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Abstract: In brain tumor surgery, an appropriate and careful surgical planning process is crucial for
surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial
relationships between tumor borders and surrounding healthy tissues enables accurate surgical
planning that leads to the identification of the optimal and patient-specific surgical strategy. A physical
replica of the region of interest is a valuable aid for preoperative planning and simulation, allowing
the physician to directly handle the patient’s anatomy and easily study the volumes involved in the
surgery. In the literature, different anatomical models, produced with 3D technologies, are reported
and several methodologies were proposed. Many of them share the idea that the employment of 3D
printing technologies to produce anatomical models can be introduced into standard clinical practice
since 3D printing is now considered to be a mature technology. Therefore, the main aim of the paper is
to take into account the literature best practices and to describe the current workflow and methodology
used to standardize the pre-operative virtual and physical simulation in neurosurgery. The main aim
is also to introduce these practices and standards to neurosurgeons and clinical engineers interested in
learning and implementing cost-effective in-house preoperative surgical planning processes. To assess
the validity of the proposed scheme, four clinical cases of preoperative planning of brain cancer
surgery are reported and discussed. Our preliminary results showed that the proposed methodology
can be applied effectively in the neurosurgical clinical practice both in terms of affordability and in
terms of simulation realism and efficacy.

Keywords: neurosurgery; brain; cancer; 3D printing; computer aided design; 3D casting;
additive manufacturing; virtual planning; physical simulation; preoperative planning

1. Introduction

A brain tumor’s severity is mainly assessed by considering its grade and the originating tissue.
Such an assessment is needed to provide the care team with an understanding of the tumor’s growth
and how to match optimal treatments towards each individual [1]. Surgery is the most effective
approach for the treatment of brain cancer, with the primary aim of performing, when possible,
a complete resection. Brain surgery is a complex procedure that is not exempted from risks. In
fact, a surgical error can cause the patient irreversible neurological deficit or even, in the worst
case, their death. For this reason, surgeons spend a considerable amount of time, before entering
the operating room, studying the patient’s imaging and accurately planning the intervention. Such
a process, named “preoperative planning”, often determines the success or failure of the surgical

Bioengineering 2020, 7, 7; doi:10.3390/bioengineering7010007 www.mdpi.com/journal/bioengineering

http://www.mdpi.com/journal/bioengineering
http://www.mdpi.com
https://orcid.org/0000-0002-5170-3246
https://orcid.org/0000-0001-7604-5182
https://orcid.org/0000-0001-6771-5981
https://orcid.org/0000-0002-5668-1912
http://dx.doi.org/10.3390/bioengineering7010007
http://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/2306-5354/7/1/7?type=check_update&version=2


Bioengineering 2020, 7, 7 2 of 14

procedure. In this context, modern advances in 3D technology have enabled the development of
surgical simulators that provide a realistic representation of complex anatomies. These simulators
can be used as an aid for planning complex interventions. More specifically, reverse engineering,
CAD (Computer-aided design) modeling, and additive manufacturing technologies [2,3] enable the
fabrication of patient specific and high-resolution simulators, which provide a realistic and immersive
training environment [4]. An in-depth study of the clinical case through the customized simulator allows
surgeons to reduce surgery times and complication rates by helping them to predict surgical crucial
points, identify adapted surgical strategies, and improve surgical outcomes [5,6]. The improvement of
computer capabilities and the availability of more cost-effective medical image processing software
and of affordable 3D printers could empower clinicians with more flexibility to design and execute
personalized therapeutic plans. This enables satisfying the specific clinical needs of individual patients
with affordable costs and reduced time, thus facilitating the mass personalization of the treatments,
even during the daily practices of neurosurgical departments. In particular, next generation 3D printers
allow the perfect reproduction of internal anatomies that look, feel, and operate like real anatomies,
without the need for further painting or assembly [7]. Such an approach is, however, not always
applicable, mainly due to the need for complex models consisting of more than one material color
and stiffness (e.g., involving the brain, skull, vasculature, or tumor). The need for professional-grade
printers and medical and technological skilled experts is the principal limit preventing the everyday
use of 3D biomodels in clinical settings. Indeed, the involvement of experts in all phases of the
manufacturing process makes the production of a biomodel expensive. As an example of this, it is
worth considering that employing a junior engineer costs 25–50 €/h. The definition of a workflow
methodology which standardizes the design and production of preoperative models can reduce the
involvement of skilled experts and the rate of production errors, leading in a reduction of production
costs for healthcare systems.

Accordingly, the goal of this paper is to provide a methodology for applying 3D-based technology
simulators (including virtual modeling, 3D printing, and casting) for aiding surgical planning of brain
tumor interventions through an optimized repeatable process. In particular, we provide the reader with
different fabrication approaches (i.e., materials and methods) using relatively inexpensive materials,
commercial-grade printers, and open-source and freeware software with the aim of optimizing
the costs and effectiveness of manufacturing. The fabrication strategy is determined based on the
patient’s specific anatomy and the pre-surgical simulation goal. To explore the realism of the proposed
methodology and evaluate its usefulness, we report four clinical cases that underwent neurosurgical
treatment with the neurosurgery team of the Meyer Children’s Hospital in Florence. Our preliminary
results showed that the proposed methodology can be employed efficiently in a neurosurgical clinical
practice, ensuring increased affordability and simulation realism which in some cases enables surgeons
to identify an alternative and minimally invasive surgical approach compared to the traditional one.

2. The Surgical Procedure and Planning

As stated in the introductory section, brain cancer surgery is a complex procedure that is not
risk-free, and possible complications can arise and even cause irreversible neurological deficits for the
patient [8]. The entire surgical procedure involves several phases: preoperative planning, preparation
of the patient and the operation area, craniotomy, tumor resection, and skull and scalp closure, as shown
in Figure 1. Preoperative planning can heavily influence the entire process, since during the simulation,
the neurosurgeons can decide on their entire surgical strategy, including how to position the patient,
how to perform the craniotomy, and how to access to the tumor. For these reasons, the surgical planning
is considered to be a critical step in many interventions [9]. Once the patient is taken to the operating
room, after the anesthesia administration, his head is immobilized, and the operating area is drawn on
the scalp (i.e., patient preparation). During the craniotomy phase, the surgeon creates an arched curl
on the scalp overlying the lesion and the soft tissue is bent to expose the skull. A drill is then used to
perform craniotomy, where a bone flap is removed and stored. Once the craniotomy is completed,
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the surgeon accesses the brain tumor according to the pre-planned trajectory. Often, the resection
phase evolves entirely under an operating microscope [10] and partial or total brain cancer is removed.
At the end of the procedure, during the closure phase, the removed bone flap is repositioned on the
skull, is fixed with titanium plates and screws, then it is sutured.
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2.1. CT/MRI-Based Presurgical Planning

Before surgery, the time the surgeons devote a preoperative plan is essential and often determines
the level of confidence they have during the intervention. During this step, the surgeon defines the
surgical problem, first to fully identify all the anatomical and technical aspects of the procedure,
and then to plan the approach. The first aim of the planning is to establish a correct diagnosis
that starts from the visualization of multimodal data obtained from various imaging modalities.
Such imaging modalities can be functional or structural such as magnetic resonance imaging (MRI),
computed tomography (CT), functional magnetic resonance imaging (MRI) [11], computed single
photon emission tomography (SPECT), and so on. Based on this information, the surgeon, that has a
thorough knowledge of the relevant operative procedures and the related hazards and success rates,
makes his decisions on how to manage the intervention [12,13].

Preoperative planning is traditionally based on the identification of relevant anatomical reference
points on tomographic data, on the measurement of the distance and angles between them, on the
calculation of anatomical areas and volumes, and on the sketch of the possible trajectories for obtaining
access to the tumor site. This process helps the surgeon to develop a correct 3D image of the problem
in order to get a proprioceptive feel for the dynamics and complexity of the intervention to perform.
Information on a surgical plan will ensure that the operating room staff has time to prepare for their
patient and to identify and remedy potential difficulties [10]. The surgeon’s experience is paramount
for achieving adequate outcomes. Notably, to avoid violating functional areas, and even after careful
preoperative planning, the surgeon could prefer to perform a conservative surgery rather than an
effective resection of the tumor. Such a limitation can be overcome by providing the surgeon with
a tool that is able to (i) accurately and objectively predict the risk of a complete tumor resection,
and (ii) provide a hands on experience of the surgery before entering the operating room.

2.2. Virtual and Physical 3D Presurgical Planning

An accurate and a high-resolution 3D reconstruction of the patient’s specific anatomy represents
a major asset to the preoperative planning process. In neurosurgery, the development of virtual
(VS) and physical simulators (PS) has allowed us to overcome some limitations of the traditional
preoperative planning method (“in the mind” of the surgeon) [14]. Virtual simulators reproduce the
surgical environments or settings including patient-specific anatomy, thereby allowing the surgeon to
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interact with these variables [15]. Nevertheless, the vision of the anatomy on a flat 2D computer screen
makes often interpretations related to depth difficult and the cost of the simulator is high.

In contrast, physical simulators can be directly palpated, easily modified according to the
physician’s request, incised by real surgical instruments, and manipulated.

Therefore, by using both physical and virtual simulators, it is possible to overcome the limits of
traditional surgical planning, allowing the surgeon to understand the spatial relationships between vital
structures and surgical targets. This in turn enables the surgeon to simulate different scenarios. In fact,
the combination of virtual and physical simulation enables the identification of a set of promising
surgical procedures that can be objectively compared to find the best intervention strategy. In addition,
it makes the necessary clinical practices easier and safer for the treatment of patients, with the possibility
for the clinicians to try procedures several times. In the state of the art research, there are some works
dealing with the combination of virtual and physical simulators into a single mixed reality system,
linking benefits coming from having a physical scenario to interact with and the potentialities offered
by virtual reality [16]. More specifically, the combination of VS and PS: (i) provides objective and
repeated measurements to help evaluate performance; (ii) allows us to easily change the anatomy,
offering residents the possibility to try surgery not strictly based on a single example of anatomy;
(iii) allows actual interactions with the simulated anatomy; and (iv) permits us to perform specific
tasks with actual feedback. Among other things, VS and PS, allow for more precise and minimally
invasive approaches, thereby reducing potential injury, eliminating the risks of serious complications,
and thus improving the experience and manual skills of the operator, even in the management of
possible situations of stress and error under crisis conditions.

As mentioned in the introductory section, the present work provides a method for applying
3D technology for realistic surgical simulator fabrications for brain tumor treatment which integrate
virtual and physical simulations. In particular, the simulation process developed in this work consists of
the following phases (see Figure 2):

(1) 3D reconstruction of the patient’s anatomy;
(2) Surgery virtual planning;
(3) Fabrication of the bio-model;
(4) Surgery simulation (the surgeon uses a hands-on bio-model to simulate the surgery).

While the 3D reconstruction is widely known, we focus on phases 2 and 3 in order to define a strategy
which make the surgical procedure less invasive and provides a more realistic physical simulation.
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The remainder of the paper is as follows: in Section 3 the method adopted to devise the virtual
and physical simulators is described, while in Section 4 we report the case studies that have been
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carried out to prove the effectiveness of the combined use of virtual and physical simulation in the
pre-operative planning of complex cases.

3. Simulation Process

In the following subsections, the various phases of the simulation process are described in detail.

3.1. 3D Reconstruction

The complete simulator manufacturing process includes some key steps represented in Figure 2
that, starting from 3D reconstruction of the patient anatomy, leads to the creation of 3D anatomical
physical replica.

An effective simulator for preoperative planning and simulation requires an exact patient specific
geometry 3D reconstruction. The first step consists of the acquisition of patient medical images
(i.e., (CT/MRI)) that provide anatomical information. More specifically, MRI better represents many
soft tissues, thus enabling an accurate segmentation and 3D reconstruction of tissues such as the brain
and blood vessels. Instead, the reconstruction of bones is performed from the segmentation of a CT
scan, which provides a clear variation between calcium-based tissues and other types of tissues in
gray values. Since information gained from different images acquired in the clinical track of events
is usually of a complementary nature, a proper integration is often needed. The first step of the
integration process is to find the spatial transformation that best aligns different datasets, a procedure
referred to as registration [17]. Such registration can be performed both in the 2D domain and in the 3D
domain (i.e., after the reconstruction). The former requires the manual or automatic identification of
several significant anatomical landmarks on both the considered modalities (usually CT scan and MRI
scan). These are elaborated upon by specific image processing algorithms (i.e., mutual-information
based [18] or Deep Neural Network based [19] algorithms), to determine the spatial roto-translation
transformation needed to move the reference dataset into the coordinate system of the target dataset [20].
Registration in the 3D domain consists of the reconstruction of 3D models of anatomical structures from
medical imaging and of the subsequent identification of significant 3D landmarks (in both the reference
3D dataset and in the target 3D dataset) As a result, by means of specific 3D processing algorithms
(e.g., Iterative Closest Point [21] or Global registration algorithm [22]), the same spatial roto-translation
transformation as in the image domain approach can be used [23]. The development of 3D models,
for neurosurgical purposes, involves the image segmentation [24,25], of both soft tissues (e.g., brain,
tumor, etc.) and hard tissues (e.g., skull bones). Registration and segmentation can be carried out
with both commercial software (e.g., Mimics®, Amira®, etc.), which has a price range of 4000 € to
6000 €, and with open source software (e.g., 3D Slicer, OsiriX, ITK-SNAP, TurtleSeg, etc.). Within these
software packages, once the segmentation of the anatomical element has been performed, the volume
of the anatomical element is automatically obtained through embedded procedures, resulting in a
three-dimensional configuration that can be stored in a 3D mesh file (i.e., an STL file format).

In order to contain costs and to focus the simulator on an optimized head replica, a region of
interest (ROI) can be first defined to specify the surgical interest 3D boundaries. Such an operation can
be performed, using the surgeon’s instructions in a commercial 3D modeling software environment
(i.e., Fusion 360®, Geomagic Design XTM, Geomagic Freeform, Materialise 3-Matic, etc., whose prices
range from 12,000 € to 18,000 €) or open source (i.e., Meshmixer, Blender). Such a process is needed
to focus the simulation on a specific anatomical region, but could also be repeated to define the
surgical lines needed to simulate the cranial resection process, thus leading the design to a partially
operated simulator.

3.2. Virtual Planning

Once the 3D model is reconstructed, it is possible to perform a virtual planning of the surgical
intervention. With reference to neurosurgery, the main aim is to virtually determine the best surgical
approach needed to access to the region of interest (i.e., the area where the tumor is located). In other
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words, the surgeon has to decide the position and orientation of a series of cutting planes to remove the
bone and to easily reach the intervention area. The virtual simulation is carried out thanks to minimal
cooperation between the surgeon and the CAD engineer.

In detail, by using an information-sharing platform, the surgeon can autonomously manipulate
3D models and provide engineers with all the design constraints needed for the resection planes.
In particular, the 3D modeler Forger®, a mobile-based polygonal modeler running with an iOS
operative system, demonstrated its effectiveness in dealing with virtual surgical planning [26].

With an intuitive touch screen interface, the surgeon can quickly pan, zoom, and rotate the
3D models and can easily add resection planes to the virtual model. Once the planes are correctly
positioned on the model, it is possible to simulate the surgery by cutting the bone and soft tissues
defined by the planes themselves (i.e., surrounding the tumor area). More different surgical strategies
can be simulated using such a tool, to define the best approach (i.e., the minimally invasive one) to be
further tested with the physical simulator. Moreover, the availability of the virtual model before and
after the surgical simulation, allows us to manufacture the replica with and/or without the removed
bone flap.

3.3. Fabrication

A rigid simulator part is certainly appropriate to reproduce the bone tissue but also, when needed,
to reproduce a rigid replica of the soft tissues. The latter is preferred when neurosurgeon does not
need to interact with the simulator through real surgical instruments, but instead needs to simply train
the proprioception and observe the spatial relationships between the anatomical elements. When the
simulation requires distinguishing soft tissues from rigid tissues, the soft parts are fabricated by casting
silicon materials in rigid shell molds, thus following the same fabrication process of other rigid parts.

Once the virtual simulation has been carried out and the region of interest has been defined,
the physical replica can be manufactured. This phase is divided into two different steps: rigid part
fabrication and soft tissues fabrication.

3.3.1. Rigid Parts Fabrication

The manufacturing process of rigid parts can effectively be performed with low cost 3D printer
(available starting from about 300 €). Materials like PLA (Polylactic Acid) or ABS (Acrylonitrile
Butadiene Styrene) [27] are commonly used as cost-effective materials to reproduce hard tissues like
bones, thanks to their optimal properties such as model infill.

Following negative feedback from some surgeons, wood-loaded PLA (a material available on the
market) was also tested to manufacture skull replicas. When PLA and ABS interact with the surgical
drill, swarfs can be created adhering to the surface of the instrument, kneading it, and not allowing a
correct and effective simulation of the cut. Wood-loaded PLA may represent a good choice to overcome
this limit. In this case, the chip appears to be easily removable from the area of the tool, allowing us to
easily perform the entire cutting procedure of the simulator.

The separated structures need to be equipped by fixture joints to be assembled with accuracy after
printing. CAD tools are employed to insert the anchoring systems between the various anatomical
elements present in the ROI through the insertion of pins or other engineering/mechanical solutions.
The 3D model of the parts prior to being printed, must be first processed and optimized by setting some
printing parameters [28], which can be the same for each simulator sharing similar design requirements.

The last step of the bio-model fabrication consists of the post-processing of the 3D printing
output. When the prototype presents a poor surface finish, high porosity, the presence of appendices,
supporting materials, and unfinished surfaces, an improvement can be obtained through a sandblasting
process. The next step can involve the application of a resin coating to finish the surface of the final
product. The resin is brushed on the object to fill all the model’s cavities or indentations and to improve
surface quality, thereby smoothing the roughness and reducing the stair stepping effect typical of a 3D
printed object [29,30].
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3.3.2. Soft Tissues Fabrication

The low-cost soft tissues fabrication process combines 3D printing and some tissue-mimicking
material casting. Soft tissue structures can be obtained by casting silicone rubbers in 3D printed molds.
Indeed, the ultra-soft nature of some human tissues, such as the brain, can be replicated thanks to
silicone rubber with different hardness ranging from the ultra-soft scale (shore 00 scale) to the soft
scale (shore A scale). Other materials such as alginate, agarose, poly (vinyl alcohol) (PVA), phytagel
(PHY), Poly (ethylene glycol) (PEG), and polyurethanes are widely used in the literature [31], as their
mechanical properties can mimic the elastic and haptic properties of human tissues. The fabrication
process involves developing a mold design and engineering using CAD software. The mold is a
negative replica of the anatomy, and it is fabricated with a 3D printing technique. The surfaces of
release agents are then covered using an aerosol spray to prevent silicone rubbers from sticking to the
mold, impeding the removal of the physical replica from the mold. When the silicone is being mixed
with the catalyst, colorants and silicone additives can be added to the mixture, in order to modify the
chromatic and mechanical properties of the rubbers, such as the realism and the tactile performance of
the final product. To improve the outcomes of the simulator fabrication process, a vacuum degassing
system can be used to degas the mixture before pouring [32]. The mixture is then poured inside
the mold and after the polymerization time, and then the silicone replica is removed from the mold.
Ultra-soft silicone rubbers have sticky and oily characteristics, making them not easily manageable.
For this reason, a post processing of the physical replica is needed, and it consists of sprinkling talcum
powder on the replica, eliminating the sticky effect. The last step is to assemble the individual parts
and may require the use of glues to keep the individual elements fixed.

4. Case Studies

During this work, four case studies were carried out, which involved the fabrication of preoperative
simulators for neurosurgical interventions involving the resection of meningioma. Written informed
consent was obtained from the four patients, including for publication of both subjects’ data and all
accompanying images. All methods were carried out in accordance with the guidelines laid down in
the Declaration of Helsinki.

4.1. Case 1

The first clinical case involved a sixteen-year-old girl suffering from a benign tumor at the base
of the skull. The tumor was slightly compressing the optic nerve, thus making to accessing the
tumor intracerebrally a hazardous process. The simulation objective was the identification of an
alternative optimal surgical access option to preserve the optic nerve integrity. CT images (scanned
with Philips Brilliance 64 machine; image size 512 × 512 px; xy spatial resolution 0.48 mm; slice spacing
0.40 mm) and MRI images (taken with Philips Medical Systems; image size 512 × 512 px; xy spatial
resolution 0.53 mm; slice spacing 1 mm) were acquired and saved in a DICOM (Digital Imaging
and COmunications in Medicine) format. After obtaining the 3D reconstruction with Materialise
Mimics, using first phase of the pipeline shown in Figure 2, the STL file was imported into Geomagic
Design X™ (3D Systems, Inc., Rock Hill, SC, USA) to identify the region of interest together with
the neurosurgeon’s team. At a virtual level, several surgical lines were tested to arrive at the best
strategy of intervention (Figure 3), which allowed us to preserve the primary brain areas and the optic
nerve. Two fully rigid 3D models were manufactured with a 3D printer, one characterized by the entire
anatomical portion involved in the intervention, the other instead faithful to the cuts identified at the
virtual level. Both models were printed with MakerBot Replicator 2 (MakerBot, Brooklyn, NY, USA)
with a Polylactic Acid (PLA) filament and are shown in Figure 3. The production time of the simulator
was: four hours for 3D reconstruction, one hour for virtual planning, and five hours for 3D printing.
The material price for 3D printing of each simulator was 2.60 €.
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Figure 3. On the left, identification of cutting plans for access to the tumor; on the right biomodels
fabricated in Polylactic Acid (PLA). The black model was manufactured directly with the cut identified
by the surgeon at the virtual level. The grey model reproduces the entire anatomical portion involved
in the surgery.

In similar clinical cases, the pterional craniotomy is the traditional approach for accessing the tumor
through the brain by opening the dura mater. Thanks to careful preoperative planning, a neurosurgeon
has been able to identify a transorbital route for the resection of the tumor that enabled the removal of
the bone of the orbit and provided access to the tumor, making the surgery minimally invasive and
providing a low risk of brain damage.

4.2. Case 2

This case study focused on the fabrication of a simulator for the intervention of a 67 years old
patient with a meningioma at the tentorium level. The position of the tumor required an accurate study
of the geometry and spatial location of the meningioma placed near a venous sinus. The anatomical
parts involved in the construction of the simulator were the skull, the tumor, the brain, the tentorium,
and the falx. CT images (scanned with a Philips Brilliance 64 machine; image size 512× 512 px; xy spatial
resolution 0.48 mm; slice spacing 0.40 mm) and MRI images (taken with Philips_Healthcare/Ingenia;
image size 256 × 256 px; xy spatial resolution 0.93 mm; slice spacing 1 mm) were acquired and saved
in a DICOM format. Starting from the reconstructed digital 3D model obtained from CT segmentation
with Materialise Mimics, the physician indicated that a cut on the skull was needed to access the tumor
area. Figure 4 shows the simulator that consisted of a replica of a skull, brain, and tumor. The skull
and tumor were manufactured directly in PLA, while the brain was made in a super soft silicone
rubber with a shore hardness of 00–50 (Ecoflex 00-50, Smooth-On, PA, USA) to replicate the mechanical
characteristic of the actual human tissue. The manufacturing process of the soft tissue took longer than
the direct 3D printing procedure for the skull and tumor. In fact, the negative of the brain was printed
in FDM, while a resin coating (XTC-3D, Smooth-On, PA, USA) was brushed on the surface of the mold
to eliminate the stair stepping effect. After the cure time (4 h), the silicone rubber was poured into the
mold to obtain a positive anatomical replica. The production time of the simulator was: six hours for
3D reconstruction, one hour for virtual planning, eight hours for 3D printing, and five h for silicone
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parts fabrication. In this case, the material price of the 3D printed parts and mold was 12.00 € and the
price of the silicone rubber parts was 17.00 €.Bioengineering 2020, 7, x FOR PEER REVIEW 9 of 14 
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Figure 4. A biomodel which consists of a skull, brain, and tumor growth. A neurosurgical microscope
was used to observe the spatial relationships between the anatomical elements involved in the surgical
procedure with the biomodel.

The models have been studied with the neurosurgical microscope to simulate the surgical
approach with the aim of understanding the volumes, depth and spatial relationships between the
tumor, brain, and tentorium in detail (Figure 4). Thanks to the use of simulators, it was possible to
perform the operation in an optimized way by removing all the tumor tissue without affecting other
anatomical areas.

4.3. Case 3

The third simulator involved planning the removal of a meningioma during the clinoid process
in a 55 years old patient. The simulator’s aim was to increase the neurosurgeon awareness of the
spatial relationships between the patient’s brain, the cancer, and the big intracranial vessels. CT images
(scanned with Siemens /Somaton Definition As+ machine; image size 512 × 512 px; xy spatial resolution
0.47 mm; slice spacing 1 mm) and MRI images (taken with Siemens/Aera image size 256 × 256 px;
xy spatial resolution 0.98 mm; slice spacing 1 mm) were saved in a DICOM format. A different view of
the simulator is shown in Figure 5, which consisted of a skull, brain, and tumor. In particular, the skull
and tumor were manufactured in FDM while for the brain, the silicone Eco-flex 00-50 was used. At the
digital level, the access cut to the tumor was identified so that the surgical route did not cross primary
areas of the brain, thus reducing the risk of neuromotor and sensorineural deficits. The production
time of the simulator was: four hours for 3D reconstruction, 1.5 h for virtual planning, six hours for
3D printing, and five hours for silicone parts fabrication. The CT segmentation was executed fully
manually by an expert engineer supervised by the surgeon and radiologist, because of the low contrast
of the tissue boundaries that needed to be reconstructed. In this case, the material price of 3D printed
parts and mold was 9.00 € and the price of the silicone rubber parts was 10.00 €.
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4.4. Case 4

This case study concerned the manufacturing of a simulator used in the case of a 76 years old
patient with a meningioma located in the temporal lobe closely related to the meninges. The surgical
operation involved separating the meninges from the tumor mass without affecting any tissue involved
in the operation. In this case, therefore, the simulator consisted of four parts: a skull printed in PLA
loaded with wood fiber, a brain, a meningioma made with different silicones as tissues with different
hardness levels (the first with Eco-flex 00-50 and the second with Dragonskin 10), and meninges
reproduced with a thin rubber sheet. In this case, the cut was made physically on the simulator by
the surgeon, using real surgical instruments. The simulator allows resident physicians to practice
craniotomy centered on the lesion and therefore primarily has an educational purpose. Figure 6 shows
the procedure that the surgeon performed on the physical model to simulate the entire surgery. In the
first phase the possible access cuts were traced, the best cut was obtained by creating an opening using
the craniotomy drill, and after separating the layer of latex from the brain and the tumor, the latter was
removed. The production time of the simulator was: five hours for 3D reconstruction, one hour for
virtual planning, six hours for 3D printing, and five hours for silicone parts fabrication. In this case,
the material price of 3D printed parts and mold was 11.00 €, the price of the silicone rubber parts was
15.00 €, and the price of the thin rubber sheet was 1.70 €.
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5. Costs and Timings Analysis

In the present section, an assessment of production times and costs is reported for applying the
proposed method. Overall, the simulation process with the five phases described above requires about
one week from the acquisition of diagnostic images to the actual surgery. The duration of each phase
is closely linked to the simulator produced (volume, type, etc.) and to the complexity of the surgery.
Therefore, it is not possible to define a precise time for each phase, but an average time range could
be evaluated based on our experience. Table 1 shows the average times and the professional figures
involved in each phase.

Table 1. Timing data of the simulation process.

Phase Day Working Hours Professional Figures

3D reconstruction 1 4–8 Radiologist, Engineer
Virtual planning 2 1–5 Engineer, Surgeon

Fabrication 2–3 2–16 Technician
Simulation 4 1–3 Surgeon

Surgery 5 4–8 Surgeon

The production costs of 3D printed parts can be evaluated according to the following equation [33]:

Cp = Ce + Cm + Ct (1)

where Ce is the production cost, Cm is the cost of the 3D printed material, and Ct is the processing cost
of the 3D model and labor. (Table 2)

Table 2. Costs of rigid parts for the manufacturing process.

Costs Analysis for the Prototyping of Items in A 3D Printer

Machine Depreciation Data Ce

Price of Machine (€) 2500
Yearly maintenance cost (€) 250

Years of depreciation 4
Cost of Material Data Cm

Cost of material: ABS filament (€/kg) ~20
Cost of material: PLA filament (€/kg) ~22

Cost of material: wood-loaded PLA filament (€/kg) ~30
Cost of Technical Analysis Data Ct

Cost of technical model analysis (€/h) 20

When the simulators are composed of both soft and rigid parts, the material costs of the silicone
rubbers and additives must be added (see Equation (2), Table 3).

Crs = Cp + Csm (2)

where Cp is the cost of 3D printed parts and Csm is the cost of the material for the soft parts.

Table 3. The material costs for the production of soft tissues.

Material Cost

Silicone Rubbers ~35 €/kg
Release Agents ~12 € one-time fee

Colorants ~15 € one-time fee
Silicone additives ~ 40 €/kg

3D printing coating ~25 € one-time fee
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6. Conclusions

Preoperative planning is a crucial step for any entire surgical procedure. A deep knowledge of the
anatomical geometry of the patient is necessary to plan the best surgical strategy and to reduce the risk
of surgical errors. Within this context, it is clear how important it is to use surgical simulators that allow
the physician to simulate the operation before entering the surgical room, improving self-confidence
and reducing stress during actual surgery [34]. Specifically, during this phase, the surgeon can test
multiple surgical strategies in order to identify the best one in terms of results and timing. We have
introduced a general pipeline to produce a low-cost 3D patient-specific anatomical model that would
allow surgeons to conduct an accurate and successful preoperative planning process. The pipeline
is the result of an analysis of literature on the use of 3D printing and tissue mimicking materials
for education and surgical planning, and aims to introduce neurosurgeons and clinical engineers to
a cost-effective and in-house preoperative simulation. The pipeline considers different fabrication
methods that can be used based on the challenge and goal of preoperative planning, but are also strictly
dependent on the specific pathological case. Different manufacturing choices can be made, but one of
our objectives was to minimize production costs to make preoperative simulator usage more accessible
and more common in clinical practice. We have reported our experiences with the neurosurgery team
of Florence Meyer Children’s Hospital, focusing on four 3D printed models that were used to plan
surgeries by following the pipeline proposed. The simulators produced allowed the surgeon to identify,
in some cases, alternative surgical routes to the traditional ones, thus avoiding the risk of neurological
deficits caused by a possible injury of healthy tissue. In addition, better surgical results have been
obtained thanks to an in-depth knowledge of the volumes of diseased tissues and spatial relationships
with other anatomical regions. In conclusion, the presented methodology aims to provide a clear and
systematic procedure to make the creation of physical simulators in the clinical practice more affordable
to provide benefits both for residents’ education and for senior surgeons involved in preoperative
planning and simulation. Objective measurement of the surgical performance improvements requires
a long-term observation of the clinical outcomes in a clinical trial. Using this perspective, future
work will focus on the collection of quantitative experimental results on the improvement of surgeon
performances using a simulator produced according to our methodology.
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