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Abstract: Third generation biofuels and high-value bioproducts produced from microalgal biomass
have been considered promising long-term sustainable alternatives for energy and/or food produc-
tion, potentially decreasing greenhouse gas emissions. Microalgae as a source of biofuels have been
widely studied for bioethanol/biodiesel/biogas production. However, critical research is needed
in order to increase the efficiency of microalgae production from high-N agri-waste, not only for
biofuels but also for bio-based products, and thus enhance its commercial viability. The growth in the
poultry industry has led to increased chicken manure (CM), which are rich in ammonia, phosphate,
potassium, and other trace elements. These constituents could be used as nutrients for growing mi-
croalgae. In this research, a two-stage (liquid–solid) anaerobic digester treating CM at 20 ± 1 ◦C was
performed, and liquid digestate (leachate) obtained after the digestion process was used as a substrate
to grow the microalgal strain Chlorella vulgaris CPCC 90. Considering the high-N content (NH3-N:
5314 mg/L; TKN: 6197 mg/L) in liquid digestate, different dilutions were made, using distilled water
to obtain viz. 10%, 30%, 50%, 70%, 90%, and 100% of the digestate concentrations for the microalgae
cultivation. Preliminary results showed that Chlorella vulgaris CPCC 90 was able to grow and utilize
nutrients from a 10% diluted CM digestate. Future research is underway to enhance microalgal
growth at higher digestate concentrations and to optimize the use of microalgae/microalgae-bacteria
consortia for better adaptation to high-N content wastes. An AD-microalgae coupling scenario has
been proposed for the circulation bioeconomy framework.

Keywords: anaerobic digestion; ammonia; bacteria consortia; bioproducts; Chlorella vulgaris; microalgae

1. Introduction

Canada’s commercial chicken and turkey meat production was over 1.43 billion
kilograms in 2018 and the demand for poultry meat production as the most consumed
meat animal protein source is growing at an average rate of around 2.3% annually [1].
In order to process this high volume of manure, appropriate manure management strategies
are necessary. The potential impact of disposing untreated chicken manure (CM) in
the environment is one of Canada agriculture’s major challenges, considering its high
volume and its concentrations. The treatment of poultry wastes has gained attention for
its environmental impact mainly due to its high organic and high nutrients, including
nitrogen (N) and phosphorus (P) loads. Specifically, the excess content of nitrogen in CM
contributes largely to environmental pollution through nitrate discharge to surface and
ground water bodies, and ammonia or NOx emissions to the atmosphere [2].

A broad range of CM treatment technologies have been reported, such as anaerobic
digestion, direct combustion, extruding, and rendering [3–6]. Among these technolo-
gies, anaerobic digestion (AD) can play an important role in the management of CM,
as, unlike other techniques, it is comparatively a low-cost process for livestock farming
and relatively easy to apply in farms [3]. AD process can provide an alternative to land
application through solving specific problems, such as odors, pathogens, water pollution,
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greenhouse gas (GHG) emissions, and phosphorus and heavy metal contamination of soils,
to some magnitude. This method has rarely been industrialized for raw CM treatment
due to the problems associated with its high amounts of total solids (TS) and ammonia
concentrations, which can inhibit methanogenic archaea [7]. Despite the effectiveness of
the AD process, land application of CM digested materials still contain organics and excess
nutrients that could lead to ammonia emissions, groundwater pollution or eutrophication
of lakes as a result of rainwater runoff. Recovering nutrients (N, P) from nutrient-rich CM
digestate after the AD process could solve the aforesaid problem.

Production of photosynthetic micro-organisms, or microalgae, has been the subject
of interest in many recent studies due to its capability to grow and multiply rapidly by
taking up various forms of nutrients from water, including N, P, and K, and yielding
organic exploitable biomass [8–10]. Despite the promising advantages that microalgae
proposes, in reality, its overall worldwide production is around 15,000 t/y annually [11],
in contradiction with its potential demand. One major reason behind this low production
is the necessity for large amounts of nutrients, including N and P, for mass production
of microalgae. Approximately 5 t of N and 1 t of P are required to produce 100 t of
microalgae [12]. This high amount of required nutrients limits microalgae mass production.
Therefore, integrating microalgae production with other waste treatment technologies,
such as AD, is becoming fascinating and vital for livestock sectors since it recovers valuable
nutrients to be employed as new means of agricultural income. This integration offers
additional benefits, such as the ability of microalgae to remove heavy metals, organic matter
and inorganic nutrients [13,14], which provides cleaner effluent for further treatment stages
leading to lowering the cost of wastewater treatment. It also provides a promising cost-
effective option not only for tackling the high ammonia content issue but also providing
long-term sustainable alternatives for energy/food production.

In addition to the environmental importance of microalgae cultivation, there are many
studies and industrial reports describing the economic benefits of this practice through
providing numerous applications, such as biofuels and biodiesel production, human food
supplements, animal and aquaculture feed additives, bio-control of pathogens and pests,
and soil treatment and fertilizer [15–17]. Among all these benefits, producing algal biofuel
has gained the most attention by researchers and business investors. Producing biofuels from
microalgae, however, still is not economically viable due to various hurdles, such as high
costs associated with cultivation and harvesting per unit area, huge amounts of nutrients
and supplements needed, efficient oil-extraction processes as well as physical–chemical
conditions, which need to be carefully adjusted and monitored in order to increase the
oil content of microalgae [16]. For this reason, an alternative approach must be consid-
ered for utilizing microalgae in farms in order to provide the basis for a circular bioe-
conomy. The utilization of AD effluent of animal waste as the sole nutrient source for
producing microalgae has previously been reported. There is considerable literature on
recovering anaerobically digested swine manure using microalgae [18–22]. A number of
studies have reported the growth of microalgae from digested dairy wastewater [9,23,24].
Although there is extensive research on the utilization of dairy and swine digestate to grow
microalgae, very limited research has been done on using CM digestate as a sole nutrient
for microalgae growth [25,26]. Though several microalgal strains have been used to treat
the diluted digestate, Chlorella sp. make the best candidate as they are widely cultured to
produce food and biofuels, and are capable of both autotrophic and heterotrophic growth
whenever an appropriate carbon source is provided [27]. Furthermore, the Chlorella sp.
have a higher growth rate in the anaerobic-digested effluent (with 80–100 mg L–1 ammonia
nitrogen) [9,28] and it also outperforms other species with regards to nitrogen removal [25].
It is evident that this approach has been studied for different forms of agricultural and
animal wastes, while it has been rarely investigated for poultry waste. Poultry manure
contains significant amounts of inorganic and organic P. At the same time, high concentra-
tions of ammonia in CM digestate will disrupt the growth conditions for microalgal strains.
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In addition, the highly variable chemical composition of CM digestate makes it a more
challenging medium to grow microalgae.

Thus, the coupling of microalgae cultivation with the anaerobic digestion of CM
was proposed in this study for energy recovery and nutrient supply. AD would poten-
tially function as a detoxification step prior to microalgae cultivation [29]. Organic pol-
lutants, which are known to be toxic to algal growth, can be degraded during digestion;
thus, a lower dilution ratio of the CM digestate (leachate) can be used for microalgae culti-
vation. Organic carbon in the CM digestate can also be recovered as methane-rich biogas,
whereas the N and P in the digestate can compensate for the cost for algae cultivation.
In this perception, the main objective of this work is to determine the feasibility of growing
microalgae using a CM digestate (leachate) rich in ammonia, obtained from a laboratory
scale, two stage (liquid–solid) anaerobic digester. Preliminary investigations have been
conducted at the laboratory scale primarily to evaluate the adaptability of a microalgal
strain to anaerobically digested CM, and to evaluate the tolerance of microalgae to the
CM digestate. Furthermore, the proposed work, by coupling AD–microalgae cultivation,
is expected to provide unique, science-based knowledge that can be used as an ideal
agricultural waste bio-refinery model toward a circular bioeconomy concept to achieve
substantial economic and environmental benefits, and therefore, reduce environmental
risks associated with excess nutrients and GHG emissions.

2. Materials and Methods
2.1. Anaerobic Digestion: Feedstock, Inoculum and Experimental Set-Up

In this study, raw CM and, subsequently, the anaerobically digested liquid leachate
were used as feed for AD and the microalgae cultivation process, respectively. The liq-
uid portion of the digestate (leachate) was obtained from ongoing two-stage high-solid
anaerobic-digestion (HS–AD) systems treating CM rich in solids and ammonia. For the
HS–AD process, the raw CM was sourced from a small-sized poultry farm located in
Farnham (Quebec province). The CM collected from a pile of waste litter, consisted of
wood shavings as bedding. The liquid inoculum used in the start-up phase of HS–AD was
obtained from our ongoing laboratory-scale liquid sequencing batch AD, adapted to CM
leachate with high ammonia concentrations (5–7 TAN/L).

The experimental set-up consisted of two-stage (liquid–solid) anaerobic digesters
(i.e., liquid inoculum reservoir coupled with the HS–AD system) for processing CM at
20 ± 1 ◦C. A set of digesters in triplicate with a total volumetric capacity of 40 L were
operated in parallel. A set consisted of 2 digesters—one for the liquid inoculum reservoir
and the other for HS–AD. The operational details of the two-stage AD process have been
presented in our previous work [30]. The operational feasibility of the HS–AD process treating
CM were experimented in 4 consecutive batch operations (cycles). For each operational phase,
a cycle length of 70 d was maintained, and the organic load rate (OLR) was increased in
a step-wise manner from Phase 1 to 4. At the end of each cycle of operation, the adapted
inoculum was retained within the digesters for subsequent operation to expedite the digestion
process. Characteristics of CM raw samples and liquid digestate (leachate) obtained after the
HS–AD process from a typical batch operation are shown in Table 1.
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Table 1. Physicochemical characteristics of raw chicken manure (CM) and liquid digestate (leachate).

Parameter Raw CM Liquid Digestate (Leachate)

Alkalinity (mg/L) 5.393 21,405
pH 7.73 7.76

NH3-N (mg/L) 5913 5314
TKN (mg/L) 25,652 6197

Total solids (w/w %) 69.87 2.8
Volatile solids (w/w %) 61.09 1.44

Total COD (mg/L) 864,375 35,557
Soluble COD (mg/L) 291,149 30,685

Volatile fatty acids (mg/L) 25,456 11,812

2.2. Microalgae Cultivation Protocol

Due to the existence of high nitrogen concentration and pathogens in CM, it was
critical to find a strain that has high adaptation capabilities to different environments.
Chlorella vulgaris CPCC 90 was selected, as it has been reported to be a high adaptive strain
and, also, it has high photosynthetic ability, which makes it an ideal candidate [15,22].
The microalgae Chlorella vulgaris was obtained from the Canadian Phycological Culture
Centre, Waterloo, Canada. The strain was provided growth on Bold’s basal medium (BBM)
(15 mL) and was stored at 4 ◦C.

In the next step, Chlorella vulgaris was transferred to a sterile Bold’s basal medium
(BBM) supplemented with a vitamin solution to allow the propagation of the microalgal
strain for further experiments. Sterile BBM was also obtained from the Canadian Phyco-
logical Culture Centre, Waterloo, Canada. To prepare the medium for each experiment,
10 mL of the concentrate medium plus 1 mL of Stock 5 solution was added to 989 mL of
Mili-Q water. Then, the pH was adjusted to 6.8 with the addition of 1N HCl or 1N NaOH,
if needed. Then, the medium was autoclaved and stored for further experiments.

Different dilutions of the liquid digestate were prepared for experimentation to inves-
tigate the impact of high N concentration. In this regard, the digestate was diluted using
distilled water to prepare six different digestate concentrations viz. 10%, 30%, 50%, 70%,
90% and 100% (i.e., no dilution). Then, each sample was autoclaved at 121 ◦C for 20 min.

Growth conditions for all the experiments were adjusted as follows: temperature
= 20 ± 0.5 ◦C, pH of the growth medium = 6.8, photoperiod = continuous lighting (cool-
white fluorescent bulbs), agitation = 70 rpm, aeration = not needed (for small volume
cultures as in our case), and inoculation ratio from original culture to sub-cultures = 1:10 ratio.
Under these circumstances, 5 to 7 days were required for Chlorella vulgaris CPCC 90 to
completely grow on sterile BBM media. However, this period could change according to
the type of media and the growth conditions (for example, a higher temperature of up to
25 ◦C may lead to higher growth rates [31]).

After obtaining enough growth of Chlorella vulgaris CPCC 90, the propagated strains
were used to grow on the liquid digestate from the anaerobic biodigesters at a digestate–
strain ratio of 1:5, as shown in Figure 1.
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2.3. Analytical Methods
Physicochemical Parameters of CM Leachate

The raw CM and liquid digestate samples were analyzed for pH, alkalinity, total solids
(TS), volatile solids (VS), total COD (TCOD) and soluble COD (SCOD) as per the standard
methods [32]. The pH and alkalinity were measured using pH Mettler Toledo AG 8603,
SevenMulti (Schwerzenbach, Switzerland) and Hach Lagne Sarl, Titralab AT1000 Series
(Hach, Switzerland), respectively. COD was measured by using a closed reflux colorimetric
method [32]. TKN and NH3-N were analyzed using a 2460 Kjeltec Auto-Sampler System
(FOSS, Sweden) following the macro-Kjeldahl method [32]. Volatile fatty acids (VFAs)
were determined using a Perkin Elmer gas chromatograph, model Clarus 580 (Perkin
Elmer, Shelton, CT, USA), mounted with a DB-FFAP high-resolution column, but before
the evaluation of VFAs, samples were conditioned according to the procedures mentioned
by [33]. Samples collected from digesters were first centrifuged at 41× g for 15 min and
filtered through a 0.22 µm membrane before being injected, and the injection volume was
0.1 µL. The biogas production and its composition were monitored regularly for both the
liquid and solid digesters. The production rate was monitored every day using the wet tip
gas meters, and its concentrations were analyzed thrice a week using a gas chromatograph
(Micro GC 490, Agilent Technologies, Santa Clara, CA, USA) equipped with a thermal
conductivity detector (TCD) and helium gas as the carrier gas at a flow rate of 20 mL/min.
The injector and oven temperatures were 110 ◦C and 180 ◦C, respectively.

3. Results and Discussion
3.1. Performance of Two Stage High Solids Anaerobic Digestion

As mentioned in the previous sections, microalgae cannot grow directly on the un-
treated CM, as it contains high concentrations of ammonia as well as highly variable
chemical compositions. Therefore, the feed for the microalgae needs to be processed. In this
study, the raw CM was treated using a two-stage (liquid inoculum reservoir coupled with
HS–AD) AD process, which was adopted as a pre-treatment for microalgae cultivation.
The digesters were operated for a total period of 280 days in four batch operations (cy-
cles), and each batch operation was conducted for a 70 d cycle. Operational parameters,
such as organic loading rate (OLR), cycle length/treatment period, operating temperatures,
recirculation–percolation rate and frequency, and the mode of operation, were controlled,
as they have a direct influence on the performance of the two-stage AD process. In ad-
dition to this, the effect of ammonia concentrations on the digester’s performance was
also given priority. The fundamental reason behind considering all the above-mentioned
parameters was to have a stable AD operation. Subsequently, the digestate can be viably
used to cultivate microalgae with minimal inhibitions. Furthermore, successful operation
of the AD process could eventually generate more suitable digestate for microalgae pro-
duction. Therefore, the operational stability in terms of biogas quantity, CH4 concentration,
specific methane yield (SMY), NH3-N concentration, VFA, TS, VS and COD (both TCOD
and SCOD) was monitored.

An example of the results obtained from a typical cycle of operation is presented in
Table 2, whereas Figure 2a–d depicts the performance of the digesters (in triplicate).

Table 2. Average values of a two-stage digester.

Cycle Length Cumulative
Biogas (L)

Cumulative
Methane (L)

Methane Content
(%)

SMY (L CH4/ g
VS) OLR (gVS/L.d)

70 days 578 ± 42 382 ± 31 70 ± 11 0.46 ± 0.05 8.7
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removal of TS, VS, TCOD and SCOD for a typical cycle length of 70 days.

From Figure 2a,b, it is evident that the volumetric combined biogas production im-
proved with time; their corresponding methane concentrations for all three identical
digesters increased more or less steadily and eventually reached the plateau after 70 days.
Thus, there is a clear indication of the smooth operation of the digesters, which has been
further justified by the presence of very low amounts of free NH3-N i.e., 325 mg/L (data not
shown here), which is within the threshold value of 500 mg/L [30]. Furthermore, SMY of
0.46 ± 0.05 indicates the richness in the methanogenic communities without any potential
inhibitions. Another widely accepted indicator for digester stability is the total volatile
fatty acids (TVFA) and Total Alkalinity (TA) ratio. Typically, the TVFA/TA ratio less than
0.8 indicates stable digester operation. In our study, data shows that TVFA/TA ratio
remains well below 0.8, indicating that the digesters were operating favorably without the
risk of acid accumulations. However, due to the fact that microbes are well acclimatized,
there is no evidence of VFA accumulation (data not shown here) observed over that period,
thus, they produced steady state methane production. It is clearly understood that the
digesters were not facing any visible inhibition despite high ammonia and high solid
contents present on the CM. The proposed method of HS–AD also showed a significant
reduction (percentage removal) of TS (66%), VS (61%), TCOD (78%), SCOD (92%) and
TVFA (60%) as shown in Figure 2d.

Although the concept of HS–AD proposed here reduces the organic loading signifi-
cantly, still the digestate contained a significant amount of organic matter. For example,
the VS, SCOD and TVFA content of the digestate was still as high as 190 g/L, 21.91 g/L
and 10.15 g/L, respectively. Additionally, useful nutrients were present within the liquid
digestate. Henceforth, a post-treatment such as microalgae cultivation was proposed to
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have an additional treatment, to find the best way to utilize the nutrients present in the
liquid digestate and convert them to an exportable quality since microalgae has several
benefits or downstream applications, such as fertilizer, bio-products and so on (refer to
Section 3.3). Therefore, microalgae post-treatment was chosen and discussed further.

3.2. Growth of Microalgal Strain Chlorella vulgaris CPCC 90
3.2.1. Growth Curve of the Algal Strain

Results showed that Chlorella vulgaris CPCC 90 was able to grow and utilize nutrients
from 10% diluted anaerobically digested CM. Any higher concentration of CM leachate
showed an inhibitory effect on algal growth as reported previously [34]. The growth of
Chlorella vulgaris CPCC 90 was estimated by using two methods: hemocytometer and plate
reader. However, the hemocytometer assay was not effective as a result of the presence of a
lot of impurities in the CM, which interfered with the algal count; therefore, the plate reader
spectrophotometer assay was used. The spectrophotometer plate reader was adjusted at
680 nm absorbance and the algal growth was monitored every five days over a period
of 35 days as the incubation period. The growth curve of the algal strain on the CM is
illustrated in Figure 3.
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3.2.2. Algal Incubation Experiments: Digestate Characteristics

Characteristics of the digestate before and after the algal incubation experiment are pre-
sented in Table 3. According to the basic formulation of microalgae (C106H263O110N16P) [8],
it contains between 8.3% and 9.8% nitrogen and between 0.52% and 0.69% phospho-
rus in the biomass, which necessitate the availability of N and P for microalgae growth.
Although most of the nitrogen in the CM is in organic form, under anaerobic conditions,
this organic nitrogen could be converted to ammonia, which proved to be a more effective
source of nitrogen for algal cell growth [35].

Table 3. Digestate characteristics from the algal incubation experiments.

Parameter Initial CM Digestate
Concentration *

Final Value of CM Digestate after
Microalgal Treatment Removal Efficiency (%)

NH3-N (mg/L) 531 3 99.4
TKN (mg/L) 619 91 85.3

Total COD 3555 1970 44.6
Volatile fatty acids 1181 304.6 74.2

Total solid (w/w %) 0.28 0.158 43.5
Volatile solid (w/w %) 0.144 0.112 22.2

* Note: ‘Substrate initial value’ represents the concentration of each item in 10% diluted CM liquid digestate (leachate); and the ‘Final value’
represents the concentration of the resultant digestate after the 35 d incubation period, which is the difference between ‘Algae+CM leachate’
and ‘Algae alone’.
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As seen in Table 3, considering the CM digestate removal efficiency, the microalgal
strain presents great potential for consuming the nutrients and, thus, removing them from
the digestate. The ammonia and total Kjeldal nitrogen removal rates were observed to
be in the range of 99% and 85%, respectively. The total removal of nitrogen was higher
mainly due to the pH fluctuations during the microalgae incubation period, which leads to
ammonia gasification.

Carbon is another essential source for algal growth. COD removal rate was in the
range of 44.6%, which confirms the capability of microalgal strain to consume organic
substrates in the leachate as a carbon source and thus, their growth can effectively remove
COD from the leachate sample.

In addition, the Chlorella vulgaris strain shows the ability to utilize volatile fatty
acids (VFAs) as a carbon source for lipid accumulation and promote algal growth [36].
As presented in Table 3, the VFA removal rate was 74.2%, which is in accordance with
previous studies [37].

3.3. Integration of AD and Microalgae Cultivation: Economic Considerations and
Future Directions

The high nutrient content of CM suggests that these materials could be utilized as a
source for producing further value-added products, providing more benefits for farming
to be able to complete a sustainable circular bioeconomy. At the same time, the increasing
interest in the commercial microalgae production industry could enhance the competition
of this sector with the agricultural industry over using inorganic fertilizers as nutrients
for growth. This will result in the fact that using inorganic fertilizers for producing
microalgae may become an economically unviable option. Thus, using abundant nutrients
that exist in animal manure to grow microalgae can provide a cheaper source of necessary
nutrients, while helping the agricultural sector in managing surplus wastes. In this regard,
utilizing CM as a nutrient source for growing microalgae has high potential, as it is rich in
ammonia, phosphate, potassium, and other trace elements [38].This potential resulted in
numerous studies integrating microalgae production with anaerobic digestion of animal
manure. However a limited number of studies on the coupling of anaerobic digestion of
CM with microalgae production have been reported. Duangjan et al. [26] investigated
the production of a microalgal strain (Scenedesmus sp.) using different concentrations
of anaerobically digested CM. Results showed that the optimum concentration for algal
growth was 12–25%. The produced microalgae showed to be suitable for lipid production.
Singh et al. [25] studied the production of microalgae consortia as a successful process to
be integrated with anaerobic digestion of poultry litter. Their results confirmed that 6%
(v/v) concentration of anaerobically digested poultry litter could be used as a microalgae
growth medium. The algal biomass, being rich in protein and low in lipid, could make it a
suitable candidate for use as an animal feed supplement [28], provided that the pathogens
and other contaminations are eliminated.

Given the high nutrient content of CM, proper management of this valuable “resource”
financially contributes to the sustainable agricultural practices by providing valuable com-
modities for farmers. Theoretically, harvesting the available nutrients in CM by exploiting
the existing technologies is sufficient to produce enough by-products for the farmers and
generate more income. As reported by Hansen [39], a typical poultry farm usually pro-
duces between 19 and 46 kg of manure annually per chicken with an average of 33 kg/y.
The average nutrient content per ton of CM is presented in Table 4 [39].

Table 4. Average nutrient content per ton of CM.

Manure Type Nitrogen (kg/t) Phosphorus (kg/t) Potassium (kg/t)

Broiler litter 26.7 28.5 18
Hens (laying) 16 19 12.7

Average 21.3 24 15.4
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A simple calculation shows that the amount of nitrogen, phosphorus and potas-
sium disposed annually in the form of CM is in the range of 0.53–0.89 kg, 0.63–0.94 kg,
and 0.42–0.6 kg per animal, respectively, which could add up to around 7 tons of nitrogen
and 8 tons of phosphorus annually for an average-size farm (10,000 birds). This high
volume of nutrients is often considered a hitch, as it has to be either disposed of or stored
at a proper place for later use. However, in this work, we suggest considering manure
as a by-product of the agricultural industry. Coupling the AD process and microalgae
cultivation could result in a framework that generates high-value by-products to be offered
on the market.

Figure 4 shows the theoretical value of the valuable bio-products that can be generated
following the proposed AD–microalgae coupling framework in this work.
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According to the proposed framework, on average, 330 tons of manure can be pro-
duced annually from a poultry farm that consists of 10,000 birds. This manure can
be treated by the AD process and produce approximately 21,780 m3 biogas annually.
Biogas can be used to produce 37,026 KWh/y energy in the form of electricity and heat that
can be used internally by the farm itself, and the excess amount can be sold in the market.
On the other hand, in the given scenario, AD can produce about 230 t of biosolids annually,
which can be used as a fertilizer or a soil enhancer. The leachate of the AD process, convention-
ally, is treated with further treatment technologies and discharged. However, this framework
suggests that the amount of nutrient available in this leachate is around 4.9 t/y for N and
2.4 t/y for P, which is enough to produce around 100 t/y microalgae [12], which has been
proved to have high potential for various downstream applications.

In spite of the technical feasibility of producing microalgae with CM waste, the energy
and economic feasibility aspects need more improvement to be considered as a viable op-
tion, especially when considering microalgae for the purpose of biodiesel production [40,41].
However, considering other scenarios for utilizing microalgae in the agriculture sector,
such as extracting and utilizing of concentrated proteins as animal feed, will make this
integration a profitable and sustainable solution [42]. Favorably, the feasibility of using
microalgae as animal feed has been extensively studied and, in some cases, it has been
commercialized. This scenario would bring double benefits since the supplementation of
microalgae to the animal diet can also have a positive effect on human health, as those
animals are used as food for humans. Previous research shows that when pigs were fed
algal species with rich iodine content, this led to the production of pork rich in iodine
to be consumed by humans [43]. Current research [44] shows that when the pigs diet
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was supplemented by microalgae rich in docosahexaenoic acid (DHA), this led to the
production of DHA-enriched pork, which may have a role in overcoming the omega-3
fatty acids nutrition gap and subsequently enhancing public health. When the microal-
gae Aurantiochytrium limacinum was used as a food supplement for lactating dairy cows
(105 g/head/d), this resulted in production of milk rich in DHA without any negative
effects on the cows [45]. It was also found that when the microalgae Spirulina replaced 50%
of the soy protein in poultry diets, there was an obvious improvement in the quality of the
produced meat; however this replacement led to changes in the color of the meat [46].

Despite these favorable results, further research is necessary to optimize the dilution
factor and to test the effect of using microalgae/microalgae-bacteria consortia for better
adaptation to high-N content waste. Figure 5 is a schematic demonstration of the closed-
loop nutrient recovery system in managing agricultural organic wastes toward a circular
bioeconomy concept.
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This schematic represents the benefits of the proposed coupling solution. Animal waste
is managed through AD treatment, which can reduce the environmental impact of the
industry by converting harmful products to two beneficial forms, biogas and biosolids.
Conventionally, biogas and biosolids have been recycled back to the farm in the form of en-
ergy and soil fertilizer; however, more valuable nutrients in the leachate is being neglected.
In this suggested framework, by coupling the AD with microalgae, these nutrients are
being kept in the loop and will generate high value by-products in the form of microalgae.
Ultimately, microalgae can potentially be used in various forms, as described in Figure 5,
by the farmers, which has an attractive commercial value. Moreover, providing the re-
quired CO2 and energy for the microalgae cultivation step by the AD process will make
this nutrient recovery closed-loop framework, a robust and self-sufficient practice.
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4. Conclusions

Among different treatment technologies for CM waste management, the AD process
is a promising technique. The proposed closed-loop recirculation and percolation mode of
treating CM showed a very robust and efficient method for the treatment of CM and it can
operate not only without any digester failure but also produces very high quality methane
despite having high ammonia and solid contents in the raw CM. Preliminary results of
microalgae cultivation indicate that Chlorella vulgaris CPCC 90 was able to grow and utilize
nutrients from 10% sterile diluted CM at low temperature 20 ± 1 ◦C. However, high-N
content has an inhibitory effect on growth of microalgae for samples with a dilution factor
higher than 30%.
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