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Abstract: We have recently identified a population of cells within the peripheral nerves of adult
rodent animals (mice and rats) that can respond to Bone Morphogenetic Protein-2 (BMP-2) exposure
or physical injury to rapidly proliferate. More importantly, these cells exhibited embryonic differentia-
tion potentials that could be induced into osteoblastic and endothelial cells in vitro. The current study
examined human nerve specimens to compare and characterize the cells after BMP-2 stimulation.
Fresh pieces of human nerve tissue were minced and treated with either BMP-2 (750 ng/mL) or a
PBS vehicle for 12 h at 37 °C, before being digested in 0.2% collagenase and 0.05% trypsin-EDTA.
Isolated cells were cultured in a restrictive stem cell medium. Significantly more cells were obtained
from the nerve pieces with the BMP-2 treatment in comparison with the PBS vehicle controls. Cell
colonies started to form at Day 3. Expressions of the four transcription factors, namely, K1f4, c-Myc,
Sox2, and Oct4, were confirmed at both the transcriptional and translational levels. The cells can be
maintained in the stem cell culture medium for at least 6 weeks without changing their morphology.
When the cells were transferred to a fibroblast growth medium, dispersed spindle-shaped motile cells
were noted and became fibroblast activated protein-« (FAP) positive with immunocytochemistry
staining. The data suggest that human peripheral nerve tissue also contains a population of cells that
can respond to BMP-2 and express Klf4, Sox2, cMyc, and Oct4—the four transcription factors driving
cell pluripotency. These cells are able to differentiate into FAP-positive fibroblasts. In summary, in
human peripheral nerves also reside a population of quiescent cells with pluripotency potential that
may be the same cells as rodent nerve-derived adult stem (NEDAPS) cells. It is proposed that these
cells are possibly at the core of a previously unknown natural mechanism for healing an injury.
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1. Introduction

The potential for stem cells to treat human disease is rightly perceived to be vast.
Embryonic stem cells (ESCs) from the inner cell mass of mammalian blastocyst that have
unlimited self-renewal and pluripotency can differentiate into ectodermal, mesodermal,
and endodermal cells [1-3]. Although there are numerous ongoing studies to investigate
the therapeutic potential of human embryonic stem cells (hESCs) for type I diabetes (T1D),
heart failure, Parkinson’s disease, and inherited or acquired retinal degenerations [4],
challenges remain to be conquered in the clinical development of hESCs, such as legal
and ethical issues, immune rejections, and differentiation difficulties [3]. Somatic cells
can be introduced to transform into a state of pluripotency [3]. The brilliant work of Drs.
Yamanaka and Takayashi [5,6] demonstrated that pluripotent cells can be created from
adult differentiated cells by the virally induced manipulation of nuclear genes to force
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expression of four specific transcription factors, namely, octamer-binding transcription
factor 4 (Oct4), sex determining region Y-box 2 (Sox2), Kriippel-like family of transcription
factor 4 (Klf4), and c-Myc, which together will convert the cells into pluripotency [7,8].
Induced pluripotent stem cells (iPSCs) have emerged as an intriguing and promising
strategy in tissue regeneration and personalized medicine since the iPSCs can be harvested
and processed from individual patient [9]. Unfortunately, this process of gene manipulation
creates a very real risk of malignant transformation and may not solve the issue of immune
rejection. Another drawback is that such cells are expensive to create and assessing the
cells for risk of malignant transformation adds further time and expense [10-12].

We have serendipitously discovered a population of pluripotent cells that reside in
a quiescent state within mouse peripheral nerves [13,14]. When the nerves are stimu-
lated with a physical insult (including mechanical compression or stretching, exposure
to blood, and electrical or cytokine BMP-2 stimulation), a massive proliferation of cells
within the nerve results, with a rapid egress of the cells into the surrounding tissues.
These proliferating cells uniformly exhibit expression of the four critical genes associated
with pluripotency—Sox2, Oct4, c-Myc, and Klf4—as demonstrated by double-stain im-
munohistochemistry and by Real-Time Polymerase Chain Reaction (RT-PCR) with the
appropriate primers [14]. They are readily cultured in restrictive serum-free media, adhere
to substrate, and appear motile. They have been successfully differentiated into cells of the
three primary germ layers: mesoderm (osteoblasts and endothelial cells) [13], endoderm
(Definitive Endoderm), and ectoderm (Primitive Nerve Cells) in rodents (unpublished
data). We have termed these cells Nerve-Derived Adult Pluripotent Stem cells, or NEDAPS
cells. The discovery of this population of naturally existing pluripotency potential cells
would address many currently debated issues, such as nerve dependence in tissue and
organ regeneration [15], and may significantly change the concept of tissue-engineering
therapies.

Indeed, there are too many instances where biological data from rodent experiments
do not conform to human tissue responses. The objective of this study was to examine if
human peripheral nerves also contain this population of quiescent pluripotent stem cells
that can be stimulated by in vitro challenge of BMP-2. Cell differentiation potential was
also principally tested.

2. Materials and Methods
2.1. Human Peripheral Nerve Tissue Treatment

This study was exempted by the Institutional Review Board (IRB) as a non-human
investigation. Fresh human tibial nerves were obtained as surgical waste in a completely
anonymous fashion from three serious trauma patients during limb amputation. These
tissues would normally be discarded. No identifying features of the specimens were
shared or recorded. The peripheral nerve tissues were stored in sterile normal saline on
ice and transferred to the research lab within one hour from amputating the limb. The
nerve specimens were rinsed twice in cold normal saline to remove blood and we carefully
dissected any soft tissue debris attached, and then minced the samples to 0.5 cm pieces into
6-well culture plates (CytoOne, USA Scientific, Ocala, FL, USA) in DMEM medium, and
275 ng/mL of rhBMP-2 (InFuse™, Medtronic, Mempbhis, TN) was added to each well. For
the controls, 100 pL of sterile saline (PBS) was added to the wells of the plate. The minced
nerve tissue was incubated overnight at 37 °C before cell isolation.

2.2. Cell Isolation and Culture

Proliferating cells were isolated from the obtained human nerve specimens similar as
reported previously for mouse NEDAPS cells [14]. Briefly, the minced nerve pieces were
pelleted by centrifugation at 500 x g for 5 min followed by digestion in 0.2% (0.27 U/mL)
collagenase (Worthington Biochemical Corp, Lakewood, NJ, USA) at 37 °C for 90 min. An
equal volume of 0.05% trypsin-EDTA solution was then added for 5 min with agitation.
The enzyme digestion was stopped by addition of heat-deactivated Fetal Bovine Serum
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(FBS) and the mixture was filtered through a 100 um-sized mesh before centrifugation at
500 g for 10 min to pellet cells. The cells were seeded into 6-well culture dishes, or 8-well
chamber-slides in the restriction stem cell medium with 20% Knockout Serum Replacement
(KSR, Gibco), 100 uM MEM non-essential amino-acid solution (Gibco), 1x GlutaMAX™-[
(Gibco), 55 uM B-mercaptoethanol (Gibco), and 20 ng/mL human leukemia inhibitory
factor (LIF, Gibco). The cells were cultured at 37 °C, in a 5% CO, atmosphere. For fibroblast
induction, the human NEDAPS cells that have been cultured in the stem cell medium for
at least 7-14 days were switched to the fibroblast induction medium containing 20 ng/mL
recombinant human basic Fibroblast Growth Factor (rhFGF-2), 50 pg/mL ascorbic acid,
and 10% FBS in DMEM, at a cell density of 5 x 10°/well on a 6-well plate.

2.3. Real-Time PCR (RT-PCR) Test

For RNA isolation, the cells were resuspended and lysed in TRIzol solution (Life
Technologies, Carlsbad, CA, USA), and then went through chloroform separation and
isopropanol precipitation following the protocol described by Chomczynski [16,17]. Com-
plementary DNA (cDNA) was made by reverse transcription in the 40 uL mixture as
follows: 4 pL. 10 x PCR Rxn buffer (-MgCl,) (Invitrogen, Grand Island, NY, USA), 4.4 uL
MgCl; in the concentration of 5.5 mM (Invitrogen), 8 uL deoxynucleoside triphosphates
in the concentration of 500 uM (Invitrogen), 2 pL RNase inhibitor in the concentration
of 0.5 U/uL (Invitrogen), 2 pL random hexamers in the concentration of 2.5 uM (Invitro-
gen), 0.25 pL reverse transcriptase in the concentration of 1.25 U/uL (Invitrogen), 9.35 uL
DNAse, RNAse-free water (Invitrogen), and 0.5 ug of the extracted RNA. The reactions
were in fast reaction tubes on a Veriti 96-well Thermal Cycler (Applied Biosystems, Foster
City, CA, USA). The temperature cycle was 25 °C for 10 min, 48 °C for 30 min, and 95 °C
for 5 min. RT-PCR was run on a StepOnePlus RT-PCR System (Applied Biosystems) for
40 cycles (95 °C for 15 s, 60 °C for 1 min) in a fast optical 96-well reaction plate. The
25 puL reaction mixture was mixed by a 12.5 pL. SYBR Green PCR Master Mix (Applied
Biosystems), 6 uL cDNA, 5.5 uL. DNAse, RNAse-free water (Invitrogen), and 400 nM
tested gene primer pairs. The RT-PCR System can automatically record all the fluorescent
signals dynamically. The values of threshold cycle (Ct) at which a statistically significant
increase in reporter-dye signals (ARn) is first detected as an indication of the relative ex-
pression of the targeted genes, with the Ct > 38 as no expression. We employed the Primer3
program (http:/ /bioinfo.ut.ee/primer3, 9/30/2015) to design the primer pairs for each
target gene [18,19] and made them using Sigma-Genosys (Woodlands, TX, USA). The gene
sequences are described in Table 1.

Table 1. Primers utilized for the RT-PCR amplification of the human specimens.

Target Forward Primer Reverse Primer Product Size
Sox2 agaaccccaagatgcacaac gggcagegtgtacttatect 200

c-Myc acccgctcaacgacagceagc ccgtggegageactcggagg 104
Klf4 ctgaacagcagggactgtca gtgtggoteactgttctttt 218
Oct4 agcgatcaagcagcgactat agagtggtgacggagacagg 202

2.4. Immunocytochemistry Staining and Image Acquisition

The immunocytochemistry staining technique for the four stem cell markers (c-Myc,
Sox2, Klf4, and Oct4) has been reported previously [13,14]. The following primary anti-
bodies were used as pairs for double staining: goat anti-Sox2 (Santa Cruz), goat anti-K1f4
(R&D), rabbit anti-c-Myc (Abcam), goat and rabbit anti-Oct4 (Abcam), and rabbit anti-
Myelin (Abcam). Cells were double stained with goat and rabbit first antibody pairs (Oct4
+ c-MyC, Sox2 + Klf4, KIf4 + Oct4, Klf4 + c-MyC, Sox2 + Oct4, and Sox2 + c-MyC). For
fibroblast differentiation, rabbit anti-FGF-2 (basic Fibroblast Growth Factor, Abcam) and
rabbit anti-mouse FAB (Fibroblast Activation Protein, Abcam) were used. Following the
washes, the diluted secondary antibody (1:200) in 1 x PBS with 1% BSA was added onto
the cells for 1 h at room temperature in the dark. The secondary antibodies utilized were
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donkey anti-rabbit IgG conjugated with Alexa Fluor 594 (Life Technologies, red fluores-
cence emission) and donkey anti-goat IgG with Alexa 488 (green fluorescence emission).
DAPI Fluoromount G (Southern Biotech, Birmingham, AL, USA) was used to mount the
coverslip and to counterstain the cell nuclei. Double-stained fluorescent images of the cells
were acquired under a TCS SP5 II confocal laser scanning microscope (Leica Microsystems).
Acquisition of an automated sequential collection of multichannel sections was processed
to reduce the spectral cross talk between channels, as described previously [14]. Some
individual images were acquired using a Nikon E800 fluorescence microscope (Nikon,
Japan), by a Coolsnap EZ CCD Camera (Photometrics, Tucson, AZ, USA), and analyzed
using MetaMorph image analysis software (Molecular Devices, San Francisco, CA, USA).

2.5. Statistical Analysis

The data of comparative gene expression of the four stem cell transcription factors
and the fibroblast markers between the groups and immunocytochemical-positive cells
were all recorded and expressed as the mean + standard deviation. The data among the
groups were analyzed by one-way analysis of variance (ANOVA) followed by a Bonferroni
post-hoc test (equal variances assumed). A statistical probability of p < 0.05 was considered
as statistical significance. The software for statistical analysis was IBM SPSS Statistics
(Armonk, NY, USA).

3. Results
3.1. Morphology of the Human NEDAPS Cells

Pretreatment of the human nerve pieces with BMP-2 appeared critical in obtaining
much more cells for in vitro cultures (Figure 1). Similar to mouse NEDAPS cells, the
isolated human cells following BMP-2 treatment readily adhered to the culture plates or
chamber-slides and maintained a polygon-shaped morphology (Figure 1A). They also
did not require feeder cells to survive. However, in contrast to the rodent cells [14] that
remained dispersed on the culture plate, the human cells tended to gather to form colonies.
It appears that the motile cells formed clusters within 24 to 48 h in the stem cell medium
and stayed in colonies during proliferation. Indeed, the cells in colonies continued to divide
and could reach several cell layers (Figure 1B). Maintenance of the cell culture in complete
stem cell medium and subcultures every two weeks did not see obvious morphological
changes for at least two months.

3.2. Expression of Stem Cell Markers

Immunofluorescent microscopy on the isolated human nerve cells in complete stem
cell medium for at least 7 days clearly showed that over 90% of cells were simultaneously
expressing the four transcription factors Sox2, Oct4, c-Myc, and Klf4 after 5 days in culture
in the restrictive stem cell medium. Double staining with various pairs of primary antibod-
ies against the transcription factors illustrates that the cells co-expressed all four specific
stem cell transcription factors (Figure 2). Figure 3 shows a human NEDAPS cell that was
double visualized by Sox2 (green fluorescent) and Klf4 (red fluorescent) under a confocal
microscope, with DAPI (blue) for nuclear staining.

Real-Time PCR was performed to examine the mRNA expressions of Sox2, Oct4, c-
Myc, and KIf4 of these cells. It is convincing that strong expressions of all the 4 transcription
factors were exhibited in the human nerve specimens treated with BMP-2, whereas the
non-nerve fibroblastic cells had no expressions (Figure 4). Some of the samples following
Real-Time PCR were electrophoresed on an agarose gel to reveal the correct-sized PCR
product of the transcription factors (Figure 4B, insert).
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Figure 1. Significantly more cells were isolated from human peripheral nerve tissue pretreated
with BMP-2 and propagated in complete stem cell restricted medium at 24 h (A) and 7 days (B),
compared with cells obtained from nerve pieces without BMP-2 pretreatment in complete stem
restricted medium at 24 h (C) and 7 days (D).

.
B C D E F

ocT4 <«MyC ocT4

Figure 2. Immunofluorescent staining was performed to identify co-expression of the pluripotent
stem cell markers. Cells in wells of a chamber slide were respectively double stained with cross-paired
primary antibodies against the specific stem cell markers (A-F) raised in different species, followed
by secondary antibodies probed with Alexa Fluor® 488 (green) and Alexa 594 (red) fluorescent tags.
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Figure 3. Confocal microscopy images illustrating a human NEDAPS cell: (A) DAPI staining the
nucleus, (B) Sox2, (C) KIf4, and (D) overlay of the multiple staining (mag. 640x).
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Figure 4. (A) An example of a Real-Time PCR amplification plot indicating the replication curves
of the specific mRNA tested, with SYBR Green labeling. (B) Cycle Thresholds of the four stem cell
markers in human NEDAPS cells and the control fibroblastic cells were summarized. The insert in (B)
illustrates an electrophoresis image of PCR products after the Real-Time PCR, with specific primers
for the four transcription factors, on the BMP-2-treated cells isolated from human peripheral nerves.
The first lane shows a 100 pb DNA ladder.

3.3. Differentiation to Fibroblasts

When the culture media for the human NEDAPS cells were changed to the complete
fibroblast induction medium, the cells rapidly dispersed from their small colonies and
assumed the classic “spindle shape” of motile fibroblasts within 2448 h (Figure 5). Im-
munohistochemical staining against fibroblast activation protein (FAP) confirmed that they
become FAP positive.
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Figure 5. Human NEDAPS cells were morphologically changed to spindle-shaped fibroblastic cells
(A) and stained strongly positive for fibroblast activation protein alpha positive (B).

4. Discussion

Bone Morphogenetic Proteins (BMPs), first described by Marshall Urist in 1965 [20],
are able to stimulate the stem cell to differentiate into an osteoblast cell, and are considered
to be the most important signaling molecules in bone formation and fracture healing.
As members of the TGF-f superfamily, the details of their status as intercellular signal
transduction are still under study. Among the 20 different human BMPs identified until
now, only BMP-2 and BMP-7 are approved by the Food and Drug Administration (FDA)
for clinical use. In recent years, more and more orthopedic surgeons are applying BMP-2
to a variety of different clinical applications for its osteoinductive activity [21]. With the
increase in clinical use of BMP-2, many associated adverse events have been reported, most
of them related to the use of BMP-2 (Infuse) in proximity to nerves [22]. We speculate
that the use of BMP-2 in proximity to nerves at supraphysiologic levels can lead to nerve
dysfunction as the supraphysiologic induction of stem cell proliferation will result in a
likelihood of permanent nerve dysfunction [14]. The data from this study suggested that
BMP-2 may effectively stimulate the quiescent population of the pluripotent stem cells to
fast proliferation and exhibit their stem-like cell behaviors.

While using a mouse model to investigate the potential complications of BMP-2 to
peripheral nerves during bone healing applications, an intriguing finding was noticed:
a population of cells was proliferating within the nerve. Indeed, these cells were able
to express the four transcription factors c-Myc, Klf4, Sox-2, and Oct-4 [14], suggesting
their pluripotent potential. Further investigation also confirmed that physical injury
to peripheral nerves, such as compression, also induced the same phenomenon of cell
proliferation [14]. In the current study, it is very interesting to note that the same population
of cells can be isolated from human peripheral nerve tissue after in vitro incubation with a
small amount of BMP-2. Both Real-Time PCR and immunofluorescent staining confirmed
that the human NEDAPS cells express the four embryonic stem cells; however, their
morphology and motile behavior contrast with the rodent NEDAPS cells that continue
to move about on a plastic or glass substrate until the culture surface is confluent with
cells. The human cells stop their motile behavior when encountering another NEDAPS
cell. Over time, these human NEDAPS cells will form a (non-clonal) colony of cells, due
to both additional recruitment of cells as well as ongoing cell division within the colony.
This process differs from that of induced pluripotent cells (iPCs) as they are not motile and
normally form “clonal” colonies. The potential mechanism is yet to be understood, though.

Although we have confirmed that rodent NEDAPS can be induced into osteoblastic
cell and endothelial cells [13], as well as potentially many others, such as nerve stem cells
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and Definitive Endoderm cells (unpublished data), the objective of this study is to identify
if human NEDAPS cells presented and if they had differentiation potential. To start the
exploration, we switched the cell culture medium from a stem cell medium to fibroblast
growth medium containing recombinant human Fibroblast Growth Factor-2 (rhFGF-2).
The cell morphology was quickly changed within 2-3 days, and IHC staining confirmed
expression of fibroblast activation protein (FAP-«). FAP-o has been identified as a highly
specific fibroblast marker that is overexpressed in activated fibroblasts or mesenchymal
stromal cells [23,24]. We believe that these naturally occurring cells represent the basis of a
previously unappreciated universal mechanism for the healing of injured tissues. Ever since
the classic work of Dr. Grillo [25], the source of the fibroblasts that have such a prominent
role in nearly all mammalian healing events remains unknown. A preliminary animal
experimentation of skin wound healing further suggested that NEDAPS cells participate
and promote the healing of skin lesions. It postulates that the group of NEDAPS within
peripheral nerves based on the results presented here are likely to represent the original
cell source of the fibroblasts, and that these nerve-derived cells are necessary for most of
the healing events in the body.

We are excited to report on this very recently discovered source of pluripotent cells,
which would seem to have an exciting potential for human cell-based therapies. These
cells are notably different from embryonic stem cells or the induced pluripotent stem
cells (iPCs), with a remarkably distinct appearance and behavior compared to previously
described “true embryonic stem cells” [26]. Importantly, these peripheral nerve-derived
cells actually seem to have the natural function of accomplishing tissue repair, and their
“niche” within peripheral nerves provides a welcome insight into the pathophysiology of
the wound-healing problems associated with peripheral neuropathies, including leprosy,
diabetes mellitus, and tertiary syphilis [27]. We speculate that the loss of healthy nerves in
these patients means that the NEDAPS cells are no longer available to heal such wounds.
This insight may open the door to all manners of cell-based treatments using self-to-
self autografts of pluripotent NEDAPS cells or differentiated cells therefrom. This could
potentially allow for the harvest of non-essential peripheral nerves, such as a branch of
the purely sensory sural nerve of the anterior intraosseous nerve (or many others), which
could have very wide application for tissue regeneration.

5. Conclusions

This preliminary report suggests that the human peripheral nerves also contain nor-
mally quiescent NEDAPS cells that exhibit similar but not identical characteristics as rodent
NEDAPS cells. Current investigations are focused on further documenting their differ-
entiation potential and to exploring their therapeutic potential in bone and other tissue
repair and regeneration models. We suggest that these cells are possibly at the core of a
previously unknown natural mechanism for healing an injury.

6. Patents

Some of the findings from this research have been filed as part of a patent application
(20190218543), “Mammalian pluripotent stem cells, methods for their production and uses
thereof”.

Author Contributions: Conceptualization, M.H.H. and S.-Y.Y.; methodology, R.S., S.S., M.B. and
B.D.; validation, T.]J., S.-Y.Y. and M.H.H.; formal analysis, R.S. and S.-Y.Y.; resources, B.D., S.-Y.Y. and
T.J.; writing—original draft preparation, R.S.; writing—review and editing, S.-Y.Y., M.B. and M.H.H.;
funding acquisition, M.H.H. and S.-Y.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially supported by a Rising Star grant from Kansas BioScience
Authority, University of Kansas School of Medicine-Wichita Dean’s Level 1 funding, and a K-INBRE
scholarship by the National Institutes of Health (P20 GM103418).



Bioengineering 2021, 8, 132 90of 10

Institutional Review Board Statement: Ethical review and approval were exempted for this study,
due to the non-human study nature of using unidentified wasted human peripheral nerve tissue that
otherwise would have been discarded.

Informed Consent Statement: Patient consent was waived as the tissue specimens were obtained
from clinical wastes that otherwise would have been discarded.

Data Availability Statement: Not applicable.

Conflicts of Interest: M.H.H. filed a patent partially based on the findings from the research project.
The other authors declare no conflict of interest. The research funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References

1.  Evans, M.]J.; Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292, 154-156.
[CrossRef]

2. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma
stem cells. Proc. Natl. Acad. Sci. USA 1981, 78, 7634-7638. [CrossRef]

3. Ratajczak, M.Z.; Marycz, K.; Poniewierska-Baran, A.; Fiedorowicz, K.; Zbucka-Kretowska, M.; Moniuszko, M. Very small
embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv. Med. Sci. 2014,
59, 273-280. [CrossRef]

4. Lamba, D.A.; McUsic, A.; Hirata, RK.; Wang, P.R.; Russell, D.; Reh, T.A. Generation, purification and transplantation of
photoreceptors derived from human induced pluripotent stem cells. PLoS ONE 2010, 5, e8763. [CrossRef]

5. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined
factors. Cell 2006, 126, 663—676. [CrossRef]

6.  Takahashi, K.; Narita, M.; Yokura, M.; Ichisaka, T.; Yamanaka, S. Human induced pluripotent stem cells on autologous feeders.
PLoS ONE 2009, 4, €8067. [CrossRef] [PubMed]

7. Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, ].K.; Todani, M.; Nakagawa,
M.; et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol. Rev. 2019, 99,
79-114. [CrossRef]

8.  Worringer, K.A.; Rand, T.A.; Hayashi, Y.; Sami, S.; Takahashi, K.; Tanabe, K.; Narita, M.; Srivastava, D.; Yamanaka, S. The let-7/LIN-
41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation
genes. Cell Stem Cell 2014, 14, 40-52. [CrossRef] [PubMed]

9.  Liu, G,; David, B.T,; Trawczynski, M.; Fessler, R.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and
Applications. Stem Cell Rev. Rep. 2020, 16, 3-32. [CrossRef] [PubMed]

10. Fu, X,; Xu, Y. Challenges to the clinical application of pluripotent stem cells: Towards genomic and functional stability. Genome
Med. 2012, 4, 55. [CrossRef]

11.  Serra, M.; Brito, C.; Correia, C.; Alves, PM. Process engineering of human pluripotent stem cells for clinical application. Trends
Biotechnol. 2012, 30, 350-359. [CrossRef]

12. Hu, B.Y;; Weick, ].P; Yu, J.; Ma, L.X,; Zhang, X.Q.; Thomson, J.A.; Zhang, S.C. Neural differentiation of human induced pluripotent
stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. USA 2010, 107, 4335-4340. [CrossRef]

13. Yang, S.Y.; Strong, N.; Gong, X.; Heggeness, M.H. Differentiation of nerve-derived adult pluripotent stem cells into osteoblastic
and endothelial cells. Spine J. 2017, 17, 277-281. [CrossRef]

14. Heggeness, M.H.; Strong, N.; Wooley, PH.; Yang, S.Y. Quiescent pluripotent stem cells reside within murine peripheral nerves
that can be stimulated to proliferate by recombinant human bone morphogenic protein 2 or by nerve trauma. Spine J. 2017, 17,
252-259. [CrossRef] [PubMed]

15. Kumar, A.; Brockes, J.P. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 2012, 35, 691-699.
[CrossRef] [PubMed]

16. Chomczynski, P.S.; Sacchi, N. Single step method of RNA isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform
Extraction. Anal. Biochem. 1987, 162, 156-159. [CrossRef]

17.  Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform
extraction: Twenty-something years on. Nat. Protoc. 2006, 1, 581-585. [CrossRef]

18. Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289-1291.
[CrossRef] [PubMed]

19. Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and
interfaces. Nucleic Acids Res. 2012, 40, e115. [CrossRef]

20. Urist, M.R. Bone: Formation by autoinduction. Science 1965, 150, 893-899. [CrossRef]


http://doi.org/10.1038/292154a0
http://doi.org/10.1073/pnas.78.12.7634
http://doi.org/10.1016/j.advms.2014.08.001
http://doi.org/10.1371/journal.pone.0008763
http://doi.org/10.1016/j.cell.2006.07.024
http://doi.org/10.1371/journal.pone.0008067
http://www.ncbi.nlm.nih.gov/pubmed/19956543
http://doi.org/10.1152/physrev.00039.2017
http://doi.org/10.1016/j.stem.2013.11.001
http://www.ncbi.nlm.nih.gov/pubmed/24239284
http://doi.org/10.1007/s12015-019-09935-x
http://www.ncbi.nlm.nih.gov/pubmed/31760627
http://doi.org/10.1186/gm354
http://doi.org/10.1016/j.tibtech.2012.03.003
http://doi.org/10.1073/pnas.0910012107
http://doi.org/10.1016/j.spinee.2016.10.002
http://doi.org/10.1016/j.spinee.2016.09.016
http://www.ncbi.nlm.nih.gov/pubmed/27664339
http://doi.org/10.1016/j.tins.2012.08.003
http://www.ncbi.nlm.nih.gov/pubmed/22989534
http://doi.org/10.1016/0003-2697(87)90021-2
http://doi.org/10.1038/nprot.2006.83
http://doi.org/10.1093/bioinformatics/btm091
http://www.ncbi.nlm.nih.gov/pubmed/17379693
http://doi.org/10.1093/nar/gks596
http://doi.org/10.1126/science.150.3698.893

Bioengineering 2021, 8, 132 10 of 10

21.

22.

23.

24.

25.
26.

27.

Daniel, G.; Schultz, M. FDA Public Health Notification: Life-Threatening Complications Associated with Recombinant Human
Bone Morphogenetic Protein in Cervical Spine Fusion. 2008. Available online: http:/ /www.tccortho.com/pdf/FDAPublic%?20
Health%20Note.pdf (accessed on 5 December 2018).

Carragee, E.J.; Hurwitz, E.L.; Weiner, B.K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal
surgery: Emerging safety concerns and lessons learned. Spine J. 2011, 11, 471-491. [CrossRef]

Jacob, M.; Chang, L.; Pure, E. Fibroblast activation protein in remodeling tissues. Curr. Mol. Med. 2012, 12, 1220-1243. [CrossRef]
[PubMed]

Strutz, F,; Okada, H.; Lo, C.W.; Danoff, T.; Carone, R.L.; Tomaszewski, J.E.; Neilson, E.G. Identification and characterization of a
fibroblast marker: FSP1. J. Cell Biol. 1995, 130, 393-405. [CrossRef] [PubMed]

Grillo, H.C. Derivation of Fibroblasts in the Healing Wound. Arch. Surg. 1964, 88, 218-224. [CrossRef]

Hemmati-Brivanlou, A.; Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 1997, 88, 13-17.
[CrossRef]

Bales, ].G.; Meals, R. Peripheral neuropathy of the upper extremity: Medical comorbidity that confounds common orthopedic
pathology. Orthopedics 2009, 32, 758. [CrossRef]


http://www.tccortho.com/pdf/FDAPublic%20Health%20Note.pdf
http://www.tccortho.com/pdf/FDAPublic%20Health%20Note.pdf
http://doi.org/10.1016/j.spinee.2011.04.023
http://doi.org/10.2174/156652412803833607
http://www.ncbi.nlm.nih.gov/pubmed/22834826
http://doi.org/10.1083/jcb.130.2.393
http://www.ncbi.nlm.nih.gov/pubmed/7615639
http://doi.org/10.1001/archsurg.1964.01310200056013
http://doi.org/10.1016/S0092-8674(00)81853-X
http://doi.org/10.3928/01477447-20090818-19

	Introduction 
	Materials and Methods 
	Human Peripheral Nerve Tissue Treatment 
	Cell Isolation and Culture 
	Real-Time PCR (RT-PCR) Test 
	Immunocytochemistry Staining and Image Acquisition 
	Statistical Analysis 

	Results 
	Morphology of the Human NEDAPS Cells 
	Expression of Stem Cell Markers 
	Differentiation to Fibroblasts 

	Discussion 
	Conclusions 
	Patents 
	References

