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Abstract: Decoding motor intentions from non-invasive brain activity monitoring is one of the most
challenging aspects in the Brain Computer Interface (BCI) field. This is especially true in online
settings, where classification must be performed in real-time, contextually with the user’s movements.
In this work, we use a topology-preserving input representation, which is fed to a novel combination
of 3D-convolutional and recurrent deep neural networks, capable of performing multi-class continual
classification of subjects’ movement intentions. Our model is able to achieve a higher accuracy than a
related state-of-the-art model from literature, despite being trained in a much more restrictive setting
and using only a simple form of input signal preprocessing. The results suggest that deep learning
models are well suited for deployment in challenging real-time BCI applications such as movement
intention recognition.

Keywords: deep learning; brain–computer interfaces; artificial neural networks

1. Introduction

Decoding motor intentions from non-invasive brain activity monitoring (e.g., elec-
troencephalogram, EEG) is one of the most challenging aspects in the Brain Computer
Interface (BCI) field. Indeed, the possibility to reliably detect the planning of movements,
and thus to anticipate the motor action, would positive affects the usage of both restora-
tive and assistive BCI systems for rehabilitation of motor paralysis and to improve life
quality of people for which brain-based communication would be the only viable option
to interact. There is now ample evidence that non-invasive restorative BCI can have a
benefit relative to conventional neuro-rehabilitation approaches in patients with serious
motor disability [1–3]. However, the early detection of movement intention remains an
open challenge for enhancing neuro-feedback interventions, in which the precise feedback
timing is essential for promoting neuro-plasticity by contingently closing the loop between
the motor information (patient’s volitional effort) and the sensory information (motor
feedback often provided by FES or robotic exoskeletons). Regarding the assistive BCI,
the detection of motor planning could pave the way for the establishment of intimate
and natural interaction with external devices such as human-support robots, orthosis,
wheelchair, etc., for those individual presenting highly impeded motor capabilities [4].
Indeed, together with the rapid scientific and technological growing in the fields of human
sensing and Artificial Intelligence (AI), we are witnessing a growing interest of the industry
production in BCI devices, which could enable the “natural” operation of external devices
for both healthy subjects and especially for those subjects that would benefit more from the
usage of BCI systems [5].

EEG-based BCI systems aimed at capturing motor-correlates, rely mostly on the
processing of SMRs (sensory motor rhythms) [6] or MRCPs (movement related cortical
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potentials) [7]. The SMRs processing refers to the detection of event-related desynchro-
nization/synchronization (ERD/ERS) [8] that are modulations of rhythmic activities (mu,
beta, and gamma rhythms) recorded over the sensorimotor cortex, whereas MRCPs are
slow EEG variations related to both planning and execution of both imagined and executed
movements [9,10]. Generally, supervised and extensive processing steps are required for
the extraction and analysis of both SMR and MRCP, usually aimed at finding spatial and
frequency filters that maximisez the feature separability among desired movement classes.
In the detection of the motor-related band-power modulations (SMR), the optimization
of spatial filters is generally performed with the application of the common-spatial pat-
tern (CSP) that can be combined with frequency domain information extracted through
filter banks (FB-CSP) [11], or through the wavelet transform decomposition [12]. Anal-
ogously, regarding the time-domain amplitude modulations (MRCP), the detection is
usually performed through the application of an optimised spatial filter (performed by
several techniques ranging from discriminative spatial patterns DSP [13,14] to constrained
ICA [15]) combined with frequency filters focused in the delta rhythm. After the features
extraction process, for both the SMR and MRCP processing, a classification stage is required
for discriminating the desired movement class, and it is usually performed with standard
machine learning techniques (e.g., LDA, SVM, random forest). As it is well known, due
to the high non-stationarity nature of EEG signals, the extraction of the above mentioned
movement-associated features is a difficult and time consuming task, also requiring an
extensive prior knowledge of the neural processes behind movements.

For this reason, and thanks to the rapid advancements in the AI field [16], an in-
creasing number of works focuses on the application of deep learning (DL) methods for
the recognition of mental states associated with movements from EEG signals [17] and
also from the combination of EEG and electromyiographic (EMG) signals [18]. In a recent
work [19], it has been demonstrated that three different DL models (namely long short-term
memory, LSTM, Recurrent Neural Network, RNN, and Convolutional Neural Networks,
CNN) obtained better overall performance in decoding motor imagery movements when
compared to state-of-the-art machine learning techniques. This result came with the double-
fold advantage of avoiding any feature engineering step while easily translating offline
results in a real-time application. However, motor-imagery strategy, although being a valid
substitute for active motor training as a mean to activate the motor network [20], it is not
suitable for BCI-applications aimed at controlling external avatar/robots because it suffers
from a delay between intention and control command. This would result in an unnatural
control strategy.

Indeed, several recent works are focusing on the detection of motor anticipation rather
than the detection of motor-imagery/execution, with envisaged applications ranging from
driving [21] to the control of robotic devices [22,23]. The application of DL techniques
for classifying motor planning of different movements has been recently investigated
by the important work of Mammone et al. [24], providing also an updated overview
of relevant works about EEG-based motor anticipation. In their work, they proposed
to classify 6 different movement classes, plus the rest class, by using only a sub-part
of the EEG signal corresponding to the second before the movements onset. A set of
21 binary classifiers were implemented and each classification has been performed by
feeding a CNN with 1 s of temporal evolution data of 43 Frequency bins maps (extracted
with Continous Wavelet Transfer in the 0.6–45 Hz range) related to 210 back-projected
reconstructed sources. The source reconstruction inverse problem is solved using the
beamforming method and only sources related to supplementary motor and primary
motor are retained. Despite the goodness of their results, and the interesting physiological
interpretation of their findings, it has to be considered that only the accuracy of each single
binary classifier is reported without considering strategies for their combination. Moreover,
their approach is not suitable for being easily translated in a real-time application, due
to the computational effort required by the the source reconstruction process and time
frequency decomposition steps.
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Contributions of This Work

With the aim of overcoming the limitations of “handmade” feature extractions and
signal processing, and to provide a practical alternative to the panel of binary classifiers,
in this work we propose a DL-based architecture for movement anticipation detection.
The model takes in input the raw EEG data, which has been spatially re-organised in a
topology-preserving representation that is able to keep the information about the spatio-
temporal dependencies of the channels. We tested our approach using the same publicly
available dataset used by Mammone et al. [24], consisting in a high density EEG recording
acquired simultaneously with motion data (described in detail in Ofner et al. [14]). The
major contributions of our work can are the following:

• We introduce a new input representation of EEG data that allows to preserve the
spatio-temporal dependencies between the different channels.

• We develop a novel convolutional deep learning model for the efficient processing of
raw EEG data.

• We compare our model with previous results on the same dataset, showing that our
approach leads to a significantly higher accuracy with the advantage of a sensibly
reduced processing overhead.

Showing that deep learning architectures can be successfully applied on EEG-based
motor anticipation tasks, this work paves the way for the use of deep learning models in
challenging online BCI settings.

The rest of the paper is structured as follows: in Section 2, we present in detail the
methodology used in this work. Section 2.1 introduces the dataset on which the model
has been evaluated, with Section 2.2 listing the data epoching and the movement onset
detection heuristics employed. Section 2.3 describes the signal preprocessing techniques
that have been used, as well as presenting the novel 3D spatio-temporal representation
of the inputs. Section 2.4 introduces the detailed architecture of the model, specifically
focusing on the Encoder component in Section 2.4.1 and on the Classifier component
in Section 2.4.2. The training scheme of the model is reported in Section 2.5, while in
Section 2.6 we describe how the results presented by [24] have been adapted in order to
allow a direct comparison with our results. Section 3 presents the empirical analysis, first
by reporting the classification accuracy on the selected epoch for the different subjects
(Section 3.1), then by showing the accuracy of the classifier over time around the movement
onset (Section 3.2). In Section 4, we discuss the results, especially in the context of a possible
application of the model in an online setting. Finally, we outline some possible research
directions that we are willing to explore in the future.

2. Methods
2.1. Dataset

In order to encourage reproducibility, we chose to use a public dataset, available at the
BNCI Horizon 2020 website (http://bnci-horizon-2020.eu/database/data-sets, accessed
on 22 December 2020). In Figure 1 we report a conceptual schema of the dataset and
the acquisition protocol used. This dataset was chosen because it is the only publicly
available BCI dataset of high-density EEG signal synchronized with motion data, recorded
via an exoskeleton and a glove [14]. Such motion data, while not used for the training
of the model, is crucial for determining the exact start of the movement. For an in-depth
description of the dataset, we refer the interested reader to [14]. The EEG data is coming
from 61 electrodes distributed over the frontal, central, parietal and temporal areas of the
skull. The raw data is collected for both motor imagery and motor execution tasks from
15 healthy subject, 6 males and 9 females, aged from 22 to 40 years, with a mean age of
27 ± 5 years. Subjects, with their right arm connected to an anti-gravity exoskeleton (in
order to avoid muscle fatigue), sit on a chair in front of a computer screen, positioning their
hand in the starting neutral position (hand half open, lower arm extended to 120°, neutral
rotation). The subjects are required to perform six types of actions (elbow flexion, elbow
extension, wrist pronation, wrist supination, hand open, hand close), plus an additional

http://bnci-horizon-2020.eu/database/data-sets
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“rest action”, for a total of 7 different movement classes. Ten runs of data acquisitions are
recorded for each subject, each run containing 42 different trials, equally divided between
the 7 classes. Each trial is structured as follows: at second 0, a beep sound starts and
a green cross is displayed on a computer screen. The subjects will then focus its gaze
on the cross. At second 2, a cue symbol for the required task appeared on the screen.
After the cue display, subjects waits for an arbitrary amount of time, and then starts the
corresponding movement for the next 3 s. After the movement execution, subjects goes
back to the starting neutral position. After the movement, subjects waited in the resting
position for a random amount of time, (between 2 and 3 s), before the beginning of the next
trial. The data acquisition frequency is 512 Hz, recorded using active electrodes and four
16-channel amplifiers. Reference was placed on the right mastoid, ground on AFz.

Figure 1. Conceptual schema of the dataset and the acquisition protocol used in this work. The acquired raw electroen-
cephalogram (EEG) data is first arranged in our dependendancy-preserving representation. Then, we keep the 1-second
segment preceding the movement onset as our training epoch. Each training segment is then encoded and fed to our model
to get the final classification.

2.2. Data Epoching and Movement Onset Detection

This work focuses on the decoding of motor intention from EEG signals, there-
fore movement onset was determined following the approaches originally proposed in
Ofner et al. [14]. Moreover, the movement onset detection was further enhanced by im-
plementing a threshold-based algorithm which empirically resulted in more precise and
noise-robust motion onset identification (see Appendix A for details). However, in order to
not include any movement related data but only motor preparation data in the analysis,
the predicted motion onset was visually reviewed for all of the extracted trials. The training
epochs have been selected as the part of EEG signals corresponding to one second preced-
ing the detected movement onset. Thus, at the end of the preprocessing stage, our dataset
is composed of 420 epochs per subject (for a total of 6300 epochs), equally subdivided into
the 7 classes. Finally, we merge the movement classes that involved the motion of the same
articulation. The classes “elbow flexion” and “elbow extension” are merged into “elbow”,
“wrist pronation” and “wrist supination" into “wrist”, “hand open” and “hand close” into
“hand”, thus obtaining four final target classes.
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2.3. Input Representation and Preprocessing

In order to make our method suitable for real-time application, we decided to perform
only a very limited form of preprocessing, that can be efficiently implemented and applied
in real-time on the incoming signals. Such preprocessing has been performed before the
epoching of the data. We apply a notch filter at 50 Hz to remove power line interference.
Then, we apply a 5th-order Butterworth bandpass filter from 0.5 Hz to 60 Hz and raw
signals were downsampled from 512 Hz to 128 Hz. In order to fully exploit the implicit
spatial information contained in the EEG signals, we arrange the channels at each timestep
in a 2-dimensional 10× 9 matrix as shown in Table 1. Empty elements of the matrix are set
to constant 0. In contrast with other works than can be found in the literature that use only a
1-dimensional spatial arrangement of the channels [25,26], this 2-dimensional arrangement
is a more faithful abstraction of the actual deployment of the EEG electrodes on the skull,
thus allowing for the complete spatial convolutions of the input signals while avoiding
to introduce spurious spatial correlations that may harm the overall performance on the
downstream tasks. Since EEG channel names were not available for subject 1, making
impossible to arrange the inputs into the desired representation (Table 1), the relative
dataset was excluded from the rest of the analysis.

Table 1. Spatial arrangement of input channels at each timestep. The blank entries are filled with 0 s.

F3 F1 Fz F2 F4
FFC5 FFC3 FFC1 FFC2 FFC4 FFC6
FC5 FC3 FC1 FCz FC2 FC4 FC6

FTT7 FCC5 FCC3 FCC1 FCC2 FCC4 FCC6 FTT8
C5 C3 C1 Cz C2 C4 C6

TTP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 TTP8
CP5 CP3 CP1 CPz CP2 CP4 CP6

CPP5 CPP3 CPP1 CPP2 CPP4 CPP6
P3 P1 Pz P2 P4

PPO1 PPO2

2.4. Architecture of the Model

In EEG timeseries, the information resides both in the spatio-temporal localization of
patterns and in the frequency components of the signals. Therefore, CNNs seem the most
suitable model for this kind of data. In our model, we employ 3-dimensional convolutions
in order to process both the spatial an the time dimensions at the same time, thus building
more informative representations for the downstream classifier. Such representations are
then fed to the recurrent classifier, which employs an RNN to take into account the global
context of the data for the final classification step. The model’s architecture, depicted in
Figure 2, is composed of two parts: the Encoder and the Classifier. The Encoder’s task is
to take in input the preprocessed EEG signals and to produce a compact representation
that retains only the information needed for the downstream task. On the other hand,
the Classifier takes in input the time series of compact representations produced by the
encoder and performs the final classification. A detailed list of the layers composing our
model architecture is reported in Table 2.
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Figure 2. Schematic view of the architecture of the model. Each chunk of input data xi is a sequence
of 32 timesteps, with input channels arranged according to Table 1. The Encoder (a 3D convolutional
neural network, see Section 2.4.1) processes each input chunk sequentially, producing a series of
compressed codes zi as a results. The code sequence is then passed to the Classifier, implemented as
a long short-term memory (LSTM) network (see Section 2.4.2), which outputs the final classification
at each timestep.

Table 2. List of layers that compose each module of the model. Layers name and parameters.

Module Layers

Encoder Conv3d (1, 16, kernel_size = (5, 2, 2), stride = (1, 1, 1))
ReLU()
BatchNorm3d (16, eps = 10−5 , momentum = 0.1, affine = True, track_running_stats = True)
Conv3d (16, 32, kernel_size = (5, 1, 1), stride = (1, 1, 1))
ReLU()
BatchNorm3d (32, eps = 10−5, momentum = 0.1, affine = True, track_running_stats = True)
MaxPool3d (kerne_size = (3, 2, 2), stride = (3, 2, 2), padding = 0, dilation = 1, ceil_mode = False)
Linear (in_features = 576, out_features = 128, bias = True)
ReLU()
BatchNorm1d (128, eps = 10−5, momentum = 0.1, affine = True, track_running_stats = True)

Classifier LSTM (input_size=128, hidden_size = 64, bidirectional = False, dropout = 0)
Linear (in_features = 64, out_features = 4, bias = True)
Softmax (n_classes = 4)

2.4.1. Encoder

The input representation resulting from the preprocessing procedure described in
Section 2.3, albeit able to fully leverage the structure of the raw data, still contains many
redundant information that is not actually needed for the final task. First of all, we have
spatial redundancy, with many input features set to constant 0, thus not conveying any
information about the task. Furthermore, the coarse spatial resolution of EEG electrodes
causes the different channels to contain highly correlated signals. We also have temporal
redundancy, since in our tasks the bulk of relevant information is contained into the
relatively slow temporal evolution of the channels over time rather than in the specific time-
local patterns of activation. It is therefore helpful for the final performance to further process
the input signals in order to remove those redundancies and to extract only the relevant
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information. Specifically, the main building block of the encoder are the two 3-dimensional
convolutional layers, performing the following computation on the input signals:

h(Ni, Chj
) = b(Chj

) +
Cx−1

∑
k=0

W(Chj
, k) ? x(Ni, k) (1)

where N is the batch size, Ch and Cx are respectively the number of input and output
channels, x, W and b are the input, weights and bias of the convolutional layer respectively,
while ? denotes the 3D cross-correlation operator, defined as:

(k ? x)n =
N−1

∑
m=0

xmk(m+n)%n (2)

where x ∈ RN , x ∈ RM. The 3D convolutions allow the model to take into account, at the
same time, both the spatial and the temporal local contexts of the single channels, thus
resulting in richer and more informative internal representations during training. The first
convolutional layer takes in input a 3D matrix of 32 timestep (so that the total inputs
dimension is 32× 10× 9 = 2880 input features), applying 16 convolutional channels with
convolutions kernel of dimensions (5× 2× 2) with stride (1× 1× 1). The output of the
convolutions are passed through a ReLU nonlinearity

ReLU(x) = max(0, x) (3)

and a batch normalisation layer [27]: for each input feature of a minibatch B x(k)B the
following operations are computed

µ
(k)
B =

1
m

m

∑
i=1

x(k)Bi
(4)

σ
2(k)
B =

1
m

m

∑
i=1

(x(k)Bi
− µ

(k)
B )2 (5)

x̂(k)B =
x(k)B − µ

(k)
B√

σ
2(k)
B + ε

(6)

yi = γx̂(k)B + β (7)

First, the mean µ
(k)
B and the variance σ

2(k)
B are computed for the current minibatch.

Then, the input features are normalized accordingly to the computed values (the additional
constant ε is added to the denominator for numerical stability). Finally, the normalized
input are scaled and shifted by the layer parameters β and γ. Having batch normalization
layers in-between convolutional layers helps to mitigate the problem known as internal
covariate shifts [27], making the training process more stable. After batch normalization,
another 3D convolution is performed on the resulting features, increasing the convolutional
channels from 16 to 32 and kernel dimensions (5× 2× 2), stride (1× 1× 1). The result of
the convolutions is again passed through a ReLU nonlinearity and a batch normalization
layer, similarly to the previous layer. Then, a max pooling operation is applied on the
output features with a pooling window of size 3 × 2 × 2 and stride 3 × 2 × 2, in the
following way

y(Ni, Cj)d,h,w = max
k=0,...,D−1

max
m=0,...,H−1

max
n=0,...,W−1

x(Ni, Cj)stride[0]×d+k,stride[1]×h+m,stride[2]×w+n (8)

where N is the batch size, C is the number of channels, D, H and W are the dimension of
the pooling kernel, stride is a vector containing the stride values for each dimension. After
the max pooling operation, the representation is flattened into a one-dimensional array
of size 576, which is then finally passed through a fully connected layer of ReLU units in
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order to obtain the 128 features that compose the final representation, followed by a final
batch normalization layer. This way, the encoder takes in input the raw data and produces
a compact, single-vector representation of the inputs every 32 timesteps (corresponding to
1/4 of a second). This sequence of representations is passed in real-time to the recurrent
classifier (see Section 2.4.2).

2.4.2. Classifier

The Classifier is composed of a single Long Short-Term Memory (LSTM) layer [28]
with 128 input units and 64 recurrent units. The LSTM layer receives an input xt at time t
and computes the corresponding output according to the following equations:

it = σ(Wiixt + bii + Whiht−1 + bhi) (9)

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f ) (10)

gt = tanh(Wigxt + big + Whght−1 + bhg) (11)

ot = σ(Wioxt + bio + Whoht−1 + bho) (12)

ct = ft � ct−i + it � gt (13)

ht = ot � tanh(ct) (14)

where ht is the hidden state at time t, ct is the cell state at time t, ht−1 is the hidden state
of the layer at time t− 1 or the initial hidden state at time 0, it, ft, gt, ot are respectively
the input, forget, cell and output gates. The term σ and tanh denote the sigmoid and the
hyperbolic tangent functions, respectively, i.e.,

σ(x) =
1

1 + exp(−x)
(15)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(16)

where exp is the exponential function. Finally, � denotes the Hadamard product. Using an
RNN with gating mechanisms allows for the model to construct an internal representation
that selectively discards the unimportant information and summarizes the whole sequence
up to time t, thus making it able to capture the long-term and relatively slow evolution
of the input signals instead of the specific local patterns. The network receives at every
timestep the compact representations of the encoder and produces an output, which is then
passed through a softmax layer

Softmax(xi) =
exp xi

∑j exp(xj)
(17)

with four units, to get the final class probabilities (See Figure 2). This way the model yields
one classification output every 32 timesteps, corresponding to 0.25 s, making it suitable to
be used in real-time tasks.

2.5. Training Scheme

The model selection procedure is organised according to a cross-validation scheme,
where the training data is divide into 5 folds, 1 of which is kept as the validation set and
the other 4 as the training set. The cross-validation is repeated 3 times in order to average
out possible extreme results due to the specific random initialisation of the weights. This
procedure is repeated for each subject of the dataset, finally yielding 14 models as a result,
one for each subject. Training is done via the Adam optimizer [29] for a maximum of
100 epochs. An early stopping strategy is used when the performance on the validation
set fail to decrease for 10 consecutive epochs. the model is trained using categorical
crossentropy with label smoothing (smoothing parameter 0.2) as a loss function. Label
smoothing has the effect to penalize overconfident prediction of the model on specific data
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samples, making the model less prone to overfitting and more robust to possible noise that
might be introduced during the sequence labelling procedure described in Section 2.1. The
most important parameters of the model and the optimiser such as learning rate, dimension
of the encoder’s representation, dimension of the LSTM hidden state, are chosen according
to a grid search strategy, selecting the combination of parameters that yielded the best
average performance on the repeated cross-validation procedure described above. Other
hyperparameters, such as the batch size and the number of convolutional kernels, have
been selected using a trial and error approach. Table 3 shows the grid of hyperparameters
that has been used during the model selection procedure. The model is implemented in
Python, using the deep learning library of PyTorch. The model has been trained on a
NVIDIA Tesla V100 GPU. The total training time for one single subject is of about 12 h.

Table 3. Grid of hyperparameters taken into consideration during cross-validation.

Name Description Values

batch_size Number of neurons of the encoder’s output. 1024
z_dim Number of neurons of the encoder’s output. [512, 256, 128]
lstm_hidden_size Number of neurons of LSTM’s hidden state. [32, 64, 128]
conv1_channels Number of channels of first convolutional layer. [8, 16, 32]
conv2_channels Number of channels of second convolutional layer. [32, 64, 128]
lstm_depth Number of LSTM layers. 1
conv_depth Number of convolutional layers. 2
η ADAM initial learning rate. [ 0.001, 10−4, 10−5]
β1 ADAM β1 parameter. 0.9
β2 ADAM β2 parameter. 0.999
lstm_dropout Percentage of dropped units in the LSTM layers. 0
smoothing Amount of label smoothing. [0, 0.2, 0.4]
L2_penalty Amount of L2 regularization during training (weight decay). 0

2.6. Comparison with Previous Work

Our final classification accuracy is compared with the previous work by Mammone
et al. [24], which focuses on the same dataset used in this work. However, they train
a panel of 21 binary classifiers, one for each pair of classes out of the original 7 in the
dataset (elbow flection, elbow extension, wrist pronation, wrist supination, hand open,
hand close, rest). Hence, the first step needed to ensure a fair comparison is to equalize
the number of classes. We achieve this by merging all the classifiers that are related to
the same articulation class into a single binary classifier. For example, we merged the
“elbow flection vs movement” classifiers with “elbow extension vs movement” classifiers
into one single “elbow vs movement” classifier, setting its accuracy as the maximum
accuracy among the original classifiers. After the merging step, we obtain 6 different
binary classifiers, one for each possible pair of the “elbow”, “wrist”, “hand” and “rest”
classes. Still, Mammone et al. [24] do not provide a method for combining the result of
these classifications in order to get a final classification of the movement. Therefore, we
performed a Monte Carlo estimation of the aggregated accuracy of the binary classifiers.
Specifically, we simulated each binary classifier with a Bernoulli random variable, setting
the parameter p of the Bernoulli distribution according to the accuracy of the specific
classifier. We chose the final outcome of the classification following the majority vote
strategy, uniformly sampling from the most likely outcomes in case of parity between two
or more classes. We performed 10,000 simulations in order to get a reliable estimation of
the final aggregated performance. The final accuracy obtained is reported in Table 4.
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Table 4. Final accuracy of the model for each subjects. Bold entries represent the best accuracy for
that subject. Higher is better.

Subject Our Work Previous Work [24]

Subject 02 42.58 ± 1.56 39.09
Subject 03 76.72 ± 0.51 57.86
Subject 04 81.44 ± 0.35 68.69
Subject 05 50.05 ± 1.74 38.62
Subject 06 58.22 ± 2.04 36.94
Subject 07 36.39 ± 1.50 28.02
Subject 08 54.82 ± 1.66 41.12
Subject 09 47.55 ± 0.89 45.72
Subject 10 36.01 ± 1.34 58.17
Subject 11 40.05 ± 0.29 37.62
Subject 12 37.50 ± 0.26 35.48
Subject 13 50.98 ± 1.31 47.37
Subject 14 49.22 ± 0.17 49.85
Subject 15 49.56 ± 0.45 39.80
Average 50.79 ± 13.82 44.59 ± 10.89

3. Results
3.1. Classification Accuracy

In Figure 3 is reported the accuracy of the model on the different subjects of the dataset.
The final accuracy has been obtained by feeding to the model the entire epoch, collecting
the accuracy of the classifier over time, and then computing the average accuracy over the
selected epoch (i.e., the 1 s preceding movement onset). We repeat this process for each fold
of the cross validation. In Table 4, the performance of the proposed approach is compared
with that by Mammone et al. [24]. The results shows that our approach is well above the
accuracy of 25% of the random classifier for all the subjects, and its performance are statisti-
cally higher with respect to the ones obtained by the previous work of Mammone et al. [24],
despite the much more restrictive setting. We obtain a mean accuracy of 50.79± 13.31 and
44.59± 10.89 respectively, t-test t(13) = 2.21, p < 0.05. Normality of data has been checked
using Lilliefors test, and in both cases the null hypothesis was not rejected.

Figure 3. Test accuracy for each of the subjects. The accuracy is averaged over the considered epoch.
The results are aggregated across folds. The blue line denotes the accuracy of a random classifier.
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3.2. Performance over Time

Since we aim at using our approach in real time, we are also interested in the temporal
evolution of the model’s performance, not only in its aggregated statistics. For this reason,
we inspect the accuracy of our model during all the duration of the epoch of interest.
In Figure 4 is reported the time-wise accuracy over the selected epoch. The black solid line
denotes the moment when the green cross is displayed on screen (see Section 2.1), the green
dashed line denotes the moment the subject actually start to perform the corresponding
movement. It is possible to see that the classifications become more and more correct as the
time increase, eventually reaching maximum accuracy shortly after the actual start of the
movement, at about t = −0.25. This is in line with the model expected behaviour: as more
data becomes available, the model processes it and stores the important information in the
hidden state of the LSTM, thus building an increasingly accurate estimation of the move-
ment intention. Interestingly, the plots show that the performance stays high even shorty
after movement onset (i.e., the green line), a sign that the model is able to generalize to
unseen data during the inference phase (note that the model is trained only on the 1-second
segment preceding the green line). After the movement execution, the performance quickly
drops, and the model gets ready for the classification of another movement. The time-wise
accuracy for the single movement class reveals a similar behaviour for all types of move-
ments, meaning that the performance of the model is not skewed towards a particular class.
In the case of the “rest” class, we do not observe a rapid drop of performance after the
movement execution. This can be explained by the fact that, for the “rest” class, there are
less significant differences between the performance of the “rest action” and the idle time
before and after the action itself.
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Figure 4. Accuracy of the model, at each timestep, in the time segment around the detected movement
onset, for the different movement classes. The trials have all been synchronized at the actual
movement onset (t = 0), denoted by the green dashed line (see Section 2.1). The figure in the
bottom-right corner describes the structure of the trials (see Section 2.1) at t In the experiments,
the model is trained only using the 1-second segment preceding the movement onset.

4. Discussion

In this work, we implemented a novel neural network architecture for the real-time
detection of movement intentions. The model works directly with raw EEG signals and
leverages a topology-aware input representation to extract both spatial and temporal
dependencies of the inputs at the same time. The architecture of a convolutional neural
network (CNN) allows us to process not only the information contained in a single channel,
but also the information stored implicitly into the spatial relations between a channel
and its neighbours. Due to the relatively coarse spatial resolution of EEGs, neighbouring
channels have the tendency to capture signals that are highly correlated with each other,
as often it is more useful to consider the co-evolution of groups of channels rather than the
evolution of each individual channel. This makes this kind of data a perfect fit for CNNs.
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The empirical analysis shows that our model yields superior performance with respect
to previous work on the same dataset [24], despite being trained in a much more restrictive
setting in order to satisfy the requirements of real-time applications. Firstly, we perform an
efficient one-shot multiclass classification, classifying all the four movements at the same
time, instead of using a panel of binary classifiers, thus avoiding the need of implementing
an aggregation strategy that introduces additional error. In fact, it has to be considered that,
when using the One-Against-One approach (i.e., generating k(k−1)

2 binary classifiers with k
classes), the final classification of a specific binary classifier is meaningless when the data
sample does not belong to neither classes of that classifier. Hence, the final classification
may be damaged if most of these irrelevant classifiers make erroneous predictions [30].
Secondly, our model is able to perform classification at each timestep of the epoch, con-
verging on average to the correct class after about 0.25 s before the movement onset. This
allows our model to process a continuous stream of data in real-time, without the need
of identifying the start and the end of the epoch before feeding it to the model, making it
suited for its deployment in real-world applications. On the other hand, the models in [24]
perform a single classification at the end of the epoch, at the movement onset, after the
whole training epoch is fed as input.

Our model employs a simple and lightweight form of preprocessing, only consisting in
a combination of band-pass and notch filters, since our topology-preserving representation
removes the need of using complex source-space reconstructed representations as in [24].
Interestingly, the model seems able to naturally generalise to unseen data, as the classifica-
tion performance keeps staying high not only before, but even during the movement itself,
despite the model was never being trained on such data.

The ability to perform reliable movement intention recognition is crucial for a wide
range of real-time BCI applications, as it allows to mask the delay that naturally occurs
between the recognition of the user’s movement and the actuation of the corresponding
action in the brain-controlled device. Moreover, in our previous work [31] we demonstrated
the suitability of an online application of the proposed convolutional encoder architecture
within the ROS framework. In this paper we showed that deep learning models can be
effectively used to solve this kind of tasks, while not relying on any particular form of
intensive preprocessing methods.

In the future, we plan to further refine the input representations, implementing the
exact spatial location of the EEG channels via e.g., a point-cloud representation of the input
signals. This representation can be exploited by a deep graph network [32] to produce an
even more informative representation for the downstream classifier. It will be interesting
to experiment with different sensors’ configurations, especially with a reduced sensors
set. We also plan to perform an extensive electrophysiological analysis of the information
retained by the encoder module in order to understand which part of the signals are the
most relevant for the final classification.
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Appendix A. Enhanced Movement Onset Detection Heuristic

We developed the following heuristic to identify the motion onset: we start by consid-
ering the signals coming from the accelerometers installed in both the exoskeleton and the
glove. We first compute their baseline values by considering their median values in the
half-second preceding the cue display (i.e., the median values in the interval t = [1.5, 2] s).
We compute the medians µi of each signal separately, where i is the index of the specific
channel. For each channel i we set a “motion threshold” θi = | 1

10 µi|. Intuitively, this means
that we detect a movement for a channel if the signal deviates from its median by more
than 10%. After cue display, at time t = 2 s, we monitor the evolution of the motions
channels. At each timestep, we compute for each signal the absolute deviation from its
median, and compare it to the threshold

|xi,t − µi| > θi (A1)

where xi,t is the value of channel i at time t, µi and θi are respectively the median and the
threshold for the i-th channel. To make this procedure more robust to the noise of a single
channel, we consider a particular timestep t to be a “motion timestep” if and only if at least
three channels exceed their motion threshold as described in Equation (A1). Additionally,
we further avoid false positive by introducing a patience parameter, set to 20 timestep.
Thus, we finally decree the start of movement only if we detect a more than 20 “motion
timesteps” in a row. The “motion onset” for the rest “class” was taken as in [14]. This
procedure was visually validated on the dataset. We empirically found that our methods
results in more precise and noise robust motion onset identification than the one described
in [14].
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