer with a slope of 0.2 in the negative part. 3D convolutional layers with a 3× 3× 3
kernel dimension and zero-padding were used for all convolutional layers. The stride was set to two
for all the layers.

2.4. Objective Functions for Generator

This subsection introduces and evaluates different objective functions used for few-view
CT artifact reduction. As shown in Figure 2, a composite objective function was used to
optimize DEAR-3D.

9×512×512×1

Few-view imagesReconstructed images
9×512×512×1

Generator Network Discriminator Network Generator lossDiscriminator loss Structural loss &MSE loss
Figure 2. Objective functions used to optimize the proposed DEAR-3D network.

2.4.1. MSE Loss

The mean squared error (MSE) [3,34,35] is a popular choice for denoising and artifact removal
applications [35]. Nevertheless, it could lead to over-smoothed images [36]. Moreover, MSE is not



Bioengineering 2019, 6, 111 6 of 14

sensitive to image texture and assumes background noise is white Gaussian noise independent of local
image features [37]. The MSE used in the proposed method is expressed as follows:

L2 =
1

Ns · N · N

Nb

∑
i=1
‖Yi − Xi‖2

2 (5)

where Nb, Ns, and N denote the number of batches, the number of input slices, and the image
width/height, respectively, and Yi and Xi represent the ground truth 3D image volume and 3D image
volume reconstructed by G, respectively.

2.4.2. Structural Similarity Loss

To overcome the disadvantages of MSE loss and acquire visually superior images, the structural
similarity index (SSIM) [37] was introduced in the objective function. SSIM measures structural
similarity between two images. The SSIM index is calculated within a convolutional window.
The window size was set to 11× 11. Compared with traditional pixel-wise measures such as MSE
and PSNR, SSIM compares the local structures between the ground truth and reconstructed images.
Note that three components were combined to compute SSIM in Equation (6): luminance comparison,
contrast comparison, and structure comparison. The SSIM is expressed as follows:

SSIM(Y, X) =
(2µYµX + C1)(2σYX + C2)

(µ2
Y + µ2

X + C1)(σ
2
Y + σ2

X + C2)
(6)

where C1 = (K1 · R)2 and C2 = (K2 · R)2 are constants used to stabilize the formula if the denominator
is too small, R stands for the dynamic range of voxels’ values, K1 = 0.01 and K2 = 0.03, and µY, µX,
σ2

Y, σ2
X , and σYX are the means of Y and X, variances of Y and X, and the covariance between Y and X,

respectively. Since the maximum value of SSIM was one, the structural loss used to optimize DEAR-3D
is expressed as follows:

Lsl =
1

Nb

Nb

∑
i=1

[
1− SSIM(Yi, Xi)

]
. (7)

2.4.3. Adversarial Loss

The adversarial used in DEAR-3D is for the generator to produce realistic images that are
indistinguishable by the discriminator network. Referring to Equation (3), the adversarial loss is
expressed as follows:

Lal = −EIFewV [D(G(IFewV))] (8)

The overall objective function of G is then expressed as follows:

LG = λal · Lal + λsl · Lsl + L2 (9)

where λal and λsl are hyper-parameters to balance different loss functions.

2.5. Corresponding 2D Networks for Comparisons

To evaluate the performance of the proposed 3D network, a 2D network was built for
bench-marking, which is denoted as DEAR-2D. DEAR-2D uses the exact same structure as the
DEAR-3D, except that all the 3D convolutional layers in the dense blocks are replaced with 2D
convolutional layers. Please note that the number of parameters of DEAR-2D will be less than that
of DEAR-3D due to the fact that the dimension of input 2D batches is significantly smaller than the
dimension of 3D batches. For a fair comparison, another 2D network was built with an accordingly
increased number of training parameters, denoted as DEAR-2D-i. The number of training parameters
was increased by increasing number of filters in 2D convolutional layers. Different from DEAR-3D,
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the 2D counterparts only utilize 2D convolutional layers to extract 2D feature maps from a batch of 2D
input images. Therefore, the 2D counterparts aim at reconstructing 2D images instead of 3D images,
which may lead to a potential loss in contextual information. Consequently, in DEAR-2D, all the 2D
convolutional layers in both the encoder-decoder part and the dense blocks contained 38 filters with a
kernel dimension 3× 3. On the other hand, in DEAR-2D-i, all the 2D convolutional layers in both the
encoder-decoder part and the dense blocks contained 48 filters with kernel dimension 3× 3. Table 1
shows the numbers of parameters of the three networks.

Table 1. Number of parameters used in different networks.

# Parameters DEAR-3D DEAR-2D DEAR-2D-i

5,123,617 3,459,749 5,519,329

Moreover, to demonstrate the effectiveness of different loss functions used to optimize the
proposed neural network, 2D and 3D networks with different combinations of loss components were
considered for comparison.

3. Experimental Design and Results

3.1. Dataset and Pre-Processing

A clinical abdominal dataset was used to train and evaluate the performance of the proposed
DEAR-3D method. The dataset was prepared and authorized by the Mayo Clinic for “the 2016
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge” [38]. The dataset contained a total of
5936 abdominal CT images selected with 1 mm slice thickness. All the images were reconstructed
from 2304 projections under 100 peak kilovoltage (kVp), which were used as the ground truth images
to train the proposed method. The distance between the X-ray source and the detector array was
1085.6 mm, and the distance between the X-ray source and the iso-center was 595 mm. The pixel size
was 0.664 mm. All the images were of 512× 512. For data-preprocessing, pixel values of patient images
were normalized to be between zero and one. During the training process, four patients (a total of
2566 images) were used for training and six patients (a total of 3370 images) for validation and testing.
Patches with dimension 64× 64 were cropped with a stride of 32 from the whole images for data
augmentation, resulting in a total of 502,936 2D training patches. 2D patches were used to train the
DEAR-2D and DEAR-2D-i networks. 3D patches were extracted from the pre-processed 2D patches to
train the DEAR-3D network. 3D patches were extracted with a stride of one in the Ns dimension. Then,
the optimized networks were applicable to images with any image dimension since the proposed
DEAR-3D network contained only convolutional layers. The fan-beam Radon transform and fan-beam
inverse Radon transform [39] were used to simulate 75-view few-view images. 75-view sinograms
were synthesized from angles equally distributed over a full scan range.

3.2. Hyperparameter Selection and Network Comparison

In the experiments, all code was implemented in the TensorFlow framework [40] on an
NVIDIA Titan RTX GPU. The Adam optimization method was implemented to optimize the training
parameters [41] with β1 = 0.9 and β2 = 0.999. During the training process, a mini-batch size of 10
was selected, resulting in an input with dimensionality of 10× 9× 64× 64× 1. The hyperparameter
λ used to balance the Wasserstein distance and the gradient penalty was set as 10, as suggested
in [29]. The learning rate was initialized as 1× 10−4 and decreased by a factor of two after each epoch.
The hyperparameters λal and λsl were adjusted using the following steps. First, the proposed network
was optimized using only the MSE loss. The testing results were treated as the baseline for fine-tuning
the other two hyper-parameters. Then, the SSIM loss was added as part of the objective function.
Finally, the adversarial loss was added, and the hyperparameter λal was fine tuned. Through this



Bioengineering 2019, 6, 111 8 of 14

process, λsl and λal were set to 0.5 and 0.0025, respectively. Please note that λsl and λal were fine tuned
for the best SSIM values in the validation set.

For qualitative comparison, the proposed DEAR-3D network was compared with two deep
learning based methods for few-view CT image reconstruction, including the FBPConvNet method
(a classic U-net [30] with conveying paths to solve the CT problem [17]) and a CNN based residual
network [42] (denoted as residual-CNN in this paper). To the best of our knowledge, the network
settings we used were the same as the network settings described in the original publications.
The dataset used to train all the networks were the same in this study, without any pre-trained
model used. All the patient images were also preprocessed in the same way as described in the original
papers. The analytical FBP method was used as a baseline for comparison.

Moreover, to highlight the effectiveness of the proposed objective functions used in the 3D
architecture, as shown in Table 2, five different networks with different combinations of objective
functions were trained for comparison: (1) the DEAR-2D network with only MSE loss and without
WGAN (denoted as DEAR-2D1); (2) DEAR-2D with MSE and SSIM, but without WGAN (denoted as
DEAR-2D2); (3) DEAR-2D-i with MSE and SSIM loss and without WGAN (denoted as DEAR-2D-i);
(4) DEAR-3D with MSE and SSIM loss, but without WGAN (denoted as DEAR-3D1); (5) a full
DEAR-3D network with WGAN (denoted as DEAR-3D). Hyperparameters for all five networks were
experimentally adjusted using the steps mentioned above.

Table 2. Summary of deep learning based network architecture and the optimization objective functions
for few-view de-artifact methods. The abbreviations for objection functions MSE, SSIM, and AL in this
table mean the mean squared error, structural similarity index, and adversarial loss respectively.

MSE SSIM AL

DEAR-2D1 X

DEAR-2D2 X X

DEAR-2D-i X X

DEAR-3D1 X X

DEAR-3D X X X

3.3. Comparison with Other Deep Learning Methods

To visualize the performance of different methods, a few representative slices were selected from
the testing set. Figure 3 shows the results using different methods from 75-view few-view images.
Three metrics, peak signal-to-noise ratio (PSNR) [43], SSIM, and root mean squared error (RMSE) [44]
were computed for quantitative assessment. The quantitative results are shown in Table 3. For better
evaluation of the image quality, the regions of interest (ROIs) are marked by rectangles in Figure 3 and
are magnified in Figure 4.

Table 3. Quantitative measurements on different methods (mean ± STD). For each metric, the best
result is marked as bold. The measurements were obtained by averaging the values in the testing set.
The filtered back-projection algorithm is denoted as FBP in this table.

FBP FBPConvNet Residual-CNN DEAR-3D

PSNR 25.238± 0.967 31.437± 1.366 30.412± 1.269 32.418 ± 1.393

SSIM 0.550± 0.031 0.871± 0.034 0.870± 0.035 0.878 ± 0.033

RMSE 0.055± 0.006 0.027± 0.004 0.030± 0.004 0.025 ± 0.005
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(a) (b) (c) (d) (e)

Figure 3. Representative images reconstructed using different methods. (a) The ground truth, (b) FBP,
(c) residual-CNN, (d) FBPConvNet, and (e) DEAR-3D methods. The blue boxes mark the regions of
interest (ROIs). The display window is set as [−160, 240] Hounsfield unit (HU) for better visualizing
lesions and subtle details.

(a) (b) (c) (d) (e)

Figure 4. Zoomed-in ROIs (the blue boxes in Figure 3). (a) The ground truth, (b) FBP, (c) residual-CNN,
(d) FBPConvNet, and (e) DEAR-3D. The blue and orange circles mark lesion locations. The blue and
orange arrows indicate some subtle details. The display window is [−160, 240] Hounsfield unit (HU).
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The ground truth images and the corresponding few-view images are presented in Figure 3a,b,
respectively. As shown in Figure 3b, streak artifacts were clearly visible in the images reconstructed
using the FBP method. As shown in the ground truth images in Figure 3a, lesions and subtle details
were visible, which were hidden by few-view artifacts in Figure 3a. The results from the 2D based deep
learning reconstruction methods (FBPConvNet and residual-CNN) are shown in Figure 3c,d, as well as
Figure 4c,d, respectively. These 2D methods can effectively reduce artifacts, but they would potentially
miss spatial correlation between adjacent slices, resulting in loss of subtle, but critical details. As shown
in the first and second row of Figure 4, FBPConvNet and residual-CNN tended to distort or smooth out
some subtle details in the ROIs, but these details were visible in the full dose images reconstructed by
the FBP method (indicated by the blue and orange arrows in Figure 4). Moreover, it was observed that
residual-CNN was unable to remove streak artifacts in the reconstructed images effectively, especially
along the boundaries (the orange and blue arrows in Figure 4). Our proposed method, DEAR-3D,
was better at removing artifacts, as well as keeping tiny, but vital details compared to the competitive
methods. The proposed DEAR-3D method was also better at recovering image texture than the other
methods, and this may be due to the processing capability of the 3D network and the discriminative
power of the WGAN framework.

3.4. Ablation Analysis

This subsection demonstrates the effectiveness of different components in the proposed DEAR-3D
network. As mentioned above, five variants of the DEAR-3D network were trained for this purpose.
The results are shown in Figure 5, with the corresponding quantitative measurements in Table 4.
The zoomed-in regions of interest (ROIs), which are marked by rectangles in Figure 5, are shown
in Figure 6. As presented in Figure 6, due to the improper 2D design of the objective function,
the DEAR-2D network with only MSE loss tended to smooth out features such as the lesion, leading to
an unacceptable image quality (the lesion became barely visible in the first row in Figure 6). Adding
SSIM as part of the objective function improved the overall image quality, but due to the lack of 3D
spatial context, the 2D based methods were unable to recover subtle details (indicated by the blue
arrows in the first and third rows in Figure 6). There was no significant difference observed between
the DEAR-2D and the DEAR-2D-i networks. Lastly, the combination of the 3D architecture, WGAN,
and the adversarial loss improved image texture and overall image quality, which is desirable in
practice. In summary, it was observed that the 2D based methods compromised some details in the
reconstructed images (the blue arrows in Figure 6), and by providing information from adjacent slices,
the DEAR-3D network performed better than the other methods at removing artifacts and keeping
image texture.

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Representative images reconstructed using different methods. (a) The ground truth, (b) FBP,
(c) DEAR2D1, (d) DEAR-2D2, (e) DEAR-2D-i, (f) DEAR-3D1, and (g) DEAE-3D. The blue boxes mark
the regions of interest (ROIs). The orange boxes contain subtle details in the images. The display
window is set as [−160, 240] Hounsfield unit (HU) for better visualizing lesions and subtle details.
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(a) (b) (c) (d) (e) (f) (g)

Figure 6. Zoomed-in areas of the lesion (the blue and orange boxes in Figure 5). (a) The ground truth,
(b) FBP, (c) DEAR-2D1, (d) DEAR-2D2, (e) DEAR-2D-i, (f) DEAR-3D1, and (g) DEAE-3D. The blue
circles mark lesion locations. The blue arrows indicate some subtle details. The display window is set
as [−160, 240] Hounsfield unit (HU) for better visualizing lesions and subtle details.

Table 4. Quantitative measurements for different methods (mean ± STD). For each metric, the best
result is marked as bold. Measurements were obtained by averaging the values in the testing dataset.
(b) FBP, (c) DEAR-2D1, (d) DEAR-2D2, (e) DEAR-2D-i, (f) DEAR-3D1, and (g) DEAR-3D.

FBP DEAR-2D1 DEAR-2D2 DEAR-2D-i DEAR-3D1 DEAR-3D

PSNR 25.238± 0.967 31.556± 1.378 31.043± 1.360 30.938± 1.381 31.068± 1.355 32.418 ± 1.393

SSIM 0.550± 0.031 0.861± 0.033 0.868± 0.034 0.865± 0.033 0.873± 0.033 0.878 ± 0.033

RMSE 0.055± 0.006 0.027± 0.004 0.028± 0.004 0.029± 0.005 0.027± 0.004 0.025 ± 0.005

4. Discussion and Conclusions

Few-view CT may be implemented as a mechanically stationary scanner in the future [45] for
health-care and other utilities. Current commercial CT scanners use one or two X-ray sources mounted
on a rotating gantry and take hundreds of projections around a patient. The rotating mechanism is not
only massive, but also power consuming. Hence, current commercial CT scanners are inaccessible
outside hospitals and imaging centers, due to their size, weight, and cost. Designing a stationary
gantry with multiple miniature X-ray sources is an interesting approach to resolve this issue [45].
Unfortunately, the current technology does not allow us to assemble hundreds of miniature X-ray
sources in a ring for reconstructing a high-quality CT image over an ROI of a decent aperture. Few-view
CT is an attractive option. However, streak artifacts would be introduced from a few-view scan due
to the insufficiency of projection data. Recently, deep learning has achieved remarkable results for
few-view CT, and our proposed DEAR-3D network is a step forward along this direction.

This paper introduced a novel 3D deep encoder-decoder adversarial reconstruction network
(DEAR-3D) for directly reconstructing a 3D volume from 3D input data. Compared with 2D based
methods [17–19,21,42], DEAR-3D avoided the potential loss in the 3D spatial context. Specifically, our
proposed network featured: (1) a 3D convolutional encoder-decoder network with conveying-paths;
(2) the Wasserstein GAN framework for optimal parameters; and (3) the powerful DenseNet
architecture for improved performance.

In conclusion, we presented a novel 3D deep network, DEAR-3D, for solving the few-view
CT problem. The proposed method outperformed 3D deep learning methods and promises clinical
utilities such as breast cone-beam CT and C-arm cone-beam CT for future research probabilities. In the
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follow-up investigation, we plan to further improve the network and perform more experiments to
optimize and validate the DEAR-3D network.
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