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Abstract: Collagens provide the building blocks for diverse tissues and organs. Furthermore,
these proteins act as signaling molecules that control cell behavior during organ development,
growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and
networks, biocompatibility, and abundance from readily available discarded animal tissues make
collagens an attractive material in biomedicine, drug and food industries, and cosmetic products.
About three decades ago, pioneering experiments led to recombinant human collagens’ expression,
thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived
collagens. Since then, scientists have utilized various systems to produce native-like recombinant
collagens and their fragments. They also tested these collagens as materials to repair tissues,
deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant
collagens perform as well as their native counterparts, the recombinant collagen technology has
not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights
recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects
and limitations.
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1. Introduction

Proteins, including insulin, various growth factors, enzymes, vaccines, and antibodies serve as
irreplaceable therapeutics to prevent and treat diverse diseases. Moreover, proteins are used as vital
research and diagnostic tools [1].

While in the past, proteins utilized in medicine and research had to be isolated from natural sources,
such as animal tissues, plants, bacteria, and marine organisms, to name a few, today, their recombinant
forms are also available [2,3]. The ability to produce the recombinant variants of native proteins
provides therapeutics of high purity, batch-to-batch consistency, biocompatibility, low immunogenicity,
and ample supply. Technologies to produce recombinant proteins are often the only sustainable
source of therapeutic proteins (e.g., humanized monoclonal antibodies), and generating recombinant
proteins can cost less than isolating proteins from natural sources. Thus, the design and production
of recombinant proteins for biomedical applications and research are crucial biotechnology areas
today [1].

Unlike therapeutic recombinant growth factors, protein hormones, enzymes, soluble receptors,
and therapeutic antibodies, which are biologically active at relatively low concentrations, collagens
naturally aggregate into massive insoluble structures. As a result, collagen-based products require
large amounts of collagen material. However, the production of recombinant collagen variants is
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challenging due to the complex structure of collagens, whose intracellular biosynthesis depends on
collagen-specific chaperones and modifying enzymes. The need for distinct types of collagens that
form tissue-specific structures, including fibrils, networks, transmembrane structures, and others,
exacerbates this challenge.

2. Collagens: The Cornerstones of Tissue Architecture

Like other recombinant proteins produced to substitute for their native counterparts, recombinant
collagens must have crucial physicochemical characteristics that match those seen in collagens that
build healthy tissues [4]. The following paragraphs highlight the crucial features of collagens needed
for these proteins’ mechanical and biological functions.

2.1. Biosynthesis of Triple-Helical Collagen Molecules

The family of collagenous proteins includes about 28 diverse members [5]. Despite their
heterogeneity, various collagen types share a few common characteristics that distinguish them from
other proteins. First, unlike the globular proteins, individual collagen molecules are shaped as extended
rod-like structures. Second, each collagen molecule consists of three collagen α-chains folded into the
triple-helical structure; depending on the collagen type, the triple helices may comprise identical chains
(homotrimers) or different chains (heterotrimers). Third, regardless of the collagen type, each collagen
α-chain consists of the Gly-X-Y motif repeats. Any amino acid residue may occupy the X and the Y
positions of the Gly-X-Y triplets. However, the Gly residues at every third position are mandatory to
allow the folding of the α-chains into a compact triple-helical conformation. While in the fibril-forming
collagens, including types I, II, and III, the Gly-X-Y triplets form uninterrupted repeats, in other
collagen types, including types IV, VII, and IX, stretches of amino acid sequences without the Gly-X-Y
pattern interrupt the Gly-X-Y repeats. Those intervening sequences form flexible hinges that are
needed for the specific functions of the collagen types that harbor them [5].

The formation of collagen triple helices starts with the nascent collagenα-chains encoded by specific
genes. Before the α-chains fold into the triple-helical conformation, they undergo posttranslational
modifications. While prolyl-4-hydroxylase (P4H) hydroxylases proline residues present at the -Y-
position of the Gly-X-Y triplets, lysyl hydroxylase (LH) hydroxylases many lysine residues present at
the -Y- positions. Following hydroxylation, some of the hydroxylysine residues are glycosylated.

The hydroxylation of proline and lysine residues is obligatory, and aberrations of this process
alter the formation of stable triple helices and fibrils. Poorly formed collagen triple helices accumulate
inside cells, causing unfolded protein response, endoplasmic reticulum stress, and apoptosis [6].

Besides P4H and LH, the biosynthesis of functional collagen molecules may require the
participation of other modifying enzymes, including prolyl-3-hydroxylase (P3H). Furthermore,
the proper folding of stable collagens depends on protein chaperones that control the intracellular
folding of collagen triple helices. A group of crucial chaperones includes heat shock protein 47 (HSP47),
heat shock 70 kDa-related luminal binding protein (BiP), and the β subunit of P4H (PDI, also referred to
as disulfide isomerase) [5]. Figure 1 presents crucial players in the biosynthesis of collagen molecules
and their assembly into fibrils.

Following biosynthesis and posttranslational modifications, specific collagen α-chains aggregate
to form the triple-helical structure. Although one cell may produce many collagen types, a complex
chain selection mechanism ensures that a specific collagen type contains only a defined α-chain set.
For instance, dermal fibroblasts produce collagen I, collagen III, collagen IV, collagen VII, and some
additional collagen types. Among these collagens, collagen I and collagen IV are heterotrimers
comprising α1(I)2/α2(I) chains (collagen I) and α1(IV)2/α2(IV) chains (collagen IV). In contrast,
homotrimeric collagen III comprises α1(III)3 chains, and homotrimeric collagen VII comprises α1(VII)3

chains [5].
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Figure 1. A schematic of intracellular and extracellular molecules and processes that control the
formation of collagen fibrils. (A) Biosynthesis and post-translational modifications of individual
procollagen α-chains; during this process, selected proline and lysine residues are hydroxylated.
(B) The interaction of procollagen chains with protein chaperones that control the folding of triple
helices. (C,D) The selection of procollagen chains and nucleation of triple helices. (E) Translocation
and secretion of procollagen molecules into the extracellular space. (F) Cleavage of the N propeptide
by PNP and C propeptides by PCP. (G,H) Assembly of collagen molecules into fibrils and formation of
covalent cross-links (X). Symbols: P; proline residues, K; lysine residues, P4H; prolyl 4-hydroxylase, LH;
lysyl hydroxylase, P3H1; prolyl 3-hydroxylase, CRTAP; cartilage-associated protein, CyB; cyclophilin B,
HSP47; heat shock protein 47, PDI; disulfide isomerase, FKPB65; immunophilin, PNP; procollagen N
proteinase, PCP; procollagen C proteinase.

2.2. Diverse Architectures of Collagen-Rich Matrices

The biosynthesis of procollagen molecules and their secretion into the extracellular space is the
starting point in the assembly of complex architectures that define connective tissue. Although various
collagen types share similar triple-helical conformations, they form various supramolecular assemblies,
including cylindrical fibrils and net-like structures [5]. These assemblies interact with each other to
form 3D architectures able to perform unique tissue-specific functions. Examples of these architectures
include fibrils organized into parallel bundles of fibers that form ligaments and tendons; orthogonal
lamellae formed by uniform-diameter fibrils that build transparent corneas; collagen II-based fibrils
that form articular cartilage; and thin collagen III-based filaments that form many reticular connective
tissues. Additionally, the sheet-like structure of basement membranes comprises collagen IV molecules
that interact via globular ends. Some basement membranes also comprise anchoring fibrils containing
collagen VII molecules that maintain the structural integrity of many tissues and organs, including
skin, esophagus, and elements of the eye [5].

The formation of initial patterns of those architectures occurs during embryonic development.
Although mechanisms that drive the spatial organization of the collagenous structures may involve
cells and mechanical cues, the amino acid sequences of the collagen chains themselves store the
essential information about the assembly of collagen molecules into fibrils and networks [7–10].

2.3. Self-Assembly of Collagens: Paradigms of Collagen I Fibrils, Collagen VII Anchoring Fibrils, and Collagen
IV Networks

Procollagens in which the globular propeptides flank the triple-helical domain are precursors
of collagen molecules. For instance, the N-terminal and the C-terminal propeptides flank the triple
helical regions of the fibrillar collagen types I, II, and III. Similarly, the non-collagenous (NC) NC1
and NC2 propeptides flank the collagen VII triple helix [5]. Studies demonstrated that these globular
propeptides have numerous functions, including collagen chain selection, folding of triple helices,
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and secretion of procollagen molecules. Besides, propeptides significantly increase collagen molecules’
solubility, thereby preventing their premature aggregation into insoluble complexes [11].

Following secretion of the fibril-forming procollagens into the extracellular space, procollagen N
proteinase and procollagen C proteinase cleave the propeptides. The cleavage exposes the very ends
of collagen molecules, called telopeptides, that mediate the collagen–collagen binding interactions.
These site-specific interactions aggregate the collagen molecules into the fibrils that build connective
tissues [12,13]. A precise, D-periodic alignment of individual collagen molecules that build the fibrils
enables covalent cross-linking between some lysine and hydroxylysine residues in adjoining collagen
molecules. Lysyl oxidases (LOX) catalyze the formation of these cross-links. The cross-links strengthen
the fibrils, allowing connective tissues to function correctly [14].

The basement membrane networks’ assembly depends on binding interactions between the
NC1 domains of collagen IV [10,15]. Similarly, the formation of anchoring fibrils within the dermal
basement membrane depends on the dimerization of the NC2 domains of collagen VII molecules. Here,
procollagen C proteinase first cleaves these domains, which then dimerize in the anti-parallel fashion.
Subsequently, the formation of intermolecular disulfide bonds stabilizes the collagen VII–collagen VII
dimers that bundle together to form the anchoring fibrils [16].

Many mutations have been observed to destabilize the collagen triple helices, prevent their
self-assembly, or weaken collagen-rich architectures’ structure, indicating that proper amino acid
sequences are crucial for collagens to function correctly. For instance, mutations in collagen I
cause osteogenesis imperfecta, a brittle bone disease, which alters bone mineralization and limits
skeletal growth. Similarly, mutations in collagen IV weaken the basement membranes of kidneys,
causing Alport syndrome. Mutations in collagen VII cause epidermolysis bullosa, a blistering disease
whose pathomechanisms involve aberrations of the anchoring fibrils [17].

The above examples indicate that when collagen sequences change, the collagen may lose
its vital functions. Consequently, genetic approaches to engineering recombinant collagen
variants must preserve crucial features of these proteins to allow them to function when used
in biomedical applications.

2.4. Collagens as Signaling Molecules

In addition to the structural functions, collagens play crucial roles as signaling molecules.
Studies on mechanisms of binding interactions between collagen molecules and cells demonstrated
that triple-helical regions include distinct domains, usually formed by only a few amino acid
residues that interact specifically with collagen-specific cell receptors. These receptors include
integrins, discoidin domain receptors (DDRs), glycoprotein VI (GPVI), or leukocyte-associated
immunoglobulin-like receptor 1 (LAIR-1) (Figure 2). They not only recognize defined collagen sites,
but some of them (e.g., GPVI) require incorporation of collagen I and collagen III molecules into fibrils.
Although some of the collagen-specific receptors may also bind to the linear (i.e., not triple-helical)
peptides corresponding to the native binding sites, the binding interactions are usually weak and may
not trigger tissue-specific cell responses.
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Figure 2. Sites of binding of collagen-specific receptors in collagen I (C-I) and collagen III (C-III).
Red arrows; integrin-binding sites, black arrows; discoidin domain receptor (DDR)-binding sites, green
arrows; glycoprotein VI (GPVI)-binding sites, blue arrows; leukocyte-associated immunoglobulin-like
receptor 1 (LAIR1)-binding sites.
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As indicated earlier, the self-assembly of collagen molecules arranged in a D-staggered fashion
drives the formation of fibrils. Orderly aggregation creates novel physicochemical qualities of the fibrils’
surface that arise from the clustering of the amino acid residues belonging to the interacting collagen
molecules. These novel qualities, including topography, charge, or hydrophobic properties, create
fibril-specific markers recognized by cellular receptors (Figure 3). Moreover, these fibril-specific markers
provide unique binding sites for various macromolecules, including proteoglycans, glycosaminoglycans,
growth factors, and others, thereby arranging them in the tissue-specific fashion [18].
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Figure 3. A schematic explaining the formation of the fibril-specific features formed due to aggregation
of individual collagen molecules. The schematic illustrates the formation of the hydrophobic cluster
(indicated by the black line (|) across the fibril in (A–C)). (A) A banding pattern of a positively stained
collagen fibril. Defined bands (a, b, c, d, and e) are indicated. Please note that the hydrophobic
cluster is located between c2 and d bands. Gaps (gp), overlaps (ov), and D-period (Dp) regions are
visible. (B,C) Detailed representation of the gap and overlap zones with the hydrophobic cluster
indicated as a black line (|). Additionally, MMP1 cleavage site present in the D4 period is indicated.
(D) A hydrophobicity plots of overlapping D-periods (C,E) [19]. The highlighted zone indicates the
unique lipid-binding (LB) region studied here and characterized by poor content of hydroxyproline
residues (HpP). This zone corresponds to the region indicated by the black line (|) in (A–C).

3. Practical Utilization of Collagens

3.1. Applications of Collagens

Because of their roles as biological scaffolds, collagens are attractive materials for fabricating
products for tissue engineering, wound healing, and drug delivery [20,21]. Furthermore, vaccines
and other pharmaceutical products utilize gelatins, which are denatured forms of collagens,
as stabilizers [22,23]. The polymeric nature of gelatin and its ability to bind various therapeutic
compounds renders this collagen product an attractive carrier in many pharmaceutical applications.
Moreover, gelatin is also applied as a gelling agent in food products [24–28].

At present, animal tissues, notably bovine hides, are the primary source of collagen material for
most applications. Other sources include porcine and fish tissues. The main form of collagen used for
these applications is collagen I [29–32].

3.2. Potential Limitations of Collagens Isolated from the Natural Sources

Despite the wide use of products manufactured from natural collagens, concerns exist about
their side effects [33–35]. In the past, a possibility of transmitting bovine spongiform encephalopathy,
also known as mad cow disease, was a particularly worrisome concern [36]. However, eliminating
bovine neurological tissues as a potential source of collagen material, and utilizing bovine spongiform
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encephalopathy-free cattle as the sole source of collagen material, reduced these concerns significantly.
Furthermore, future utilization of genetically engineered cattle lacking prion protein would offer a safe
source of collagen-based materials [37].

Other concerns about using the animal-derived collagen products are associated with their potential
antigenicity, defined as the ability to interact with secreted antibodies, and immunogenicity, defined as
the ability to induce the immune response. While the amino acid sequences of the triple-helical regions
of collagen molecules from animals and humans share significant similarities, substantial differences
characterize their telopeptide regions. Consequently, telopeptides are responsible for the majority of
collagen antigenicity. Meanwhile, researchers suggested that cryptic epitopes, generated by enzymatic
degradation or denaturation of triple helices of the collagen-based materials, may also interact with
antibodies [38].

Scientists believe that primary exposure to exogenous collagen is dietary and about 2% to 4% of the
total population has an inherent immunity, i.e., allergy, to bovine collagen I [39–42]. When compared
with the 10% to 15% of the population sensitive to nickel or 6% to 17% of the population sensitive to
latex, the sensitivity rate to bovine collagen I is relatively low [43–45].

Because of the large body of data for the use of collagen-based products, most notably the
injectable collagen material used for soft tissue augmentation, we know that 2% to 4% of patients show
hypersensitivity to the injected material. This percentage is consistent with the overall preexisting
sensitivity to collagen (see above) observed in the general population. In fewer than 3% of cases,
patients develop adverse reactions to foreign collagen materials, including granuloma and localized
inflammation. These reactions, however, usually subside within a few months and never last longer
than a year [38].

Although researchers have pointed to collagen telopeptides as the most probable regions causing
immune responses in human patients, the evidence is not clear. As discussed by Lynn et al.,
no documented differences exist between human responses to products manufactured from collagens
that include telopeptides and those without them [38].

Evidence so far suggests that biomedical products manufactured using animal-derived collagens
do not present any significant danger to the human recipients [46]. However, some concerns still exist
about the potential negative impacts of non-collagenous molecules that co-purify with animal-derived
collagen. Furthermore, some controversies exist about a potential induction of autoimmunity in
humans by products containing collagen II [47]. Although most collagen-based products mainly
include collagen I and collagen III, future applications, e.g., cartilage engineering, may require collagen
II-based materials. This possibility will require further studies to clarify the potential for collagen
II-associated autoimmunity.

4. Recombinant Collagens

The application of recombinant human collagens in research and medicine, as well as drug,
food, and cosmetic industries, offers an attractive alternative to the use of the animal-derived
collagen materials. Despite the overall safety of the animal collagens, the human collagens offer
ultimate biocompatibility and safety. Moreover, technologies to produce recombinant collagens would
potentially provide quantities of less abundant collagen types that would be impossible to isolate from
tissues [24,48]. Furthermore, technologies to produce recombinant collagens may be utilized to produce
unique collagenous proteins that correspond to those from other animal groups, including avian and
marine species.

To address the need for human collagens, about three decades ago, researchers initiated studies
on producing these proteins using recombinant DNA technology. Initially, mammalian cells were used
to express full-length collagens or their fragments [49–53]. Subsequently, other expression systems
were employed to produce collagen types, collagen fragments, and modified collagen variants [54].
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4.1. Prerequisites for Engineering Mammalian Recombinant Collagens

As noted, a few crucial characteristics define native mammalian collagens’ ability to serve as
structural and cell signaling molecules. These characteristics include thermostable triple-helical
conformation with the correct composition of type-specific α-chains, proper posttranslational
modifications of the chains, correct processing of propeptides, and the ability to form the supramolecular
assemblies. Because these characteristics largely depend on the presence of a set of collagen-modifying
enzymes, it is critical to select expression systems in which these enzymes are active.

In contrast, collagen-like proteins found in some bacteria and cocoons of a group of hymenopteran
insects do not require hydroxyproline residues to maintain stability. This characteristic makes them
potentially attractive substitutes for mammalian collagens in some biomedical applications [55,56].

4.2. Collagen Expression Systems

The first systems for producing recombinant collagens utilized mammalian cells that expressed
native collagen-modifying enzymes. Procollagens produced in these cells, including procollagen I
and procollagen II, had normal thermostability, and their proline and lysine residues were correctly
hydroxylated. Moreover, these proteins were glycosylated and processed by procollagen N proteinase
and C proteinase [53]. With proper modifications and enzymatic processing, these native-like
recombinant collagens assembled into well-organized fibrils [57].

The relatively low yield and potentially high cost of the collagen-based products is a crucial
limitation of mammalian cell-based expression systems in collagen production for biomedical, cosmetic,
and pharmaceutical applications. To circumvent this problem, scientists tested systems compatible
with industrial-scale production. These systems relied on yeast, insect cells, and bacteria. Furthermore,
researchers investigated plants, including tobacco, barley, and corn, as potential collagen-producing
factories. Experiments with animals demonstrated the feasibility of producing collagens in the
mammary glands of transgenic mice and eggs of transgenic chickens [58–65].

Scientists also used recombinant and chemical methods to synthesize short collagen-derived
peptides for research and tissue repair applications. In one example, a synthetic 15-mer peptide
derived from the α1(I) chain serves as an ingredient in a material for bone repair [66,67]. Although
chemical synthesis is an attractive method to produce collagen fragments, these fragments lack
crucial collagen characteristics, including triple-helical conformation, modifications of proline and
lysine residues, and resistance to enzymatic degradation. Employing a biological system for the
production of recombinant collagen-derived peptides may provide an attractive analog for their
synthetic counterparts [68,69].

Initially, a common challenge for the large-scale production systems was the lack of native enzymes
needed to produce stable collagen molecules. To circumvent this problem, scientists co-expressed the
collagen-coding genes with those that encode subunits of P4H. Overall, this approach was successful,
and the recombinant collagens co-expressed with P4H are triple-helical and thermostable [70,71]. It is
likely that other crucial enzymes, including prolyl-3-hydroxylase, will also have to be considered to
ensure full functionality of recombinant collagens. Moreover, future expression systems should take
into account the need for glycosylation of recombinant collagens. As hydroxylysine residues are the
main sites of collagen glycosylation, co-expression of lysyl hydroxylases may help in the production of
recombinant collagen variants with properties closely resembling those of their native counterparts.

Although the literature describes many expression systems, those employed today for the
large-scale production of collagen I rely on yeasts and plants [58,71–73]. For instance, FibroGen, Inc.
(San Francisco, CA, USA) manufactures recombinant collagens in yeast cells, while CollPlant Ltd.
(Rehovot, Israel) employs tobacco plants as collagen-producing factories. According to published
literature, these companies mainly focus on collagen I and collagen III for manufacturing biomedical
products, including artificial corneas, injectable constructs, and wound-dressing materials [74–76].
They use proteolytic enzymes to extract collagens from the hosts’ crude materials [77]. While the
enzymatic digestion removes the bulk of contaminating proteins, it also destroys procollagen
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propeptides and telopeptides. Because of the lack of intact telopeptides, the recombinant collagens
isolated with current technologies are not able to form proper fibrillar assemblies similar to those seen
in native tissues [12,13,78].

While the lack of telopeptides should not present significant problems for using enzymatically
processed collagens to produce gelatin, gels containing non-denatured collagen molecules,
and unorganized fibrillar matrices, the presence of telopeptides is critical for the formation of native-like
structures intended to mimic the biological and mechanical functions of collagens. This notion is
particularly important considering that in native fibrils, the C-terminal telopeptides and nearby domains
form significant matrix–matrix and cell–matrix interaction regions [18,79]. For instance, recent research
indicates that the tyrosine cluster present in the C-terminal telopeptides plays a significant role in the
interaction of collagen fibrils with the human osteoclast-associated receptor (OSCAR) that plays an
important role in the modulation of matrix remodeling and in antigen recognition [80–82].

Table 1 summarizes crucial expression systems for the production of recombinant collagen variants.

4.3. Recombinant Collagen Variants

The successful expression of recombinant collagens opened an opportunity to produce not only
native-like collagen constructs but also customized variants with modified sequences (Figure 4).
Both groups of collagen constructs offer potentially attractive collagen-based materials for use in basic
research and the commercial sector. The basic research area focuses on understanding the biological
roles and the structure–function relation of various collagen types and their defined domains. The main
interest of the commercial sector includes the production of bulk amounts of collagen materials for
use in biomedicine and pharmaceutical, food, and cosmetic industries. Although the commercial
sector focuses primarily on native-like recombinant collagens, in the future, variants with customized
characteristics, including thermostability and the ability to interact with specific ligands, may offer
significant advantages over their native-like counterparts.
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Figure 4. A schematic representation of recombinant collagen constructs studied by various research
groups. NT; a native collagen molecule in which regions that correspond to the consecutive D-periods
are indicated with different colors, -D1, -D2, -D3, and -D4; truncated collagen constructs in which
specific D-periods were omitted, mD1, mD2, mD3, and mD4; collagen constructs comprising tandem
repeats of specific D-periods, ST; a short collagen fragment stabilized by flanking it with stabilizing
triple-helical peptides, F; a short collagen fragment stabilized by foldon domains, BC; a short collagen
fragment stabilized by a fragment derived from bacterial collagen, CP; a recombinant or a synthetic
linear peptide derived from collagen.
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Table 1. A summary of the expression systems for production of recombinant collagens.

Expression System Examples of Collagen Constructs
Requirement for

Co-Expression of P4H
(N = No, Y = Yes)

Industrial-Scale
Production (N = No,

Y = Yes)

Commercial Evaluation
(N = No, Y = Yes) References

Mammalian cells (HT1080,
CHO, HEK293, NIH3T3)

Native-like human procollagens, including procollagen I,
procollagen II, collagen VI, procollagen VII.

Fragments of procollagens, including mini-collagen II,
mini-collagen I homotrimer, mini-collagen VII, C-terminal

propeptides of procollagen III, and fragments of collagen IV

N N N [4,50,53,83–88]

Insect cells Native-like collagens including collagen I, collagen II, collagen III,
collagen IX, collagen N N N [89,90]

Mammary glands of
transgenic mice Collagen I homotrimer N N N [62]

Escherichia coli Human-derived mini-collagen III, collagen fragments, including C
propeptide of collagen XVIII, and fragments of collagen I Y N N [61]

Escherichia coli Collagen fragments stabilized by bacterial collagen-like sequences N N N [91,92]

Yeast cells Native-like human collagen I, collagen III, gelatin Y Y Y [28,60,72,93]

Transgenic plants Native-like human collagen I Y Y Y [59,77,94–96]
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Technologies to produce recombinant collagens for both research and commercial purposes
have evolved significantly over the last three decades. Initially, the main focus was on engineering
and expressing DNA constructs encoding the native-like human collagens, most notably collagen I.
The initial challenges of expressing stable human collagen I molecules with the correct 2:1 ratio of the
α1(I) and the α2(I) chains were solved so that human recombinant collagen types, both heterotrimeric
and homotrimeric, can now be readily produced [73,93]. Similarly, Pihlajamaa et al. reported a
successful expression of heterotrimeric collagen IX with the expected chain composition [97].

Studies on the mechanisms of binding interactions of collagens with cells demonstrated that
triple-helical regions include distinct domains, usually formed by only a few amino acid residues,
that interact specifically with collagen-specific cell receptors, including integrins, DDRs, GPVI,
or LAIR-1 (Figure 2). These receptors not only recognize defined collagen sites, but some of them
(e.g., GPVI) require collagen I and collagen III molecules in their fibrillar form. Although some of the
collagen-specific receptors may also bind to the linear peptides (i.e., not triple-helical) corresponding to
the native binding sites, the binding interactions are usually weak and may not trigger tissue-specific
cell responses [98].

Because of those site-specific binding interactions that control many processes, including cell
attachment, migration, and proliferation, scientists developed a concept of producing biologically
active collagen fragments instead of the full-length native-like collagen molecules. The premise for
this concept is that expressing or synthesizing short active collagen fragments would provide useful
biomaterials with tissue-specific cell signaling properties [99–109].

The need for the triple-helical structure of the cell signaling domains and the fact that they are
present in vivo in the context of fibrils, however, make the usefulness of the above concept uncertain.
Although the scientific literature describes testing the utilities of many collagen-derived recombinant
fragments to serve as biomaterials for tissue engineering and wound-healing applications, thus far,
these constructs have provided useful experimental tools but have not been applied clinically.

In one example, however, a linear, i.e., non-triple helical, peptide, called P-15, is utilized as an
ingredient in a bone graft material (i-FACTOR, CeraPedics Inc., Westminster, CO, USA) [110,111].
The P-15 peptide is derived from the collagen I site characterized by a relatively low content of the triple
helix-stabilizing hydroxyproline residues [112]. Considering that this peptide does not include any
known sites for binding cell receptors, mechanisms of its claimed biological activity remain unknown.
Consequently, not knowing its mechanism of action, it is difficult to fully comprehend the benefits of
using P-15-containing materials to promote bone tissue repair.

Similarly, a commercial product, referred to as recombinant collagen peptide (RCP, Cellnest;
Fujifilm), that includes the Arg-Gly-Asp (RGD) peptide, has been used in various experiments to
promote the regeneration of tissues, including skeletal, pancreatic, vascular, and others [69,113–115].
Although the RGD sequence is a part of the binding sites of many integrins, it is not considered the
canonical binding site for the collagen-specific integrins α1β1 and α2β1. Moreover, the RGD sequence
is not collagen specific. Indeed, it is present in many proteins, including fibronectin, vitronectin,
fibrinogen, thrombospondin, entactin, and many other macromolecules. Therefore, due to the lack
of a collagenous character, the RGD-based materials should not be classified as collagen mimics.
Nevertheless, the RGD peptides must be presented in the form of organized clusters to show optimal
cell-binding properties [116–118]. This need for organization of the RGD motifs makes the engineering
of useful ECM architectures a challenging problem.

In addition to collagen-derived peptides with random conformations, researchers produce short
collagen fragments with the triple-helical structure (Figure 4). Because short collagen triple helices are
usually unstable and unfold at body temperature, scientists developed various techniques to stabilize
them. In one example, they flanked collagen-derived sequences of interest with those corresponding
to the triple helix-stabilizing Gly-Pro-Pro repeats [119–121]. Alternatively, hybridizing the peptides
of interest with stabilizing sequences may maintain their triple-helical structures [122]. Moreover,
scientists linked the collagen-derived sequences to the foldon domain’s fragments from bacteriophage



Bioengineering 2020, 7, 155 11 of 26

T4 fibritin [123,124]. As the foldon region has a natural ability to form trimers, its presence stabilizes
the triple helices formed by the assembly of short collagen peptides (Figure 4).

Furthermore, researchers have explored the possibility of producing relatively short collagen-like
fragments fused with bacteria-derived triple-helical peptides. Unlike mammalian collagens,
the bacterial collagen-like triple helices remain stable at high temperatures, despite the absence
of hydroxyproline residues [55]. Scientists demonstrated that these bacterial collagens are safe and
interact with some integrins [125]. Because of their stability, biocompatibility, and potential large-scale
production, scientists believe that bacterial collagens hold promise for some biomedical applications
(Figure 4) [91,126–128].

Although non-native sequences stabilize short collagen fragments, their presence may complicate
the clinical approval of these constructs. One approach to circumvent this problem is to engineer
the normal-length collagen-like constructs, comprising tandem repeats of selected native domains
(Figure 4) [109]. Studies demonstrated that linking short domains into molecules whose length
matches native collagens does not alter their ability to form triple-helical structures. However,
some of these constructs have low thermostability, which renders them unusable in tissue engineering
approaches [107]. Moreover, while some of these constructs retain the ability to aggregate into fibrillar
structures, others cannot form proper fibrils [78]. Even though novel tandem-repeat variants have
been used as research tools for mapping binding domains for the collagen-specific receptor, defining
regions that drive fibrillogenesis, and as delivery vehicles for therapeutic cells, they have not yet been
applied clinically [78,106,108,129].

Despite potential problems with the stability of some collagen constructs and the ability to
form fibrils, they may still be used to form useful materials. For instance, introducing random
chemical crosslinking stabilizes collagen constructs so that they can function at body temperature.
Furthermore, to enable the formation of fibrillar structures, researchers use various techniques,
including electrospinning and magnetic alignment of collagen molecules [130,131].

4.4. Proposed Biomedical Applications of Recombinant Collagen Constructs

Although this paper does not intend to provide exhaustive details for all published concepts
on utilizing recombinant collagen constructs, it presents distinct categories of tested applications,
including tissue repair and engineering, drug delivery, and protein replacement therapies (Table 2).

Recent literature indicates that scientists have tested the potential of recombinant collagens
and their fragments as scaffolds and fillers in tissue engineering and repair approaches. It is worth
noting that those tests aimed at defining the fundamental utilities of recombinant collagens in simple
experimental models, with only a relatively few transitioning toward more relevant animal-based
studies or clinical applications.

Researchers fabricated the scaffolds as porous sponges, fibrils, and membranes in 3D configurations
to better support cell attachment and growth. Advances in the fabrication of scaffolds, electrospinning
methods to align fibrils, and 3D printing technology have opened new possibilities to create organized
scaffolds as well as tissue-like bioprinted constructs that include cells [113,130,132,133].

Because of the gelling properties of collagen constructs, they may be used to make injectable
liquid materials that solidify at body temperature. This property allows the creation of scaffolds with
proper shapes directly at the injury sites. Furthermore, the gels offer drug-delivery and cell-delivery
vehicles that shield their cargo and release it in a controlled way. In one example, Confalonieri et al.
employed a commercially available recombinant collagen peptide containing the RGD sequence as a
material to form microspheres to support the growth of mesenchymal stromal cells [115]. Similarly,
scientists proposed recombinant collagen-based hydrogels to regenerate damaged heart tissue [75].

Although recombinant collagens are not widely utilized for clinical, cosmetic, and pharmaceutical
applications, and because they are used primarily in research applications performed in vitro, in cell
culture conditions, and in animals, some companies started to introduce products fabricated from
those proteins. In one notable example, the full-length collagen I expressed in tobacco plants is utilized
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in clinically applied products CE marked and approved for sale in Europe and Israel. These products
(CollPlant Ltd.) include a flowable gel construct (VergenixFG) for wound dressing and a material for
the treatment of tendinopathy (VergenixSTR) [95,96,134].

Moreover, recombinant gelatin was once considered promising for use in pharmaceutical
formulations, including vaccines and drug-delivery capsules, but it has not yet found its way
into the market. According to the summary list of vaccines licensed for use in the USA, hydrolyzed
gelatin of the porcine origin serves as the stabilizer in most vaccine formulations [135].
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Table 2. Examples of recombinant collagen-based constructs and their potential applications in tissue repair and engineering.

Collagen Construct Expression System Proposed Application Experimental Tests
Applied
Products

(N = No, Y = Yes)
References

Full-length native-like collagen II,
collagen VII Mammalian cells HT1080, CHO Cartilage engineering, protein replacement in patients

harboring mutations in collagen VII, research tool In vitro, mouse N [88,105]

Truncated and modified collagen II
variants, truncated collagen VII Mammalian cells HT1080, HEK293 Cartilage engineering, research tool In vitro, mouse N [16,83,109]

Full-length native-like human collagen I,
collagen III Yeasts

Fabrication of scaffolds and hydrogels to repair
damaged tissues Mouse N [75]

Hemostatic materials Rabbit N [136]

Implants to regenerate cornea Human N [137,138]

Modified collagen III Yeasts
Materials with increased thermostability In vitro N [139]

Materials with customized collagen III sequences for
support of stem cells In vitro N [129]

Collagen III constructs containing
integrin-binding sites from collagen I

and laminin
Yeasts Scaffolds to support neural progenitor cells In vitro N [129]

Non-triple helical collagen I fragment Yeasts

Scaffolds for tissue regeneration In vitro N [99]

Scaffolds for transplantation of pancreatic islets Mouse N [140]

Grafting material for bone regeneration In vitro N [115,141–144]

Native-like collagen II Yeasts Hydrogel to support chondrogenesis of mesenchymal
stromal cells In vitro N [145,146]

Collagen I fragment fused with
(Pro-Gly-Pro)9 peptides Yeasts Gelatin mimetic In vitro N [31]

Full-length human collagen III Bacteria NA In vitro N [70]

Collagen III fragments fused with
bacteria-derived collagen-like proteins Bacteria Inhibitors of DDR signaling In vitro N [147]

Tandem repeats of the
(GAPGAPGSQGAPGLQ) fragment Bacteria Material to deliver BMP-2 for bone repair Mouse N [148]

Tandem repeats of (GPP) fragment Fabrication of biocompatible surfaces In vitro N [149]

Fragment of turtle-derived collagen Bacteria Antioxidant material In vitro N [150]

Collagen III-derived fragments Bacteria Treatment of vaginal atrophy Rat N [151]



Bioengineering 2020, 7, 155 14 of 26

Table 2. Cont.

Collagen Construct Expression System Proposed Application Experimental Tests
Applied
Products

(N = No, Y = Yes)
References

Full-length native-like human collagen I Tobacco

Wound dressing materials Y [134]

Matrices for ovarian grafting Mouse N [152]

Scaffolds for bone and skin repair In vitro N [153,154]

Electro-spun fibrils for tendon-repair materials In vitro N [155]

Injectable material combined with platelet-rich plasma
for treatment of lateral epicondylar tendinopathy Human Y [76]

Short collagen-derived linear peptides Bacteria, yeast (recombinant
technology) and chemical synthesis Osteogenic material In vitro, human Y [68,69,110,115,156]
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5. Recombinant Collagens for Protein Replacement Therapies

Recombinant collagens could potentially be used in a protein replacement therapy in patients who
suffer from genetic disorders due to mutations in collagen genes (Table 3). Although these disorders
are very heterogeneous with no clear genotype–phenotype relationship, most are characterized by a
decrease in a collagen type affected by a mutation [17]. Thus far, tests of the utility of the collagen
replacement therapies have focused on diseases that affect basement membranes of the skin and kidney.
In the first case, researchers targeted collagen VII, and in the second case, they targeted collagen
IV [157–160].

While most collagen mutations are single amino acid substitutions that allow mutant collagen
chain production, some mutations create premature stop codons that entirely prevent biosynthesis.
For instance, in recessive dystrophic epidermolysis bullosa (RDEB), a form of blistering skin disease,
collagen VII may be absent. The lack of collagen VII in the basement membranes, where this protein
plays a pivotal mechanical role, causes severe skin fragility and blistering of the esophagus and
the eye surface. Furthermore, the progressive nature of RDEB leads to excessive skin damage,
scarring, contractures, and fusion of the fingers, and RDEB patients may also develop squamous cell
carcinoma [161].

Despite some experimental approaches to treat RDEB, there are no therapies to cure this disorder.
To date, researchers have tested the following methods to introduce normal collagen VII into diseased
tissues: (i) protein replacement therapies by delivery of the COL7A1 gene that encodes normal collagen
VII chains, and (ii) direct delivery of recombinant collagen VII protein [162].

Considering the direct delivery of collagen VII, scientists produced the recombinant form of this
protein and then injected it directly into collagen VII-null mice. When Remington et al. injected
recombinant collagen VII into the skin of collagen VII-deficient mice, they observed site-specific
accumulation of this protein in the area of the dermal basement membrane zone and the formation
of collagen VII assemblies, namely the anchoring fibrils [158]. Despite injecting collagen VII into the
mice lacking this protein, the authors did not observe the formation of anti-collagen VII antibodies.
In another study, recombinant collagen VII was injected into the bloodstream of the collagen VII-null
mice and observed that, as in the case of the intradermal injection, the exogenous recombinant
collagen VII accumulated in proper tissue locations, including the dermal–epidermal junction, tongue,
and esophagus [157].

Despite these promising preliminary results in mice, the direct delivery of recombinant collagen
VII has not moved from bench to bed, such as to improve the structural integrity of tissues among
patients with RDEB. The reasons for this lack of progress in protein replacement therapy for RDEB
are not clear. However, it seems that the direct delivery of collagen VII into cavities of connective
tissues is challenging. One of the potential problems might be a large Stokes radius of collagen VII,
one of the largest known proteins in the human body, present in solution. Thus, it is unlikely that
collagen VII, or other collagen types, could readily diffuse to the target tissue sites. This problem
is amplified by the fact that a high-affinity collagen VII–collagen VII binding interaction promotes
unwanted aggregation [84].

Furthermore, before self-assembly into functional anchoring fibrils, the procollagen C proteinase
must cleave collagen VII [84]. In brief, procollagen C proteinase has to cleave a portion of the C-terminal
propeptide before processed molecules can form anti-parallel dimers stabilized by the disulfide bonds.
Subsequently, the dimers must bundle together and arrange into the anchoring fibrils that interlace
with the dermal and epidermal matrices. It is unlikely that these intricate processes occur efficiently
with exogenous collagen VII delivered by transdermal or intravenous injections. Recent research by
Supp et al. supports this notion: utilizing relevant models, the authors demonstrated that for the
anchoring fibrils to form and function correctly within the dermal–epidermal junction, both epidermal
keratinocytes and dermal fibroblasts must produce collagen VII [163].

An additional potential limitation of the direct delivery of collagen VII is its half-life.
As demonstrated by Khül et al., the collagen VII half-life is about one month, which means this
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protein would have to be injected frequently in large quantities to have any meaningful positive,
long-term effects [164].

Furthermore, it is unclear what effect the intravenous injection of collagen VII has on platelet
aggregation. Although experiments in vivo demonstrated that this collagen type does not aggregate
platelets as strongly as fibril-forming collagens, it can still activate them. Thus, we cannot exclude a
possibility that collagen VII in the bloodstream will not trigger clot formation [165].

Due to the concerns presented above for direct collagen VII delivery, clinical application of protein
replacement therapies for other collagen types may be subject to similar problems. For instance,
scientists have considered collagen IV delivery, via local or systemic routes, to treat Alport syndrome
caused by genetic aberrations of collagen IV [159]. However, scientists have not yet determined the
efficacy of this approach thus far, and concerns persist regarding aggregation, diffusion, and potential
activation of platelets.

Choosing the potential treatment time is an additional consideration for using replacement
therapies to treat disorders caused by a mutation in collagen genes. As collagens are needed to
form templates of tissues from early embryonic development, it is unclear whether the post-natal
delivery of a therapeutic recombinant collagen type would restore and maintain functional target tissue.
As demonstrated in a mouse model of spondyloepiphyseal dysplasia caused by a mutation in collagen
II, only early embryonic interventions led to normal skeletal tissues. In contrast, late embryonic and
post-natal interventions did not improve these tissues in any significant way [166,167].

Table 3. Experimental protein replacement therapies with the use of recombinant collagens.

Disease Collagen
Target Experimental Model Clinical Tests Applied

Clinically References

Dystrophic
epidermolysis

bullosa
Collagen VII

Intradermal or intravenous
delivery of recombinant
collagen VII into mice

Y N [168]

Alport
syndrome Collagen IV Systemic delivery N N [159,160]

Ultimately, clinical trials are needed, such as those planned by Phoenix Tissue Repair, Inc. to
determine the safety and efficacy of protein replacement therapy to treat RDEB patients harboring
collagen VII mutations [168]. If successful, these trials may open a possibility for using replacement
therapy for diseases caused by mutations in other collagen types. Table 3 highlights experimental
replacement therapies that utilize recombinant collagens.

6. Constraints on Implementing Recombinant Collagen Technology in Clinical Applications

Despite developing technologies to design and produce recombinant collagens with native
structures and collagen-derived constructs, these proteins have not so far succeeded in the clinical
marketplace. Although it is beyond the scope of this review to analyze the specific reason for this
situation, possible causes include the following points:

• There is no clear consensus on a system for large-scale recombinant collagen production that would
be accepted by the regulatory agencies responsible for approving biologics for commercial clinical
use. The production systems encompass different organisms, including bacteria, mammalian cells,
insect cells, yeast, transgenic animals, and transgenic plants.

• There is no consensus on the most relevant form of recombinant collagens needed in the
market. While some studies consider production and application of the native-like collagens,
others propose to manufacture and use collagen-derived synthetic linear peptides, triple-helical
fragments, and genetically engineered collagen-inspired constructs. For instance, it is not clear
whether recombinant gelatin will be manufactured from the full-length recombinant collagens or
selected recombinant fragments.
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• Because of the wide span of potential biomedical applications of recombinant collagens,
ranging from drug delivery, tissue engineering, wound healing, and protein replacement therapies,
there is no identifiable leading product that could attract the attention of the market. Many different
collagen types are needed for medical applications in distinct tissues and organs, amplifying
this problem.

• Although some concerns about the safety of animal-derived collagen materials exist,
pharmaceutical, cosmetic, and food industries continue to use them. Furthermore, because these
materials are readily available from tissues of isolated animal herds, they are likely less expensive
than recombinant collagens whose production requires advanced technologies.

• Even with a few companies’ early interest in producing and delivering large amounts of
recombinant collagens and gelatins, no commercial products are widely available on the market.
This situation may indicate that the market’s needs differed from companies’ expectations about
recombinant collagens’ commercial potential.

• Tissue engineering is a crucial proposed use for recombinant collagen variants. Despite the
promising preclinical results of many tissue-engineered medical products, only a few have had
success in the clinic thus far [169]. Consequently, it is likely that the primary potential beneficiary
of recombinant collagen technology, i.e., the tissue engineering industry, does not clamor for novel
recombinant collagen-based materials in any significant way.

Considering these factors, it is likely that technologies to produce and implement recombinant
collagen-based products face an uphill battle in finding a permanent place in the market. Meanwhile,
animal-derived collagens will most likely continue to provide the bulk of material needed for biomedical,
pharmaceutical, food, and cosmetic industries. Recombinant collagens, however, will expand their
role as a valuable research tool needed to study not only the family of collagenous proteins but also on
the extracellular matrix as a whole.
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