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Abstract: Electrochemically based technologies are rapidly moving from the laboratory to bedside
applications and wearable devices, like in the field of cardiovascular disease. Major efforts have
focused on the biosensor component in contrast with those employed in creating more suitable
detection algorithms for long-term real-world monitoring solutions. The calibration curve procedure
presents major limitations in this context. The objective is to propose a new algorithm, compliant
with current clinical guidelines, which can overcome these limitations and contribute to the devel-
opment of trustworthy wearable or telemonitoring solutions for home-based care. A total of 123
samples of phosphate buffer solution were spiked with different concentrations of troponin, the
gold standard method for the diagnosis of the acute coronary syndrome. These were classified as
normal or abnormal according to established clinical cut-off values. Off-the-shelf screen-printed
electrochemical sensors and cyclic voltammetry measurements (sweep between −1 and 1 V in a 5 mV
step) was performed to characterize the changes on the surface of the biosensor and to measure the
concentration of troponin in each sample. A logistic regression model was developed to accurately
classify these samples as normal or abnormal. The model presents high predictive performance
according to specificity (94%), sensitivity (92%), precision (92%), recall (92%), negative predictive
value (94%) and F-score (92%). The area under the curve of the precision-recall curve is 97% and
the positive and negative likelihood ratios are 16.38 and 0.082, respectively. Moreover, high dis-
criminative power is observed from the discriminate odd ratio (201) and the Youden index (0.866)
values. The promising performance of the proposed algorithm suggests its capability to overcome
the limitations of the calibration curve procedure and therefore its suitability for the development of
trustworthy home-based care solutions.

Keywords: cardiac biomarkers; risk stratification algorithm; wearable device; electrochemical sensor;
long-time monitoring

1. Introduction

Over the past few decades, cardiovascular diseases (CVD) are on a continuous rise
accounting for 17.64 million deaths worldwide in the general population [1]. Only in
Europe, CVD causes every year 3.9 million deaths and an overall estimated cost of €210
billion, 53% corresponding to health care expenditure [2]. The unstoppable trend of CVD
and other chronic diseases (e.g., diabetes, hypertension and obesity) in conjunction with
a rapidly ageing population in the Western world is expected to increase the prevalence
and mortality of associated diseases, like acute coronary syndrome (ACS) (e.g., myocardial
infarction, stable and unstable angina).
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Such increase is expected to negatively impact the budget of the national health care
systems not only due to an increase in the demand for biomarker testing (e.g., troponin) —
only in the USA the estimated costs to diagnose ACS at Emergency Department (ED) ranges
between $10–13 billion annually [3], but also worse patient outcomes due to the overflow
of the ED, more adverse baseline conditions due to comorbidities or by longer turnover
times resulting from an increase in the workload of specialized clinical laboratories. For
every 30 min-delay to receive intervention the probability for 1-year mortality of acute
myocardial infarction (AMI) survivors increases by 7.4% [4].

A potential solution to mitigate such impact could be the clinical implementation of
telemonitoring strategies capable of precisely measuring levels of key cardiac biomark-
ers [5]. In the recent past, there has been a growing interest in developing minimally
invasive wearable devices based on different biosensors (e.g., optical, electrochemical and
magnetic) [6–8]. Out of all of them, the electrochemical biosensors have shown to be
the most promising according to their miniaturization capabilities, low manufacturing
costs and low power consumption [6]. According to Abdorahim et al. [7] “electrochemical
immunosensing development is a recently developed and promising technology transi-
tioning from the bench to the bedside”. Briefly, these can be classified as potentiometric,
impedimetric, amperometric and conductimetric. While the first two respectively measure
changes in voltage and impedance to determine the concentration of the analyte the two
latter measure variations in current.

Biosensors have continuously been improved to make them more sensitive to smaller
variations of concentration, contributing to decrease the limit of detection (LOD) of the
analytical assays. Even though lower LOD can contribute to faster diagnosis in low-risk pa-
tients it might have the opposite effect on high-risk patients, which are the ones demanding
a more rapid and accurate diagnosis. Focusing on troponin detection-considered the gold
standard method for detecting myocardial injury and tissue necrosis-major efforts have
been made in developing new immobilization strategies and assay principle to detecting
the I (cTnI) and the T (cTnT) isoforms of the troponin protein, see Table 1, in contrast with
the limited efforts dedicated to developing new detection algorithms which are responsible
for translating into concentration the changes in the measured signal or signals. Only three
papers have focused on developing new detection algorithms [9–12].

Table 1. List of electrochemical solutions capable of measuring troponin levels. Adapted from [7,8].

Biomarker Methodology Assay Principle Concentration Range Limit of Detection (LOD)

cTnT NH2-CNT-SPEs/polyethyleneterephtalate
(PET)/NHS-EDC-anti-cTnT/glycine/cTnT

Amperometric

0.0025–0.5 ng/mL 0.0035 ng/ml

cTnT
Gold (Au)/polyethyleneimine

(PEI)/carboxylated CNTs
(COOH-CNT)/ANTI-cTnT/glycine/ cTnT

0.1–10 ng/mL 0.033 ng/mL

cTnT
GCE/o-aminobenzoic acid (poly-o-

ABA)/EDC/NHS/anti-cTnT/ethanolamine/
cTnT

0.05–5 ng/mL 0.016 ng/mL

cTnT

SPE/polyethylene terephtalate
(PTE)/anti-cTnT/biotin/glutaraldehyde

(glu)/streptavidin
microsphere/glycine/cTnT/HRP-conjugated

anti-cTnT

0.1–10 ng/mL 0.2 ng/mL

cTnI

Interdigitatedarray (IDA)
chip/polydimethylsiloxane

(PDMS)/NHS/BSA anti-cTnI/protein/
cTnI/alkalinephosphatase (AP)-labeled

anti-cTnI/enzyme substrate (PaPP)

0.2 ng/mL–10 µg/mL 148 pg/mL

cTnI
PDMS-GNP composite/anti-cTnI and anti-CRP

(Ab1)/BSA/CdTe and ZnSe quantum
dots-anti-cTnI and anti-CRP (Ab2)

0.01–50 µg/mL 5 amol
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Table 1. Cont.

Biomarker Methodology Assay Principle Concentration Range Limit of Detection (LOD)

cTnI

Microfluidic channel/EDC and
SNHS/Branched polyethylenimine

(BPEI)/BPEI activation with GA/anti-
cTnI/BSA/cTnI/biotinylated detection

antibody/GOx-avidin

NA 25 pg/mL

cTnI SPE/AuNPs/anti-cTnI/BSA/cTnI Capacitance 0.2–12.5 ng/mL 0.2 ng/mL

cTnT
An electrode/self-assembled

monolayer/glutaredehyde/anti-
cTnT/glysin/cTnT

0.07–6.38 ng/mL NA

cTnT Increase of low-frequency capacitance between
two Al electrodes after Ab-Ag interaction

0.01–5 ng/mL (PBS)
0.07–6.83 ng/mL

(serum)
NA

cTnI
Indium tin oxide (ITO)/Gold nanoparticles
(GNPs)/anti-cTnI/cTnI/NHRP-conjugated

anti-cTnI

Open circuit
potential 1–100 ng/mL NA

cTnT

cTnT/carboxylated, MWCNT/acrylamide
(AAM), N,N-methylenebisacrylamide

(NNMBA, cross-linker) and ammonium
persulphate (APS, initiator)/cTnT

Potentiometric 1.41–20.68 µg/mL 0.16 µg/mL

cTnI Au electrode/PANI nanowire integrated with
microfluidic channels/anti-cTnI/cTnI Conductance NA 250 fg/mL

cTnT

GCE/(E)-1-decyl-4-[(4-
decyloxyphenyl)diazenyl] pyridinium bromide

(Br-Py)film/gold nanoparticles (AuNP)
stabilized in a water-soluble

3-n-propyl-4-picolinium silsesquioxane
chloride (Si4Pic + Cl−)/anti

cTnT/glycine/cTnT

Cyclic voltammetry
and impedance

0.1–0.9 ng/mL 0.076 ng/mL

cTnI Interdigitated electrode surface/graphene-ABA
nano composite/anti-hcTnI/cTnI 0.1–1 ng/mL 0.01 ng/mL

cTnT GCE/I-Py/CTS-AuNP/anti-
cTnT/glycine/cTnT Cyclic voltammetry 0.2–1 ng/mL 0.1 ng/mL

cTnI
Au electrode modified with a mixed SAM
where biotinylated antibodies were linked

through neutravidin
Impedance 10–13–10–7 mol/L 10–13 mol/L

cTnI

PANI electrodeposited on patterned
screen-printed paper electrodes. PANI

oxidation current change after an
immunological reaction

Cyclic voltammetry 1–100 ng/mL NA

cTnT Amine-functionalized CNT-SPEs platforms Differential Pulse
Voltammetry

0.0023 ng/mL–0.5
ng/mL 0.0035 ng/mL

AuNP: gold nanoparticles, cTnT: cardiac troponin isoform T, cTnI: cardiac troponin isoform I, CNT: carbon nanotube, PDMS: polydimethyl-
siloxane, Ab: antibody, Ag: antigen, PANI: polyaniline, SPE: screen-printed electrode, BSA: bovine serum albumin, HRP: horseradish
peroxidase, EDC: (1-ethyl-3-(3-dimethylamino propyl/carbodiimide), NHS: N-hydroxysuccinimide, SNHS: N-hydroxysulfosuccinimide,
SAM: self-assembled monolayer, GCE: glassy carbon electrode, PAPP: p-Aminophenyl phosphate, amol: 10-18 moles, NA: not available.

Even though some recent studies have focused on the employment of machine learning
algorithms to distinguish between analytes from cyclic voltammetry measurements [9,12],
the most common method is the calibration curve. Generally speaking, this procedure
translates the changes suffered by a measured signal into the concentration of the corre-
sponding analyte through a univariate linear model. In other words, only one point of the
corresponding measured signal is considered to determine the concentration of the analyte.
Unfortunately, this can limit the operational range of an assay. Besides this limitation others
are also worth considering when it comes to integrating these types of algorithms into
wearable devices for long-term home-based monitoring, like:

1. Preservation of the biosensors;
2. Variability between batches of biosensors;
3. Effect of medications on the physical properties of blood;
4. Presence of interfering analytes in blood;
5. Sampling conditions affected by patient routine;
6. Variability between samples (e.g., different times of the day and sample volume).
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All of them have consequences on the reliability of the measurements and can con-
tribute to reducing the confidence of physicians and patients in these tools. Despite that
some of these drawbacks can be mitigated when designing the device, with the associated
cost increase, others are unpredictable or user-dependent. Consequently, there is a strong
need to develop solutions that can contribute to generating trustworthy home-based care
tools for their future implementation in clinical practice.

In this context, the main objective is to develop a new detection algorithm oriented to
electrochemical biosensors, for long-term and real-world monitoring, which can accurately
stratify the risk of a patient suffering myocardial injury or tissue necrosis. Moreover, this
detection algorithm should be aligned with good clinical practices and applicable to the
general population as well as the high-risk population.

2. Materials & Methods

One-hundred and twenty-three samples of phosphate buffer solution (PBS) were
spiked with different concentrations of troponin, between 0 and 2000 pg/mL. Human
cardiac troponin I-protein, antibody pair support kit and phosphate buffer sulfate (PBS) 1X
Calcium and Magnesium free were purchased from Abbexa. The limit of detection (LOD)
of the assay is 3000 pg/mL. The rationale for using cTnI instead of cTnT was because the
former is cheaper, more accessible from a commercial point of view and most important of
them all because it is released from less damaged cardiomyocytes [13] allowing to prevent
or even mitigate unnecessary myocardial damage. Current clinical troponin cut-off values
vary depending on the sensitivity of the assay [14–17]. In this manuscript, the samples
were classified as normal or abnormal according to the threshold value commonly used for
sensitive troponin assays, 0.03 µg/L [18]. A total of 45 samples (37%) had abnormal clinical
values. The sensor employed was an off-the-shelf graphene screen-printed electrode,
see Figure 1, which was functionalized with the corresponding antibodies following the
recommendations of the supplier. The current-potential measurements at the surface of
the sensor were performed using a Autolab PGSTAT 204 potentiostat/galvanostat device
(MetroOhm, Runcorn, UK) [19]. These ranged from −1 to 1 V with a 5 mV step and were
recorded in the following scenarios: (i) sensor + PBS, (ii) sensor + coating, (iii) sensor +
coating + blocking and (iv) sensor + coating + blocking + troponin. These scenarios will
be denoted from 1 to 4. To simulate potential variability between measurements all the
processes were performed manually.
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Figure 1. Schematic representation of the screen-printed electrodes used in this study.

The resulting potential-current curves for each sample were processed by the feature
extraction algorithm developed by the authors using MATLAB software [20] and capable
of identifying 60 different features. This process was followed by a normalization process
of all variables. Statistical analyses (i.e., normality tests, Mann-Whitney U test and logistic
regression model) were performed using IBM SPSS software v.24 (SPSS Software, Chicago,
IL, USA) [21]. Figure 2 schematically illustrates the methodology used in this manuscript.
The performance of the developed logistic regression model was evaluated making use of
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the confusion matrix and a broad number of key performance indicators (e.g., accuracy,
specificity, recall or sensitivity, precision or positive predictive value (PPV), area under the
curve (AUC), negative predictive value (NPV), F-Score, Youden index (YI), likelihood ratio
positive (LR+), likelihood ratio negative (LR−) and diagnostic odds ratio (DOR)) [22–24].
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Figure 2. Description of the methodology followed in the manuscript.

The recall or sensitivity and precision or PPV are two very important parameters to
assess the performance in identifying positive samples (i.e., in this case clinically abnormal
samples). The former is the portion of real positive cases that are correctly predicted
positive while the latter denotes the portion of predicted positive that is correctly real
positive. On the other hand, the specificity and the negative predictive value (NPV) are
respectively homologous of the two previously described parameters but assessing the
performance of the model regarding its capability to identify the negative values or healthy
subjects. Moreover, accuracy and F score are two frequently used parameters to assess
overall performance. Accuracy is the portion of truly identified cases, independently of
being positive or negative, from the total number of samples. The F score is the harmonic
mean between PPV and sensitivity. Out of the three different types of averages that
can be calculated (i.e., arithmetic, geometric and harmonic), the harmonic average is the
most conservative of them all. The area under the curve (AUC) was also considered and
calculated after performing a receiver-operator curve (ROC) analysis, in particular, the
precision-recall plot. A higher AUC indicates that the model has a better capability to
distinguish between clinically normal and abnormal samples. The likelihood ratio is a
very valuable indicator to determine the accuracy of the diagnosis and is defined as the
ratio of samples clinically abnormal and those considered as normal. LR+ is the best
indicator for ruling-in diagnosis and vice-versa for LR−. The DOR is also a good indicator
to measure the accuracy of the diagnosis. It is used to compare different diagnoses and
is strongly dependent on the sensitivity and specificity of the model. Finally, YI is one of
the oldest parameters to evaluate the diagnostic accuracy and can also be used to evaluate
the discriminative power of several diagnosis methods. The closer it is to 1 the more
discriminative it is.

3. Results
3.1. General Results

Initially, normality tests were performed on all the extracted features or variables. The
results confirmed the lack of normal distribution. The following step was to identify the
existence of significant differences between the readings of the different scenarios. To do so,
the Mann-Whitney U test was performed to compare the readings between scenarios 1 and
4 and 3 and 4, see Table 2. Only the results of the variables included in the resulting logistic
regression model (see Section 3.2 Logistic Regression Model) have been presented. The
results of the remaining variables are available in Tables S1 and S2 of the Supplementary
Files. The variables denoted as V1, V2 and V3 are greater for scenario 4 (V1: 52.75, 43.12;
V2: 52.67, 42.96; V3: 40.13, 37.85) than 1 (V1: 15.44, V2: 15.59, V3: 39.74) or 3 (V1: 13.50, V2:
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13.94, V3: 28.72) and only significant differences (p-value = 0.000) were observed for V1
and V2 when comparing scenarios 1 with 4 and 3 with 4, see Table 2.

Table 2. Mann-Whitney U test: differences in ranks between relevant scenarios.

Variables Scenario 1 Scenario 4 Mann-
Whitney Scenario 3 Scenario 4 Mann-

Whitney
Ranks Sum Ranks Sum p-Value Ranks Sum Ranks Sum p-Value

V1 15.44 417.00 52.75 2743.00 0.000 13.50 243.00 43.12 2242.00 0.000
V2 15.59 421.00 52.57 2739.00 0.000 13.94 251.00 42.96 2234.00 0.000
V3 39.74 1073.00 40.13 2087.00 0.942 28.72 517.00 37.85 1968.00 0.101
V4 44.44 1200.00 37.89 1960.00 0.215 40.94 737.00 33.62 1748.00 0.186
V5 46.74 1262.00 36.50 1898.00 0.060 39.83 717.00 34.00 1768.00 0.295

3.2. Logistic Regression Model

The stepwise procedure was used to determine the logistic regression model capable
of classifying the samples as normal or abnormal. Equation (1) is the governing equation
of the model and the coefficients of each variable are listed in Table 3. All variables except
V4 (p-value >0.05) are significant. As expected, V1 and V2 are the major contributors to
the model.

y = cte1 × v1 + cte2 × v2 + cte3 × v3 + cte4 × v4 + cte5 × v5 (1)

Table 3. Summary of the logistic regression model.

Variables B Standard Error Sig.

V1 −31.356 15.141 0.038
V2 43.863 17.369 0.012
V3 5.150 1.366 0.000
V4 −3.361 3.008 0.264
V5 −8.577 2.103 0.000

Constant 2.429 1.098 0.027

To evaluate the performance of the model the confusion matrix was calculated (see
Table 4) as well as several relevant performance indicators (see Table 5). Based on these re-
sults, the model can be considered to accurately distinguish between normal and abnormal
values (93%), specificity (94%) and accuracy (94%) levels. Moreover, the model also has a
high precision or PPV (92%), NPV (94%), recall (94%) and F-Score (92%). The AUC of the
precision-recall curve is equal to 97%, see Figure 3. Additional parameters to evaluate the
discriminative power of the model were also calculated. Parameters like the LR+ (16.38),
the LR− (0.08), the DOR (201) and the YI (0.87) reveal the high discriminative power of the
model.

Table 4. Confusion matrix of the proposed model.

Prediction Accuracy
Observations Normal Abnormal %

Normal 67 4 94
Abnormal 4 48 92

Total 94
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Table 5. Performance of the diagnostic model according to several key performance indicators.

Performance Indicators. Value

Accuracy 94.00%
Specificity 94.37%

Recall = Sensitivity 92.31%
PPV 92.31%
NPV 92.31%
AUC 97.00%

F-Score 92.31%
YI 0.87

LR+ 16.38
LR− 0.082
DOR 71.64%

PPV: positive predictive value, NPV: negative predictive value, AUC: area under the curve, YI:
Youden Index, LR+: Likelihood ratio positive, LR−: Likelihood ratio negative, DOR: diagnostic odd
ratio.
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Finally, it is worth noting that the processing time of this algorithm is less than one
minute on a conventional laptop and therefore making it feasible to be implemented in
smart wearable devices with similar processing capabilities can be embedded in wearable
devices without a significant increase in manufacturing cost.

4. Discussion

The main objective of this study is to develop a detection algorithm oriented to
electrochemical biosensors, for long-term real-world monitoring, which can accurately
stratify the risk of a patient suffering myocardial injury or tissue necrosis and applicable
to current clinical practice. This algorithm has shown a promising high performance
according to a broad number of indicators and has a turnover time of less than one minute
in a conventional laptop, making it feasible to be easily implementable in wearable devices
for home-based care.

The gold standard method to diagnose ACS (stable and unstable angina, myocardial
infarction) is based on the measurement of troponin levels in blood samples because this
contractile protein has shown to have the highest diagnostic and prognostic capability in
comparison with the other cardiac biomarkers identified over the past four decades of
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research [16,17]. According to recently published guidelines [18], patients with suspicion
of ACS will be ruled-in of the ED if the troponin levels are at least “one value higher than
the 99th percentile value” or by the contrary ruled-out after the first negative troponin
measurement. In other words, the admission or discharge of a patient will be decided
after comparing his troponin levels with a clinical decision cut-off value. Consequently,
this parameter is key in current clinical practices. This is corroborated by the fact that the
recommended reperfusion therapies are based on the type of ACS (e.g., mainly diagnosed
based on troponin levels and electrocardiogram (ECG)) and on other complementary crite-
ria (e.g., patient suffering contraindications, acute heart failure, hemodynamic instability
or cardiogenic shock, persistent chest pain, life-threatening arrhythmias or cardiac arrest
and time from symptoms) [16].

Current clinical cut-off values are established based on the sensitivity of the troponin
assay and not according to gender, age, disease or comorbidities. The general reference
values are approximately 0.03 µg/L and 0.06 ng/L for sensitive and high-sensitive assays,
respectively. However, in the latter group, the sensitivity is so high that this value may vary
among manufacturers due to the patient distribution and prevalence of the disease in the
studied cohort. Regrettably, this has a greater impact on high-risk patients (e.g., diabetic
patients, chronic kidney disease patients, elderly patients and heart failure patients) which
demand a rapid and secure diagnosis and it might not be achievable due to abnormal
baseline values or even because of asymptomatic conditions. Using personalized data
acquire from minimally invasive wearable solutions can overcome these inconveniences
and save health care expenditure by reducing the event to diagnosis time delay, crucial in
this time-dependent life-threatening scenario, and the use of unnecessary resources [5].

Electrochemical sensors due to cheap manufacturing and high capacity for miniatur-
ization can be ideal for the development of point of care devices or even wearable devices
to monitor troponin levels in blood samples. Multiple efforts have been made in improving
the biosensor component. One of those approaches is based on the development of different
immobilization strategies or working principles. In Table 1 is summarized a list of them.
However, this approach can be associated with high research and development costs and
might not contribute to developing trustworthy wearable tools for home-based care. For
example, a recently published systematic review with meta-analysis revealed that there is
no conclusive evidence to suggest that high-sensitive troponin assay outperforms sensitive
assays for free-risk ACS exclusion [25]. In contrast, limited efforts have been dedicated
to the development of new detection algorithms which also play a relevant role as they
are responsible to translate the changes in the measured signal(s) into troponin concentra-
tion. Even though some machine learning algorithms have been recently published [9,12],
specially oriented to applications where multiple analytes must be identified for decision-
making, the calibration method remains the most popular of them all. However, it has
major drawbacks for its implementation in telemonitoring or wearable tools.

To overcome or minimize these limitations the authors have developed a new detection
algorithm that can increase the accuracy and safety of wearable solutions for long-term
real-world monitoring and suitable for current clinical practice. The proposed algorithm is
made up of two key components: feature extraction and variable normalization algorithm
and the logistic regression model to classify samples as clinically normal or abnormal based
on a clinical cut-off value.

The feature extraction and data normalization algorithm are capable of identifying
60 features from the resulting current-potential curve generated from a cyclic voltammetry
test. At this initial stage of development, it is recommended to extract numerous features
not only to ensure the accuracy of the algorithm but especially to be accurate and robust
enough when tested in real human samples. A robust and accurate algorithm will not
only improve the biosensor but will transform a wearable device or a telemonitoring
tool into a trustworthy home-based care solution. Some of the extracted features present
significant differences between scenarios (i.e., sensor + PBS, sensor + coating, sensor +
coating + blocking and sensor + coating + blocking + troponin). In particular, V1 and V2
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are significantly greater in scenario 4 than in scenario 1 or 3, see Table 2. The other three
variables (V3, V4 and V5) are also higher in scenario 4 than in any other one even though
this difference is not statistically significant. This finding is relevant not only to contribute
to the development of the logistic regression model but also to evaluate the state of the
biosensor through timely scans.

The resulting logistic regression model is the key element of this detection algorithm
and was determined after applying the stepwise method in SPSS. The reference value for
sensitive assays was used as the current clinical decision threshold in this manuscript,
0.03 µg/L. The resulting equation, Equation (1), is made up of five variables or predictors.
All except V4 (p-value > 0.05) are significantand as expected V1 and V2 are the major
contributors, see Table 3. The model has a high performance according to the confusion
matrix and to a broad number of calculated performance indicators, see Tables 4 and 5,
respectively. The accuracy, specificity, sensitivity, precision, recall and F-score are all over
90%. The fact that precision, recall and F-score are similar reveals that the model is balanced.
In other words, the number of false-negative and false-positive are in both cases low and
similar as it can be appreciated from the confusion matrix. The slight difference in accuracy
in favor of the normal samples could be explained by the fact that the model was developed
using an unbalanced dataset. By doing so the authors mimic the reality of ACS diagnosis in
ED. In the UK, 70% of the patients with chest pain are discharged from ED. This percentage
increases to approximately 90% in the USA [3,26].

Additional indicators commonly used to evaluate diagnostic tests were also calcu-
lated [22–24]. The LR+ and LR−measure the influence of a result on the probability while
the DOR estimates the discriminative ability of the test. In this case, the indicators yield
16.38, 0.082 and 201, respectively. According to Ana-Maria Simundic et al. [23], LR+ and
LR−values above 10 and below 0.01 suggest a good discriminative model. This is corrobo-
rated with a YI (0.866) close to one and by the AUC (97%) of the precision-recall curve, see
Figure 3.

This algorithm can also be easily tailored, based on personalized data, by modifying
the cut-off value to better adapt to the needs and circumstances of the patient. In this
context, the performance of the model was evaluated for several cut-off values. According
to sample distribution, no changes are expected for cut-off values ranging between 0.03–
0.06 µg/L. However, If the value is increased to 0.1 µg/L the performance of the model
decreases, see Table S3 and Figure S1 of the Supplementary Material. Despite an AUC of
the precision-recall curve equal to 88% the accuracy calculated from the confusion matrix
(92% and 42% for normal and abnormal samples, respectively) was not as desired as it
should be for this life-threatening scenario. This unbalanced performance could contribute
to increasing the number of visits to the ED by rising the number of false-positive.

According to the aforementioned findings, the algorithm not only has shown good
performance in classifying between normal and abnormal samples, over a broad range
of cut-off values, but also the capability of differentiating the conditions of the biosensor
between scenarios. While the former can contribute to tailoring each device based on
personalized data (e.g., age, gender, disease and comorbidities), the latter can be used as a
quality management test to ensure the correct state of the biosensor before performing the
corresponding readings. Both features indeed contribute to the development of trustworthy
wearable or telemonitoring tools for long-term and real-world monitoring which can be
implemented in current clinical practice. Even though the sample size is relatively small,
and that some performance is expected to be lost when tested with real human blood
samples, the preliminary results suggest that it is worth to pursue its development and
optimization.

5. Conclusions

The proposed algorithm has a performance greater than 90% in stratifying the risk of a
patient from suffering myocardial damage/tissue necrosis by measuring biomarker levels
in small-volume biological samples, it has also shown its ability to work as a quality control
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tool by detecting differences in the surface of the biosensor and is aligned with current
clinical practices. These not only mitigate the limitations of the calibration curve procedure
but more important of all contributes to the development of trustworthy wearable tools
for long-term and real-world monitoring oriented to home-based care. More research
is indeed needed to optimize its performance in real blood samples and in making it
broadly applicable. This latter is an expensive and complex task because of the lack of
standardization in the field of biomarker assays.

Supplementary Materials: The following are available online at https://www.mdpi.com/2306-535
4/8/2/28/www.mdpi.com/xxx/s1, Figure S1: Precision-recall curve and the calculated area under
the curve (AUC) for a cut-off value of 0.1 µg/L, Table S1: Mann-Whitney test for scenario 1, 3 and 4,
Table S2: Mann-Whitney test for clinically normal and abnormal samples, Table S3: Confusion matrix
for the proposed algorithm but with a cut-off value of 0.1 µg/L.
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