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Abstract: Stroke is the biggest cause of adult disability and the third biggest cause of death in
the US. Stroke is a medical emergency, and the treatment given in the early hours is important in
shaping the patient’s long-term recovery and prognosis. Despite the fact that substantial attention
has been dedicated to this complex and difficult issue in healthcare, novel strategies such as operation
research-based approaches have hardly been used to deal with the difficult challenges associated
with stroke. This study proposes a novel approach with data envelopment analysis (DEA) and
multi-objective linear programming (MOLP) in hospitals that provide stroke care services to select
the most efficient approach, which will be a new experiment in literature perception. DEA and MOLP
are widely used for performance evaluation and efficiency measurement. Despite their similarities
and common concepts, the two disciplines have evolved separately. The generalised DEA (GDEA)
cannot incorporate the preferences of decision-makers (DMs) preferences and historical efficiency
data. In contrast, MOLP can incorporate the DM’s preferences into the decision-making process. We
transform the GDEA model into MOLP through the max-ordering approach to (i) solve the problem
interactively; (ii) use the step method (STEM) and consider DM’s preferences; (iii) eliminate the
need for predetermined preference information; and (iv) apply the most preferred solution (MPS) to
identify the most efficient approach. A case study of hospitals that provide stroke care services is
taken as an example to illustrate the potential application of the proposed approach method.

Keywords: generalised data envelopment analysis; multiple objective linear programming; interactive
approach; stem method; stroke; health; hospital

1. Introduction and Background

Stroke is a serious public health issue, impacting more than 10 million people world-
wide each year [1]. Stroke is the world’s second biggest cause of death, accounting for
around 5.5 million deaths per year [2]. The burden of stroke lies not only in its high
mortality rate, but also in the significant morbidity it causes, which results in up to half of
survivors being chronically disabled [2]. One-quarter of stroke victims die within a month
of the onset of the disease [1]. Stroke accounts for more than 4% of direct healthcare costs
in developed nations [3]. Each year, stroke imposes considerable costs to societies and
billions of dollars are spent on stroke treatment and care. For example, stroke-related costs
in the United States came to nearly $46 billion between 2014 and 2015 [4]. Annually, the US
experiences an estimated 610,000 new cases of stroke [4]. Approximately 80% of all strokes
are ischemic, meaning they are caused by a stoppage of blood flow to the brain [3].

According to the findings of the Saver [5] model, the average patient loses 1.9 million
neurons every minute a stroke goes untreated. Therefore, every second is important for
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patients suffering from acute ischemic stroke, as well as for the doctors and health staff
who are caring and treating them. Although wide availability of treatment to appropriate
patients remains a major concern for a number of health systems worldwide [6], at the
moment, only about 5% of stroke sufferers receive treatment, resulting in disability preven-
tion in only six patients per 1000 ischemic strokes [3]. Administration rates, even in some
developed countries such as Australia, in particular, remain low [6]. This might be related
to the relatively small therapeutic time window and a scarcity of doctors who specialise in
acute stroke therapy across the world.

Much effort has been expended in recent years to comprehend and apply techniques
to improve services provided by hospitals [7], particularly for stroke patients. Even though
there is a clear potential for Operations Research (OR) to assist health decision-makers [8],
as evidenced by numerous successful OR applications to the other domains, there is a
clear research gap in employing OR techniques in providing more reliable services for
stroke patients. Operation Research is a field of study that uses advanced analytical
methods to understand complex systems and make the right decisions [9–11]. Simulation
techniques [12–15], mathematical optimisation [16,17], and decision analysis [18] are just
a few of the ways OR helps enterprises and organisations improve their operations. OR,
with its emphasis on increasing efficiency [19,20], cost-effectiveness [21,22], and decision-
making [23,24], is particularly valuable for analysing complicated health issues, particularly
in contexts where disease burden is high, but health systems are not well prepared. The
purpose of this study is to fill a research gap and add to the health and OR literature by
showing how OR techniques, such as DEA, can be utilised to support decisions in hospitals
that provide stroke care services.

The remainder of the paper is organised as follows. Section 2 presents the background
of the research. In Section 3, the necessity and importance of the proposed method,
research gaps, contributions and flowchart are presented. Section 4 provides a brief
definition of the GDEA. In Section 5, the dual model of the GDEA model is presented.
Section 6 presents the relationship between GDEA and MOLP. Section 7 demonstrates
the proposed interactive method and discusses the three steps of research methodology
(Step 1—normalisation of data, Step 2—Evaluation of efficiency, Step 3—Attainment to
MPS). Section 8 establishes a brief description of the STEM method. In Section 9, the
application of the proposed approach in three proposed steps of Section 7 in the real world
in hospitals that provide stroke care services is examined. Finally, the conclusion and future
works of the experimental consequences are discussed in the last section.

2. Background

DEA is a non-parametric method proposed by Charnes et al. [25] to measure the
efficiency of decision-making units (DMUs) and estimate production frontiers, and its vari-
ants have been widely used in different domains [26–29]. While Charnes and Cooper [30]
made significant contributions to expanding MOLP methods, they did not devote much
attention to bridging the gap between these two fields. Despite different terms used in
DEA and MOLP, these two fields are structurally similar. Jahanshahloo and Foroughi [31],
Korhonen and Syrjänen [32], and Li and Reeves [33] stated that DEA is a multi-criteria
decision analysis (MCDA) tool that takes into consideration multiple inputs and outputs.
Quariguasi Frota Neto and Angulo-Meza [34] have shown the common elements and
overlap between these two fields.

Several studies have developed integrated DEA and MOLP frameworks such as (Belton
and Vickers [35]; Belton and Stewart [36]; Joro et al. [37]; Stewart [38]; Estellita Lins et al. [39];
Hong and Jeong [40]. Belton and Vickers [35] proposed an integrated DEA and multi-
attribute value function approach. They implemented the proposed approach as a visual
interactive decision support system and overcame some of the limitations of DEA. Belton
and Stewart [36] suggested that the DEA and MCDA models can be used complementarily.
Joro, Korhonen and Wallenius [37] compared DEA with a reference direction MOLP method
to identify efficient units. Stewart [38] compared Pareto optimal and efficiency concepts in
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DEA and MCDA and connected the ratio efficiency over DEA, and measured distance in the
input and output space based on linear value functions. Estellita Lins, Angulo-Meza and
Moreira Da Silva [39] proposed a multi-objective approach that considers each objective as
the basis for a posterior priority through separate predictions of each variable (input or
output), thus allowing one to achieve a goal at every extreme-efficient point on the Pareto
frontier. Hong and Jeong [40] proposed an innovative approach to finding efficient facility
location-allocation schemes using an integrated DEA and multi-objective programming
method. They showed while DEA and MOLP cannot substitute each other, they can
complement each other. They also demonstrated that MOLP is a particular extension of the
DEA model, and DEA provides opportunities for new application areas to MOLP models.
Azadeh et al. [41] proposed a new approach for maintenance policy and planning problems
by combining DEA and simulation for learning. Azadeh et al. [42] presented an integrated
fuzzy or simulation–fuzzy DEA to cope with a maintenance activity planning problem.
Several outputs, including machines and operators’ availability, reliability, efficiency, and
queue length, were considered in the integrated framework.

The GDEA model has been used in various studies to optimise multi-objective prob-
lems. Shadkam and Bijari [43] used the GDEA model in a simulation-optimisation supplier
selection problem. Using the GDEA model, the multi-objective problem has become a
single-objective problem. Yun and Nakayama [44] presented an integrated method for
producing efficient frontiers in multi-objective optimisation problems based on the genetic
algorithm and GDEA techniques. The proposed approach can effectively identify efficient
frontiers for concave and convex objective functions. Jahanshahloo and Foroughi [31]
presented a method combining DEA concepts and a multi-objective model to search for
a composite alternative and assess the units’ efficiency. They also investigated the rela-
tionship between some DEA and multi-objective models. Tavana et al. [45] established an
equivalence relationship between MOLP problems and combined-oriented DEA models
using a direction distance function designed to account for desirable and undesirable
inputs and outputs together with uncontrollable variables.

Allen et al. [46] defined value judgments to reflect DM’s priorities in the process of
evaluating efficiency. Various methods (i.e., limiting composite outputs and inputs and
weight ratios and proportions) have been developed to consider the DM’s preferences in
DEA [47], including the target and goal setting models of Golany et al. [48], declaration
area [49], weight restriction approach [50], imposing limits on specific weights [51], and
relation perception, by setting the related output-input stages to obtain the values which
fit into a specified case [52,53]. Zhu [54] integrated performance information with the
modified DEA model, while Golany, Roll and Rybak [48] applied hypothetical DMUs to
provide priority.

However, all the mentioned methods need to predetermine the DM’s preference
information, which can be problematic or impossible and often impractical in a real-world
problem. Many decision-making problems can be modelled as multi-objective problems,
and finally, several Pareto solutions are offered as candidates to the DM [55]. For DM’s,
selecting MPS from the several Pareto solutions is a critical problem. Interactive multi-
objective problems proposed many solutions to solve this issue [56–59]. These methods
provide the most preferred explanation by implementing the two iterative phases:

(a). Moving the optimisation part, Pareto frontier, close to the specified aspiration level.
(b). Modifying the aspiration level according to the trade-off method.

The most interesting method in terms of the DM’s preference, without setting tar-
gets and with no predetermined preference information, is implementing an interactive
approach by applying two suggested optimisation methods. Golany [60] presented a
collaborative method using both techniques. Post and Spronk [61] integrated interactive
goal programming and DEA. Information is received in the form of the upper and lower
bounds of the inputs and outputs. Then, Joro, Korhonen and Wallenius [37] demonstrated
that combining DEA and MOLP creates synergy, and the DEA is related to MOLP methods.
In addition, value efficiency analysis (VEA) considered the DM’s preference effectively
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in DEA. Thus, it is not surprising that in recent years, many scientists have focused on
developing efficient algorithms for solving multi-objective mixed-integer linear programs,
such as Halme et al. [62], Charkhgard et al. [63], Elliot et al. [64].

Halme, Joro, Korhonen, Salo and Wallenius [62], Korhonen et al. [65], Joro et al. [66],
and Yang et al. [67] studied equivalent approaches between DEA and MOLP such as
the two suggested approaches, namely the super-ideal point model and the shortest
distance model, respectively. Additionally, in research by Wong et al. [68], the GDEA
model was selected due to its flexibility for evaluating the units’ efficiency. The GDEA
model can create the basic DEA model, such as FDH, CCR, and BCC models, in a unified
structure. Yun et al. [69] have shown that the GDEA model evaluates the efficiency of
units considering DM’s preferences. While [70] proposed an aspiration level method based
on the GDEA model for considering DM’s preferences in the decision-making process.
Their interactive approach determines some limited Pareto frontier ranges based on DM’s
preferences, and DMs select MPS among the proposed set of the Pareto frontier. Their
method did not provide MPS, which is the main target of all the interactive techniques.
Therefore, that was the main weakness of their method. Additionally, the mentioned
approach requires predetermined preference information, which is not determined in many
decision-making problems.

Lotfi et al. [71], and Lotfi et al. [72] presented the relationship between MOLP and
the DEA model and showed how DEA could be considered interactive for the MOLP
model. They used Zionts-Wallenius (Z-W) [73] method to reflect the DM’s preferences to
the solving process.

The presented approach in this study is similar to the method of Lotfi, Jahanshahloo,
Soltanifar, Ebrahimnejad and Mansourzadeh [72] in some aspects. They developed the
DEA method interactively, while this study presents the interactive approach of the GDEA
method, which is a more comprehensive and practical model. While their model used the
min-ordering approach to convert the DEA dual model to MOLP, the current study uses
the max-ordering approach to convert the GDEA dual model to MOLP. Furthermore, Z-W
was used in previous studies to consider DM preferences in the multi-objective model,
while this research employs the STEM method.

3. Research Gaps, Contributions, and Flowchart

The literature review techniques necessitate prior knowledge of DM preferences,
which is often complex and challenging to obtain. In manufacturing or service organisations
and management problems, decision-making can be more difficult and often uncertain
due to multiple characteristics and conflicting objects. Multi-objective programming
methods such as MOLP can be used to solve such problems. Such methods do not require
predetermined information, and DM preferences can be applied while solving the problem.
Therefore, the main advantage of the proposed approach compared to other approaches is
that it does not require prior knowledge of DM. In the main structure of the GDEA model,
DM preferences cannot be considered in the efficiency calculation, and the results may not
be acceptable by the DM.

The proposed approach has the advantage of making several basic DEA models
available due to the use of GDEA. Due to the interactive structure of the proposed approach,
decision-maker preferences can be applied to the final efficiency results, which leads to
better acceptance of the results by the DM. However, in the main structure of DEA and
GDEA, there is no structure to consider decision-makers preferences. The superiority
of the proposed approach compared to other approaches is described as qualitative and
not quantitative. As mentioned earlier, the proposed method does not require prior DM
preferences. It finally provides the MPS at the end of the problem. The process is simple,
which is present in the case study. Because the dual form of GDEA is structurally (in terms
of objectives and constraints) similar and equivalent to the multi-objective mathematical
model, this way, the outputs of the DMU in GDEA can be converted into objectives of a
multi-objective mathematical model. The STEM method in interactive DEA has not been
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used so far, and this is the first time it has been used. The STEM method is an interactive
approach for multi-objective problems and not for DEA models, but in this paper, we
have been able to use the interactive nature of the STEM approach by converting DEA to
multi-objective. In conclusion, the main contributions of this study can be summarised
as follows:

i. This study presents an interactive GDEA model approach that overcomes the draw-
backs of the previous approaches. The proposed interactive method is less complex
than previous methods and does not require predetermined preference information.

ii. This paper presents an interactive GDEA model that employs the max-ordering
approach and the STEM method. In other words, a relationship is established
between the GDEA dual model and the MOLP problem, and it is demonstrated
how a GDEA model can be evaluated interactively by converting to the MOLP
problem using the max-ordering approach. The problem is then solved using an
interactive approach based on MOLP. The STEM approach is used to consider the
DM’s preferences in the decision-making process.

iii. While OR approaches can benefit the healthcare sector, there is a significant research
gap in using OR tools such as DEA and MOLP in challenging healthcare issues,
particularly in evaluating stroke care services. Furthermore, while the benefits
of appropriate care services of stroke care patients have been highlighted in the
literature, there is a limitation of using OR models to demonstrate the long-term
benefits of more immediate access to various stroke care involvements on patients’
lifetime outcomes. As a result, one of the primary purposes of this study is to fill a
critical research gap.

iv. A case study is used to evaluate the proposed approach. The results show that the
proposed approach contributes new theoretical and practical insights to a growing
body of knowledge about hospital strategies and implications for hospital planners,
managers, and policymakers in countries where health centres are increasingly
facing challenging issues, particularly in providing reliable services for stroke care.

Figure 1 shows the flowchart of the proposed model. The GDEA model is transformed
into MOLP through the max-ordering approach or summarising the proposed method
into normalisation, efficiency evaluation and MPS attainment before applying STEM. After
applying the suggested approach, the best option will be selected. In a nutshell: (i) solve
the problem interactively; (ii) use the step method (STEM) and consider DM’s preferences;
(iii) eliminate the need for predetermined preference information; and (iv) apply the MPS
to identify the most efficient approach.

Bioengineering 2021, 8, x FOR PEER REVIEW 6 of 19 
 

 
Figure 1. Flowchart of the proposed interactive model. 

4. Generalised Data Envelopment Analysis (GDEA) 
Several models have been developed to estimate the relative efficiency of decision-

making units (DMUs) under different assumptions, including the Charnes, Cooper and 
Rhodes (CCR) model or constants returns-to-scale (CRS), the Banker, Charnes and Cooper 
(BCC) model or variable returns-to-scale (VRS), the free disposal hull (FDH) model. These 
models are characterised by how the production possibility set and the dominating struc-
ture are identified. The production possibility set of the FDH model is accomplished by 
evaluating the FDH model inversely based on the CCR and BCC models. Figure 2 shows 
the relationship between the CRS, VRS and FDH models. 

 
Figure 2. Relationship between the CRS, VRS and FDH models. Reprinted from Ref. [74]. 

The FDH model provides the free impossibility of creating the production possibility 
set. Therefore, the frontier line for the FDH is established based on the detected inputs 
and outputs. Figure 3 shows the production possibility set in FDH. There are two inputs 
and one output for six DMUs, categorised A to F. Based on the suggested evaluation, the 
efficiency score of the FDH model is between 0 and 1. Therefore, in the input-oriented 
approach, the efficiency for the FDH input-oriented model is permanently more than the 
input-oriented VRS and CRS models. 

Figure 1. Flowchart of the proposed interactive model.



Bioengineering 2021, 8, 207 6 of 18

4. Generalised Data Envelopment Analysis (GDEA)

Several models have been developed to estimate the relative efficiency of decision-
making units (DMUs) under different assumptions, including the Charnes, Cooper and
Rhodes (CCR) model or constants returns-to-scale (CRS), the Banker, Charnes and Cooper
(BCC) model or variable returns-to-scale (VRS), the free disposal hull (FDH) model. These
models are characterised by how the production possibility set and the dominating struc-
ture are identified. The production possibility set of the FDH model is accomplished by
evaluating the FDH model inversely based on the CCR and BCC models. Figure 2 shows
the relationship between the CRS, VRS and FDH models.
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The FDH model provides the free impossibility of creating the production possibility
set. Therefore, the frontier line for the FDH is established based on the detected inputs
and outputs. Figure 3 shows the production possibility set in FDH. There are two inputs
and one output for six DMUs, categorised A to F. Based on the suggested evaluation, the
efficiency score of the FDH model is between 0 and 1. Therefore, in the input-oriented
approach, the efficiency for the FDH input-oriented model is permanently more than the
input-oriented VRS and CRS models.
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For the BCC model, the efficient units are A, B and C (the efficiency score of E for the BCC
model is θE·BCC·input−oriented = OE2/OE ). However, in the FDH model, the efficient units are
A, B, C and F (the efficiency score of E for the FDH model is θE·FDH·input−oriented = OE1/OE).
Thus, the efficiency score of FDH is more than that of BCC, and the efficiency score of BCC
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is more than that of CCR. The present study employs the GDEA model, which presents the
models mentioned above in a unified structure. This model includes a parameter, α, which
plays a key role in presenting several basic DEA methods. The following GDEA method
assumes that there are n DMUs (DMUj : j = 1, . . . n) to be investigated where DMUj uses
m inputs xj =

(
x1j, . . . , xmj

)
to produce s outputs yj =

(
y1j, . . . , ysj

)
.

Max ∆o (1)

s.t.

∆o ≤ d̃j + α

(
s

∑
r=1

ur
(
yro − yrj

)
+

m

∑
i=1

vi
(
−xio + xij

))
, j = 1, . . . , n (2)

s

∑
r=1

ur +
m

∑
i=1

νi = 1 (3)

ur ≥ ε , r = 1, . . . , s (4)

vi ≥ ε , i = 1, . . . , m (5)

where parameter α > 0 is proportionally specified according to the specific DEA model,
µj and νi are the weights of outputs and inputs, respectively, ε is a non-Archimedean
infinitesimal value which is imposed to the model for preventing the weights from taking
zero values (see Amin and Toloo [75] and Toloo et al. [76]), and ∆o is the efficiency score of
DMUo∈{1,...,n} and

d̃j =

{(
ypo − ypj

)
up if ypo − ypj = max

{
yro − yrj, xij − xio : ∀r, ∀i

}(
xqj − xqo

)
vq if xqj − xqo = max

{
yro − yrj, xij − xio : ∀r, ∀i

} (6)

For example, if (y1o − y1j, x1j − x1o) = (2,−1), then d̃j = 2u1. Note that the possi-
ble ties can be broken arbitrarily. Clearly, from the first set of constraints for j = o we
obtain d̃o = 0 and ∆o ≤ 0. Moreover, by summing up the weight restrictions ur ≥ ε
and vi ≥ ε for r = 1, . . . , s and i = 1, . . . , m, respectively, and considering the constraint
∑s

r=1 ur + ∑m
i=1 νi = 1, it is easy to know that (m + s)ε ≤ ∑s

r=1 ur + ∑m
i=1 νi = 1 or equiva-

lently ε ≤ 1
m+s which provides an upper bound for the non-Archimedean epsilon. For a

given α, DMUo is α-efficient if and only if ∆o = 0, and otherwise, it is α-inefficient. The
DMUo is FDH-efficient if and only if ∆o = 0 for sufficiently small and positive α.

• The DMUo is BCC-efficient if and only if ∆o = 0 for sufficiently large and positive α.
• The DMUo is CCR-efficient if and only if ∆o = 0 for sufficiently large and positive α

and extra constraint ∑s
r=1 uryro −∑m

i=1 νixio = 0 should be added to the model (1).

It is not possible to know in advance how small/large enough is small/large, and
therefore the value of an experiment is given. The most important thing is to find how the
efficiency of each DMU changes as the value of α changes. For more information about the
GDEA method, refer to [69]. Therefore, in general, the following states are established:

• If α is sufficiently small and positive, then Equations (1)–(5) turn to the FDH model;
• If α is sufficiently large and positive, then Equations (1)–(5) turn to the BCC model;
• If α is a sufficiently large and positive and extra constraint ∑s

r=1 uryro −∑m
i=1 νixio = 0

is added to Equations (1)–(5), then the model turns to the CCR model.

5. The Dual Model of the GDEA

Next, we formulated the following dual model of the GDEA model as the basic method
for subsequent considerations and denoted it by GDEAD:

minωo − ε

(
s

∑
r=1

ty
r +

m

∑
i=1

tx
i

)
(7)

s.t.
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n

∑
j=1
{α
(
yro − yrj

)
+ d̃rj} λj −ωo + ty

r + T · Dy
r = 0 , r = 1, . . . , s (8)

n

∑
j=1
{α
(
−xio + xij

)
+ d̃ij} λj −ωo + tx

i − T · Dx
i = 0 , i = 1, . . . , m (9)

n

∑
j=1

λj = 1, (10)

λj ≥ 0, j = 1, . . . , n (11)

ty
r ≥ 0, r = 1, . . . , s (12)

tx
i ≥ 0, i = 1, . . . , m (13)

T is free (14)

where λj and ωo are corresponding dual variables to the first and second constraints sets
in the primary GDEA Equations (1)–(5), respectively, ty

r , and tx
i are the slack variables. So,

ωo − ε
(

∑s
r=1 ty

r + ∑m
i=1 tx

i

)
and ∆∗ are the same in the primal and dual methods. Due to the

non-Archimedean property of ε and strong duality of GDEA and GDEAD, ω∗o is not greater
than zero. The decision variable T is related to extra constraint ∑s

r=1 uryro −∑m
i=1 νixio = 0

in primary GDEA Equations (1)–(5), the coefficients Dy
r and Dx

i will be equal to yro
and xio in extra mentioned constraint, respectively. Similar to the primary model of
GDEA, d̃ij and d̃rj are the components of the matrix

(
−x1o + x1j, . . . ,−xio + xij

)T and(
y1o − y1j, . . . , yro − yrj

)
, respectively, replaced by zero, except for the highest component

in each column (for example, if (−x1,o + x1,5,−x2,o + x2,5,−x3,o + x3,5) = (2,−1, 3) and
(y1o − y1,5, y2o − y2,5) = (5,−3) then d̃ij = d̃3,5 = 3 applying for inputs and d̃rj = d̃2,5 = 5
applying for outputs). When T = 0, the BBC and FDH models developed, but for the CCR
model, T 6= 0 [69]. ω* in the GDEAD model has the same meaning as ∆∗ in the GDEA
model [77], λj presents the domination relation between DMUo and other DMUs. The
DMUo is dominated by DMUs if λs 6= 0 for some s. ty

r , and tx
i indicate the slackness in

output and input values in the efficiency appraisal process, correspondingly. Generally, the
following cases are established:

Case 1. If α is sufficiently small and positive and T = 0, then Equations (7)–(14) turn to the
FDH model.
Case 2. If α is sufficiently large and positive and T = 0 , then Equations (7)–(14) turn to the
BCC model.
Case 3. If α is sufficiently large and positive and T 6= 0, then Equations (7)–(14) turn to the
CCR model.

Let (ω∗o , λ∗, tx∗, ty∗, T∗) be the optimal solution for Equations (7)–(14) where
λ∗ =

(
λ∗1 , . . . , λ∗n

)
, tx∗ =

(
tx∗
1 , . . . , tx∗

s
)
, and ty∗ = (ty∗

1 , . . . , ty∗
m ). DMUo is α-efficient if

and only if the following conditions meet:

(a) ω∗o = 0
(b) The slack variables are zero, i.e., tx = 0s and ty = 0m where 0s is the origin in Rs.

Otherwise, it is α-inefficient. Due to the strong duality of (GDEA) and (GDEAD), the
value of ωo does not exceed zero. See Yun, Nakayama and Tanino [69] for more information
about relationships between GDEAD and basic DEA models.

6. The Relationship between GDEA and MOLP

In a DEA model, the efficiency value is evaluated by maximising DMU’s output
or minimising DMU’s inputs or outputs, or simultaneously minimising DMU’s inputs
and maximising DMU’s output. Therefore, it can be considered a kind of multi-objective
problem. This paper studies the relationship between GDEA and the multi-objective
program. Suppose a MOLP has s objectives, such a model can be written as follows:
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min f (λ) = [ f1(λ), . . . , fs(λ)] (15)

s.t.

λ ∈ Ω (16)

where Ω is a feasible space and fr(λ) (r = 1, . . . , s) are continuous objective functions. In
a multi-objective problem, it is impossible to find an answer that optimises all objective
functions concurrently and represents Pareto solutions. For more information, see [78]. To
find non-dominated solutions, the MOLP is based on max-ordering:

min f (λ) = [ f1(λ), . . . , fs(λ)] (17)

s.t.

λ ∈ Ω (18)

The max-ordering model can be written as following model by an auxiliary variable ω:

minω (19)

s.t.

ω ≥ fr(λ) r = 1, . . . , s (20)

λ ∈ Ω (21)

This approach does not require any predetermined preference information from the
DM once the objectives and the constraints have been determined, and finally, the answers
are presented to it. The DM will not have interfered in the problem-solving process, which
is desirable from the point of view of the DM. From Equations (7)–(14), the GDEAD model
can be rewritten equivalently as follows:

minωo (22)

s.t.
n

∑
j=1

{
α
(
yro − yrj

)
+ d̃rj

}
λj + T · Dy

r ≤ ωo, r = 1, . . . , s (23)

λ ∈ Ωo (24)

where Ωo =
{

λ : ∑n
j=1

{
α
(
−xio + xij

)
+ d̃ij

}
λj − T · Dx

i ≤ ωo , ∀i; ∑n
j=1 λj = 1, λj ≥ 0, ∀j

}
.

Certain conditions must be applied to the equivalence between the dual model of
GDEA and max-ordering. In Equations (19)–(21), fr(λ) can be written as:

fr(λ) =
n

∑
j=1

{
α
(
yro − yrj

)
+ d̃rj

}
λj + T · Dy

r , r = 1, . . . s & λ = (λ1, . . . , λn)
t (25)

Suppose Ωo = Ω in Equations (19)–(24), therefore Equations (22)–(24) can be rewritten as:

minωo (26)

s.t.

ωo ≥
n

∑
j=1
{α
(
yro − yrj

)
+ d̃rj} λj + T · Dy

r r = 1, . . . , s (27)

λ ∈ Ωo =

{
λ :

n
∑

j=1

{
α
(
−xio + xij

)
+ d̃ij

}
λj − T · Dx

i ≤ ωo, i = 1, . . . , m;
n
∑

j=1
λj

= 1, λj ≥ 0, j = 1, . . . , n
} (28)

The relationship between GDEAD and max-ordering can be created by Theorem 1:
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Theorem 1. Using formulations in Equations (25)–(30), the GDEAD Equations (22)–(24) replaced
with the max-ordering Equations (19)–(21):

Ωo = Ω (29)

ωo = ω (30)

Proof. GDEAD can be rewritten as Equations (31)–(33) using formulations in Equations (25)–(30):
minω (31)

s.t.

λ ∈ Ω (32)

ω ≥ fr(λ) r = 1, . . . , s (33)

The GDEAD can be rewritten as the max-ordering. Since Equations (19)–(21) create an
efficient and a specific point of Equations (15) and (16), therefore Equations (22)–(24) also
create an efficient and a specific point of Equations (34)–(36):

min [
n

∑
j=1
{α
(
y1o − y1j

)
+ d̃1j} λj + T · Dy

1 , . . . ,
n

∑
j=1
{α
(
yso − ysj

)
+ d̃sj} λj + T · Dy

s ] (34)

s.t.
n

∑
j=1
{α
(
−xio + xij

)
+ d̃ij} λj − T · Dx

i ≤ ωo, i = 1, . . . , m (35)

n

∑
j=1

λj = 1 λj ≥ 0, j = 1, . . . , n (36)

Then, Equations (22)–(24) convert the GDEA model to the MOLP model. This model
does not contain value judgments or DM’s preferences for efficiency evaluations. Hence, an
interactive approach of a multi-objective programming problem can be applied to consider
the DM’s preferences in Equations (22)–(24). �

7. The Proposed Interactive GDEA Model

Summarising the proposed method leads to the following three main steps:

Step 1—Normalisation: Since the range of data varies widely, normalisation transfers the
range of data to scale the range in [0, 1].
Step 2—Efficiency evaluation: The value of α and T, according to the type of GDEA models,
can be represented as follows:

(a) CCR: sufficiently large and positive α and T 6= 0,
(b) BCC: sufficiently large and positive α and T = 0,
(c) FDH: sufficiently small and positive α and T = 0
(d) The GDEA efficiency (ωo) of all units is evaluated using the GDEA dual

Equations (7)–(14). Then, efficient and inefficient units are presented to DM.
(e) If the DM is not satisfied with some of the inefficient DMUs, these DMUs will become

efficient DMUs using the convex combination (λj) obtained from Equations (7)–(14).
The values of the inputs and outputs of these DMUs are provided to DM; since DM
has not selected the outputs, we go to the next step.

Step 3—MPS attainment: The dual GDEA model converts to the MOLP model for selected
inefficient DMUo by DM Equations (34)–(36). If DM is not satisfied with the obtained
output level based on Equations (34)–(36), go to the following section.

The preferences are taken from DM and applied to evaluate the efficiency of the
considered unit using the interactive approach, such as the STEM method. This section
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continues until the MPS achieves the final solution. In each iteration, a convex combination
(λj) is proposed, and the modified levels of outputs are presented to the DM.

8. Interactive STEM Method

The STEM technique can be used in the interactive process of MOLP models for finding
the MPS. The STEM technique is based on minimising the Tchebychev distance from the
ideal point in the vector space. The parameters and the feasible space can be replaced by
the normalised weights based on the DM’s preferences of previous solutions. The STEM
technique allows the DM to identify the best solutions in each iteration. It improves some
objectives by losing other objectives. The DM must adjust a maximum value for each
objective function that can be modified; however, there is no need to determine trade-offs
between objectives. In each iteration, the STEM technique, given an answer xh−1, the
DM should provide objective function preferences to be improved

{
fi, i ∈ {1, . . . , n} − Jh

}
.

Similarly, the objective functions must be released
{

fi, i ∈ Jh
}

with maximum values of

relaxing
{

∆ f h
i , iεJh

}
. Equations (37)–(41) can be solved via the DM’s preferences.

minα (37)

s.t.

wi( f ∗i − fi(x)) ≤ α, i ∈ {1, . . . , n} − Jh (38)

f j(x) ≥ f j

(
xh−1

)
− ∆ f h

j , jεJh (39)

f j(x) ≥ f j

(
xh−1

)
, j ∈ {1, . . . , n} − Jh (40)

x ∈ Ω, α ≥ 0 (41)

where f ∗i = max
x∈Ω

fi(x), i = 1, . . . n are the best values of objective functions.

9. Numerical Example in Hospitals That Provide Stroke Care Services

In this section, as a numerical example proposed interactive method for 14 hospital
units is considered. Moreover, whether any of these hospitals have a similar number of
inputs and outputs in their region is also considered. We use five variables from the data
set as inputs and outputs, and Figure 4 shows the two inputs and three outputs derived
from the hospital during 2020.
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Table 1 shows the description of inputs and outputs in hospitals.
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Table 1. The description of inputs and outputs in hospitals.

Descriptions Inputs/Outputs

Average Length of Stay (ALOS) in hours Inputs
Average OT/PT Charges in 10$

Average severe patients Outputs
Average semi-severe patients

Average mild patients

The input variables are an average length of stay (ALOS), average occupational and
physical therapy charges (OT/PT), while the output variables are average mild patients,
average semi-severe patients, and average severe patients per provider. Table 1 presents
inputs and outputs of the proposed model for the stroke care services.

Additionally, Table 2 shows the data set obtained from hospitals in the case study.

Table 2. The data relates to 14 hospitals.

Output 3
(Average Mild

Patients)

Output 2
(Average Semi-Severe

Patients)

Output 1
(Average Severe

Patients)

Input 2
(Average OT/PT

Charges)

Input 1
(Average Length
of Stay (ALOS))

No. Hospital

291 198 242 217 168 1
176 243 185 177 187 2
133 247 103 278 115 3
133 129 170 266 151 4
171 222 115 219 105 5
340 122 155 291 172 6
176 197 103 203 124 7
201 236 207 188 184 8
240 325 298 131 273 9
214 115 141 119 167 10
185 355 201 249 175 11
195 272 281 167 177 12
451 357 210 249 154 13
291 198 330 257 206 14

The proposed interactive procedures are now implemented in the mentioned problem
as follows:

Step 1—Normalisation: The Euclidean norm is used for the normalisation of the data, and
the results are presented in Table 3.
Step 2—Efficiency evaluation: According to the FDH model of GDEA, the values of α
and T are 1 and 0, respectively. Table 4 presents the efficiency results of the GDEAD
Equations (7)–(14) for each unit of the hospital.

Table 3. The normalised data of the Hospitals.

Output 3
(Average Mild

Patients)

Output 2
(Average Semi-Severe

Patients)

Output 1
(Average Severe

Patients)

Input 2
(Average OT/PT

Charges)

Input 1
(Average Length
of Stay (ALOS))

No. Hospital

0.3111 0.217 0.3216 0.2624 0.26 1
0.238 0.2671 0.1942 0.2138 0.2885 2
0.1336 0.2709 0.1478 0.3356 0.1771 3
0.2189 0.1413 0.1475 0.3216 0.2333 4
0.148 0.2439 0.1895 0.2644 0.1622 5
0.1996 0.1337 0.376 0.3511 0.2648 6
0.1325 0.2165 0.1949 0.2458 0.192 7
0.2665 0.2594 0.2219 0.2275 0.2844 8
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Table 3. Cont.

Output 3
(Average Mild

Patients)

Output 2
(Average Semi-Severe

Patients)

Output 1
(Average Severe

Patients)

Input 2
(Average OT/PT

Charges)

Input 1
(Average Length
of Stay (ALOS))

No. Hospital

0.3829 0.3576 0.2657 0.1582 0.4205 9
0.1819 0.1267 0.2372 0.1439 0.2582 10
0.2585 0.3897 0.2049 0.3003 0.2702 11
0.3612 0.2983 0.2157 0.2025 0.2735 12
0.2709 0.3921 0.4986 0.3015 0.2381 13
0.4245 0.2412 0.2945 0.3101 0.318 14

Table 4. The convex combination and the efficiency of DMUs.

λ14 λ13 λ12 λ11 λ10 λ9 λ8 λ7 λ6 λ5 λ4 λ3 λ2 λ1 ωo

0.396 0.561 0.043 −0.00521 1
0.941 0.054 0.001 −0.01463 2

0.186 0.814 −0006.73 3
0.437 0.563 −0.02238 4

1 0 5
0.744 0.019 0.237 −0.0439 6
0.002 0.105 0.139 0.754 −0.0046 7
0.087 0.793 0.085 0.035 −0.01923 8

1 0 9
1 0 10

0.98 0.02 −0.00172 11
1 0 12

1 0 13
1 0 14

As illustrated in Table 4, units 1, 2, 3, 4, 6, 7, 8, and 11 are inefficient units of the
hospital. For example, unit 1 has an efficiency value of −0.00521, suggesting that it is
an inefficient unit of the hospital. Additionally, Table 4 shows how the input and output
values of inefficient units change in the data of efficient units. For example, a convex
combination of unit 1 on the efficient frontier can be generated as a linear combination
of 0.043 of unit 5, 0.561 of unit 12, and 0.396 of unit 13. Therefore, a convex combination
of unit 1 is used to be efficient, and the levels of outputs and inputs are modified as
(O1, O2, O3) = (246, 303, 296) and (I1, I2) = (165, 202).

In fact, the first input (LOS) must be decreased from 168 to 165; the second input
(Average OT/PT Charges) must be decreased from 217 to 202. Additionally, the outputs
O1, O2, and O3 must be increased to 246, 303, and 296, respectively. However, the hospital’s
modified values of inputs and outputs are not accepted as the MPS for unit 1.

Step 3—MPS attainment: The modified form of the GDEA dual model as MOLP (with three
objects) for DMU 1 (Equations (34)–(36) is as follows:

min
[{(

(0.3216− 0.3216) + d̃1,1

)
λ1 + · · ·+

(
(0.3216− 0.2945) + d̃1,14

)
λ14

}
,{(

(0.217− 0.217) + d̃2,1

)
λ1 + · · ·+

(
(0.217− 0.2412) + d̃2,14

)
λ14

}
,{(

(0.3111− 0.3111) + d̃3,1

)
λ1 + · · ·+

(
(0.3111− 0.4245) + d̃3,14

)
λ14

}] (42)

s.t.{(
(−0.26 + 0.26) + d̃1,1

)
λ1

}
+ · · ·+

{(
(−0.26 + 0.318) + d̃1,14

)
λ14

}
≤ ωo (43){(

(−0.2624 + 0.2624) + d̃2,1

)
λ1

}
+ · · ·+

{(
(−0.2624 + 0.3101) + d̃2,14

)
λ14

}
≤ ωo

(44)
λ1 + λ2 + · · ·+ λ14 = 1 (45)
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λj ≥ 0, j = 1, . . . , 14 (46)

d̃ij and d̃rj are the components of the matrix
(
−x1o + x1j, . . . ,−xio + xij

)
and (y1o − y1j, . . . ,

yro − yrj), respectively, that is replaced by zero, except for the highest component of vec-
tors. d̃1,1 = max (0.3216− 0.3216) = 0, d̃1,2 = max (0.3216− 0.1942) = 0.1274, . . . ,
d̃1,14 = (0.3216− 0.2945) = 0.0271. d̃2,1 = max(0.3216− 0.3216, 0.217− 0.217) = 0,
d̃2,2 = max(0.3216− 0.1942, 0.217− 0.2671) = 0.1274, . . . , d̃2,14 = max(0.3216− 0.2945,
0.217− 0.2412) = 0.0271. d̃3,1 = max(0.3216− 0.3216, 0.217− 0.217, 0.3111− 0.3111) = 0,
d̃3,2 = max(0.3216− 0.1942, 0.217− 0.2671, 0.3111− 0.238) = 0.1274, . . . , d̃3,14 = max
(0.3216− 0.2945, 0.217− 0.2412, 0.3111− 0.4245) = 0.1274. Additionally, the coefficients of
the constraints (d̃ij) are obtained as d̃1,1 = max(−0.26 + 0.26) = 0, . . . ,
d̃1,14 = max(−0.26 + 0.318) = 0.058 and d̃2,1 = max(−0.26 + 0.26,−0.2624 + 0.2624), . . . ,
d̃2,14 = max(−0.26 + 0.318,−0.2624 + 0.3101) = 0.058. Then, the MOLP model is as:

min [{0 λ1 + 0.2548 λ2 + · · ·+ 0.0542 λ14}, {0 λ1 + 0.0773 λ2 + · · ·+ 0.0029 λ14},
{0 λ1 + 0.2005 λ2 + · · · − 0.0863 λ14}]

(47)

s.t.

0 λ1 + · · ·+ 0.116 λ14 ≤ ωo (48)

0 λ1 + · · ·+ 0.1057 λ14 ≤ ωo (49)

Now, in order to consider the DM’s preferences in the obtained multi-objective model,
the STEM approach can be applied. Applying the STEM method to the obtained model in
the first iteration of step 3, the proposed MPS for unit 1 is found as a convex combination
(λj) of all units as 0.06 of unit 1, 0.071 of 2, 0.074 of 3, 0.066 of 4, 0.08 of 5, 0.05 of 6, 0.155 of
7, 0.066 of 8, 0.045 of 9, 0.105 of 10, 0.059 of 11, 0.06 of 12, 0.057 of 13, and 0.047 of 14. In fact,
the output and the input values of unit 1 with the efficiency value of 0.001807 are attained
as (I1, I2) = (160, 210) and (O1, O2, O3) = (178, 221, 215).

The DM is not satisfied with the second objective function by the first iteration and a
particular change in outputs is applied, whereas it satisfies the first and third objectives
and tends to reduce the first objective by 10 units and the third objective by 40 to improve
the second one. In iteration 2, the solution is as a convex combination of 0.018 of unit 1,
0.293 of 2, 0.19 of 3, 0.08 of 4, 0.044 of 5, 0.011 of 6, 0.01 of 7, 0.046 of 8, 0.011 of 9, 0.024 of
10, 0.058 of 11, 0.183 of 12, 0.004 of 13, and 0.022 of 14. The output and the input values
of unit 1 with an efficiency value of 0.00161 are obtained as (I1, I2) = (164, 210) and
(O1, O2, O3) = (188, 240, 178).

Again, the DM has not accepted the attained results of iteration 2. This trend has
continued until the DM completely is satisfied. The third iteration of the interactive method
gives a convex combination of 0.003 of unit 1, 0.014 of 2, 0.095 of 3, 0.004 of 4, 0.025 of 5,
0.002 of 6, 0.007 of 7, 0.006 of 8, 0.001 of 9, 0.005 of 10, 0.422 of 11, 0.394 of 12, 0.011 of 13,
and 0.0042 of 14. In fact, the output, and the input values of unit 1 with efficiency value
0.00043 are gained as (I1, I2) = (168, 216) and (O1, O2, O3) = (220, 300, 188).

After three iterations, the DM accepts the above input and output values. Finally, the
MPS has been obtained, and the interactive method has been completed. As can be seen,
the efficiency for unit 1 is improved and converted to zero in each iteration. In a similar
way, this process can be replicated for all inefficient DMUs 2, 3, 4, 6, 7, 8, and 11. Thus,
MPS will be obtained.

By the numerical results, the advantage of the proposed method over the existing
approaches has been demonstrated. As can be concluded in the numerical example, in
order to find desirable solutions, the process of the proposed method is not complex.
The proposed approach provides an MPS, which is the main target of all the interactive
methods. Finally, many of the decision-making problems need predetermined preference
information. Our independent proposed model does not require predetermined preference
information, and this is one of the main advantages of the suggested method, which cannot
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be seen in recent studies. This method is also applicable in various sectors, such as other
healthcare management services as well as energy sector [79–81].

10. Conclusions and Future Works

A proper medical evaluation and prompt treatment are required to recover from a
stroke. According to the American Heart Association and the American Stroke Association,
“time lost is brain lost.” As a result, innovative techniques and strategies from various
disciplines are needed to address the challenges associated with stroke treatment and care
services in hospitals and other healthcare facilities. This study presented a GDEA dual
model, and the max-ordering approach was used to investigate the relationship between
the GDEA dual model and the MOLP in hospitals that provide stroke care services to select
the most efficient approach. We showed how to transform the GDEA dual model to MOLP
and solve the model interactively. This relationship could provide the base for an interactive
method of MOLP for solving the GDEA and locating the MPS in the efficiency frontiers
for each DMU. The STEM technique was applied to reflect the DM’s preferences to the
GDEA dual model in a combined approach. The supported interactive method is simpler
than the former recommended methods and does not require predetermined preference
information. A numerical example is offered to display how the novel proposed interactive
method can be applied in the decision-making problem. The numerical example showed
how the combined approach supported target setting and efficiency in solving the GDEA
model and achieved DM’s MPS. In the future, there will be several follow-up research
topics. One is to extend the application of the non-radial or non-oriented GDEA model
in practice. Another interesting topic for research is to study robust inverse GDEA. This
paper provides a complete framework of the interactive GDEA dual model and MOLP, but
the data for GDEA may be imprecise in production activities. Hence, imprecise interactive
GDEA should be considered. Finally, applying the suggested interactive model will be
helpful for other industries, such as gas companies and banking system evaluations.
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