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Abstract: The interactions between body tissues and a focused ultrasound beam can be evaluated
using various numerical models. Among these, the Rayleigh–Sommerfeld and angular spectrum
methods are considered to be the most effective in terms of accuracy. However, they are computa-
tionally expensive, which is one of the underlying issues of most computational models. Typically,
evaluations using these models require a significant amount of time (hours to days) if realistic scenar-
ios such as tissue inhomogeneity or non-linearity are considered. This study aims to address this issue
by developing a rapid estimation model for ultrasound therapy using a machine learning algorithm.
Several machine learning models were trained on a very-large dataset (19,227 simulations), and the
performance of these models were evaluated with metrics such as Root Mean Squared Error (RMSE),
R-squared (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The
resulted random forest provides superior accuracy with an R2 value of 0.997, an RMSE of 0.0123, an
AIC of −82.56, and a BIC of −81.65 on an external test dataset. The results indicate the efficacy of
the random forest-based model for the focused ultrasound response, and practical adoption of this
approach will improve the therapeutic planning process by minimizing simulation time.

Keywords: machine learning; numerical model; random forest; focused ultrasound; Rayleigh–
Sommerfeld; angular spectrum

1. Introduction

Focused ultrasound is a reliable modality in many non-invasive therapeutic appli-
cations. It can be used to treat malignant tumors or cancerous cells in the brain, liver,
kidney, pancreas, breast, prostate, and bone. In this technology, the ultrasound beam is
focused inside a small volume of target tissue without affecting surrounding tissues or
layers of tissues that are on the path of the beam [1]. The intense energy at the focused zone
causes thermal coagulation and tissue ablation as the temperature increases [2]. Different
non-invasive therapy uses different ranges of sonication times and pressure field intensities
to achieve the desired outcomes [3,4]. Temperatures above 60 ◦C are used for typical
surgical applications, and relatively lower temperatures (41 to 45 ◦C) are used for a more
extended period of time in hyperthermia applications [5]. In addition, temperatures higher
than 100 ◦C at the focus zone should be avoided, because superheated tissue can cause
bubbles and/or explosive localized boiling at this temperature [6,7]. For these reasons, it is
very critical to study and predict the effect of the pressure field and temperature rise at the
focused zone during non-invasive ultrasonic treatment planning [8,9].
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There are various commercial and non-commercial software available to predict
ultrasound pressure field responses for homogeneous and heterogeneous media. The
SPFlex module of PZFlex (Weidlinger Associates Inc., Mountain View, CA, USA) can create
tissue maps from MRI images and then perform focused nonlinear wave simulation by
finite element and explicit time-domain approach [10]. Other high-end finite element
products like ANSYS and COMSOL can simulate focused ultrasound propagation, but
they require significant user effort and computation power. In addition, the finite element
approach does not produce a good solution and is significantly slower in the near-field
region compared to numerical methods because of high-density mesh requirements in
the near-field [11]. For these reasons, numerical methods such as Rayleigh–Sommerfeld
integral and angular spectrum method are widely used to simulate focused ultrasound in
tissue media. There are many other numerical methods used in this area, such as the Fast
Nearfield Method (FNM) developed by McGough et al. [12–14] for circular, rectangular,
and spherical pistons and hybrid angular spectrum developed by Vyas et al. [15].

The Rayleigh–Sommerfeld method, which is a popular approximation of Kirchhoff’s
integral formula for the Helmholtz equation [16], produces relatively less error and can be
considered as a reference for scalar wave propagations of ultrasound beam [17]. Therefore,
the Rayleigh–Sommerfeld approach is a widely accepted method for focused ultrasound
response calculations. However, it takes almost hours in a moderate speed workstation
(Core i7, Dual-core 2.00 GHz processor, NVIDIA GeForce GT750M, and 16.0 GB RAM,
Dell Inspiron i7737T, CA, USA) to simulate a time-harmonic beam within a homogeneous
tissue volume of 100 × 50 × 20 mm3. To improve the calculation speed (about 20 min),
another method known as angular spectrum can be used, where an already calculated
2D pressure field plane can propagate in a forward direction with the help of 2D Fourier
transform. However, in both cases (Rayleigh–Sommerfeld and angular spectrum) the
calculation time significantly increases (hours to days) if tissue inhomogeneity and layered
or complex-shaped obstacles are included for more realistic simulations.

Existing numerical simulation results on a tissue model can be very useful for various
reasons. Although every patient is different, their internal organs have similar arrange-
ments and layers of tissues inside the body [18–21]. Thus, previous time-intensive simu-
lations contain a huge amount of useful information that can be explored to reduce the
treatment planning time.

The aim of this study is to develop an ultrasound response model to rapidly predict
maximum pressure, maximum power deposition, and maximum temperature at the fo-
cused zone using machine learning algorithms. To achieve this goal, three machine learning
algorithms (1) decision tree, (2) support vector regression, and (3) random forest were tested
using Root Mean Squared Error (RMSE), R-Squared (R2), Akaike Information Criterion
(AIC), and Bayesian Information Criteria (BIC) as performance metrics. In addition to ma-
chine learning models, a general linear regression model is used for comparisons. To train
the machine-learning models, a large simulation dataset is created using a modified angular
spectrum method. This modified angular spectrum method is developed in this study
to achieve good results in numerical simulation for layered tissue media. In a previous
study, we used a similar approach to find pressure fields in nonhomogeneous media using
Rayleigh–Sommerfeld integrals [22]. Although the numerical computational approach in
layered media was accomplished before by other researchers [23,24], simulation results suf-
fer from several sources of numerical error due to aliasing, grid truncation, and nonlinearity
parameters. While these problems are addressed in the research conducted by McGough
et al. [14,25] for homogeneous media, in this study we developed a modified angular
spectrum method that utilizes the approach to minimize numerical errors and extended it
for nonhomogeneous layered media. The overall work of this study contains two novel
aspects: (1) it proposes a method for focused ultrasound beam simulation in layered tissue
media, and (2) it utilizes machine learning algorithms to model ultrasound responses. A
similar research study was found in the literature where steady-state pressure and velocity
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field distributions in the thoracic aorta are predicted from existing computational data
(CFD hemodynamic analysis of human blood vessels) using machine learning [26].

The machine learning approach presented in this study is expected to be useful
when many quick simulations are required, and it will reduce numerical complexity and
computational cost during ultrasound treatment planning.

2. Materials and Methods
2.1. Computation Approach

In the current study, a rectangular transducer surface is considered where ultrasonic
array elements are arranged in the horizontal and vertical directions. The phase of these
elements is determined using FOCUS software to obtain required distances [27]. The simu-
lation is performed using an angular spectrum method that can address beam refraction
and reflection effects in multiple tissue layers. Traditionally, the angular spectrum method
is used only for homogeneous media, and for inhomogeneous tissue geometry, with dif-
ferent approaches found in the literature for realistic simulations [15,22,27]. Often, only
homogeneous media are used to avoid complexities. To develop a machine learning model
based on previous simulation data, we incorporated complexities and realistic scenarios
(by adding tissue layers) even though simulation time is higher.

The angular spectrum method developed by McGough et al. [14,25] was modified in
this study so that it is suitable for layered media found in a typical tissue necrosis scenario.
The simulation environment used for layered tissue media is shown in Figure 1, and the
response found from the modified angular spectrum model is validated using a tissue
necrosis experiment from the literature.
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Figure 1. Focused ultrasound simulation through tissue layers consisting of couplant gel, skin, fat,
and pancreas tissue. The simulation volume is 80 × 60 × 12 mm3.

2.1.1. Angular Spectrum Propagation Model

The angular spectrum is a widely accepted wave propagation model for focused
ultrasound simulations [28,29]. It uses a source pressure plane, and from there, parallel
layers of pressure planes are created using the 2D Fast Fourier Transform (FFT). We have
used the Rayleigh–Sommerfeld integral to create the initial source pressure plane, and
using this method a time-harmonic pressure field from a rectangular source is calculated
by using Equation (1) [29].

p(x, y, z; k) =
jρckejωt

2π

x

s′
vn(r)

e−jk|r−r′ |

|r− r′| ds (1)
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Here, R = |r− r′| =
√
(xP − x0)

2 + (yP − y0)
2 + zP2 is the distance between the

source point r(x0, y0, 0) and the observation point r′(xP, yP, zP), k is the wave number, ω
is the excitation frequency, ρ is the medium density, and v is the normal particle velocity.
The time-harmonic excitation is defined as ejωt where j =

√
−1, and t is the time. Figure 2

shows the rectangular transducer geometry and corresponding coordinate system.
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Figure 2. Rectangular transducer geometry and coordinate system for Rayleigh–Sommerfeld integral.

The source pressure plane was generated at a quarter of the wavelength distance to
avoid errors in the near-field, and from this source plane, parallel output pressure planes
are calculated using Equation (2) [25,30].

P
(
kx, ky, z

)
= P0

(
kx, ky, z0

)
Hp
(
kx, ky, ∆z

)
(2)

Here, P0
(
kx, ky, z0

)
is the 2D Fourier transform of the input source pressure plane

p(x, y, z; k) located at z = z0, and Hp
(
kx, ky, ∆z

)
is a forward propagation transfer function

in the spatial frequency domain as defined by Equation (3).

Hp
(
kx, ky, ∆z

)
=

 e−j∆z
√

k2−k2
x−k2

y f or k2
x + k2

y ≤ k2

e−∆z
√

k2
x+k2

y−k2
f or k2

x + k2
y > k2

(3)

To address the effect of reflections and transmission from different tissue boundaries, a
3D transmission coefficient matrix (TP) is utilized, which implements the effect of acoustic
impedances at each tissue volume.

Tp = 2× (
ρAcA cos θout

ρBcB cos θin
+ 1)

−1
(4)

Here, θin and θout are incident and refraction angles, ρAcA and ρBcB are acoustic
impedances in first and second media, respectively. The resultant pressure-field is calcu-
lated by multiplying angular spectrum pressure field with the 3D transmission coefficient
matrix (TP). After this operation, the updated simulation grid volumes for each tissue layer
represent the resultant continuous-wave pressure field response, and a 2D slice (horizontal
or vertical) of this field can be used to visualize the pressure field. Figure 3 represents a
schematic of the 3D continuous-wave pressure field calculation procedure in layered tissue
media using the modified angular spectrum method.
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2.1.2. Power Deposition and Temperature Rise

The pressure field obtained by the modified angular spectrum method can be used
for finding power deposition and temperature fields. This requires further numerical
processing of the pressure field. The acoustic intensity IA (W/m2) can be found from the
resultant pressure field, p(x, y, x) using Equation (5). This intensity field is also known as
the time-averaged rate of energy transmission, and it can be used to determine the power
deposition field, Q using Equation (6) [31].

IA(x, y, z) =
|p(x, y, z)|2

2ρ0c
(5)

Q(x, y, z) = 2αIA(x, y, z) (6)

Here ρ0 is the density, c is the speed of sound in the tissue medium, and α is the
attenuation coefficient.

The bio-heat transfer model is then used to find out the temperature field from the
power deposition. Using this model, the temperature rise in the 3D simulation grid is
calculated by using Equation (7) [32,33].

ρC
∂T
∂t
− k∇2T = WbCb(Ta − T) + Q (7)

Here, C is the tissue heat capacity, k is the tissue thermal conductivity, T is the time-
dependent tissue temperature generated by power distribution Q, ρ is the density of the
medium, Cb is the specific heat of blood, Wb is the blood perfusion rate, and Ta is the arterial
blood temperature, which is assumed to be 37 ◦C. The numerical approximation to find out
steady-state temperature is determined by assuming boundary condition, ∂T/∂t = 0 [34–36].

2.1.3. Model Validation

An experimental tissue-heating scenario from the literature is used to validate the mod-
ified angular spectrum method. In this experiment, a commercial MR-guided endorectal
ultrasound phased array transducer (ExAblate 2100, Insightec, LTD., Tirat Carmel, Israel)
is evaluated through an ex vivo experiment [37]. The ultrasound phased array transducer
used in the experiment, has 990 elements that are arranged linearly over 23 × 40 mm2

transducer area. The temperature rise inside the tissue volume is checked using an MR
temperature monitoring system (3.0 T). We have used similar rectangular element sources,
tissue layer thicknesses (Figure 4a), and properties (Table 1) to verify our model. The
phased array excitation with an operating frequency of 2.3 MHz is used in the simulation
to focus 40 mm deep inside the prostate tissue.
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Figure 4. (a) Schematic of tissue layers for modified angular spectrum. (b) Pressure field simulation
by focusing the beam at 40 mm depth, and 5, 0, and −5 mm azimuth inside prostate tissue with
990 × 1 phased array sonication.

The schematic of the tissue layer setup is shown in Figure 4a. The pressure field
inside the layered media produced by the modified angular spectrum continuous-wave
sonication is shown in Figure 4b. The temperature field is calculated by using the bio-heat
transfer model, and the maximum temperate rise found in the simulation is 6.20 ◦C, which
was about 6 ◦C in the experiment. The width of 4 ◦C temperature rise contour is found
to be 5.6 mm, which was recorded about 5 mm in the experiment. It is important to note
that, in a previous study, we measured a similar temperature rise using the Rayleigh–
Sommerfeld simulation and found close results (temperature rise 6.18 ◦C) [22]. These
results are also consistent with another study where a finite element method is used to
simulate the temperature rise of the current experimental scenario [38]. Figure 5 shows
the experimental temperature rise using the MR thermometry and numerical simulation
response. The tissue properties used in the simulation are given in Table 1.
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Table 1. Tissue properties used for degassed water, rectal wall, preiprostate, and prostate
media [39–42].

Parameters Unit a Coupling Medium
(Degassed Water)

Rectal
Wall Periprostate Prostate

Sp. Heat capacity of blood J/kg-K 3480 3720 3720 3720
Blood perfusion Kg/m3-s 0 4 5 2.5

Density Kg/m3 1000 1060 1060 1060
Speed of sound m/s 1480 1500 1500 1500

Power law exponent unitless 2 1 1 1
Attenuation dB/cm-MHz 0.00025 0.5211 0.4343 0.504

Sp. Heat of medium J/kg-K 4180 3500 3500 3600
Thermal conductivity W/m-K 0.615 0.56 0.50 0.50

Nonlinearity parameter unitless 0 1 1 1
a Units are the same as International System Units (SI); J = Joule, kg = kilogram, K = kelvin, m = meter, s = second,
dB = decibel, cm = centimeter, MHz = megahertz, W = watt.

2.2. Data Collection

A large volume of data is needed for training machine learning algorithms. Since
it is not practical for us to use a very large number of transducers and produce focused
ultrasound responses for different array distributions on the transducer surface, we gen-
erated data with the modified angular spectrum method that is developed and verified
in this study (Section 2.1) as a substitution for real data. We have created a dataset by
considering a common soft tissue necrosis scenario where the focused beam from a phased
array transducer travels through layers of tissues before converging in the target media.
The tissue layout shown in Figure 1 represents how the tissue layers are arranged through
couplant media, skin, fat, and finally pancreas tissue. These tissue properties are given in
Table A3.

A fixed rectangular transducer surface of 50 × 10 mm2 and a fixed kerf (space be-
tween elements) of 1 µm are maintained. The number of transducer elements is varied in
horizontal and vertical directions, and for each of the transducer element combinations,
the ultrasound beam is focused inside pancreas tissue from 25 to 75 mm. Thus, a rich
dataset containing a total of 19,227 simulations is created. To get a relatively error-free
result, we have used 3D calculation grids and approximately 20 to 30 min were spent for
each of the simulations. The workstation specification for these simulations is given in
the introduction section. Table 2 provides the range of parameters used for the focused
ultrasound simulation dataset.

Table 2. Range of ultrasonic transducer elements and focus distances for constant transducer area
and kerf.

X Elements Increment
Along X Y Elements Increment

Along Y

1 Focus
Distance (mm)

Focus
Increment (mm)

16 to 128 4 16 to 64 4 25 to 75 1
1 Ultrasound beam is focused inside the target (pancreas) tissue from the transducer surface.

2.3. Data Preprocessing

The machine learning models are trained based on three inputs and three outputs
parameters for each of the simulations. The input parameters are (1) number of ultrasonic
elements in the X direction, (2) number of ultrasonic elements in the Y direction, and (3)
focus distance. The output parameters are (1) maximum pressure, (2) maximum power,
and (3) maximum temperature generated at the focus zone. To test the performance of
trained algorithm, training and test data are separated (80% training and 20% testing).
We have used “train_test_split” method from the “sklearn.model_selection” to split data
arrays into random train and test subsets [43].

For the feature normalization, sklearn.preprocessing package from scikit-learn 0.24.1
is used, which rescales the range of data from minimum 0 to maximum 1 [44]. After that,
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the normalized data are fitted to transform training data for learning. This step is important
so that the machine learning model is not biased towards particular features of the dataset.

2.4. Machine Learning Models

Recently, advanced machine learning models have been widely analyzed and have
found success in many non-conventional prediction models [45–47]. In this study, several
machine learning models are considered and analyzed for focused ultrasound data set.
Before testing out these models, we evaluated the performance of an ordinary multivariable
linear regression model. In this approach, the training X and Y element data are used to
determine coefficients w = (w1, w2, w3, . . . . . . . . . ., wn). The w’s need to be chosen by this
algorithm to minimize the residual sum of squares between that targets and predicted
values. If ŷ is the predicted value for a particular X, Y element, and focus distance; it can be
defined by using Equation (8).

ŷ(w, x) = w0 + w1x1 + . . . . . . . . . + wnxn (8)

Here, w act as coefficient vector and w0 act as intercept. The loss function, f that needs
to be minimized is given by Equation (9) [48]:

f =
n

∑
i
[error]2 =

n

∑
i
(yi − ŷi)

2 (9)

To capture the nonlinear relationships between features and outcomes, several ma-
chine learning models are tested besides the statistical regression model. The grid search
optimization algorithm was used with 5-fold cross-validation to choose the adjustable
parameters of the machine learning models. We have used “GridSearchCV” class from
“sklearn.model_selection” to find these parameters [49]. The cross-validation error and
accuracy in grid-search are given in Table A1 (Appendix A). A brief description of each of
the machine learning models used and the corresponding implementation methods are
discussed in the following subsections.

2.4.1. Decision Tree Algorithm

The decision tree algorithm maps a reasoning process resembling a tree-like structure
and is generally suitable for multi-output problems. We have used a non-parametric
supervised decision tree algorithm, Classification and Regression Tree (CART), to predict
maximum pressure, power, and temperature at the focused zone. The CART algorithm
partitions the feature space into local regions via a sequence of recursive split and then
fit model (piecewise constant approximation) in each one [50]. The goal of using this
algorithm is to minimize the RSS (Residual Sum of Square) errors between the observed
and the mean in each node, such as the loss function f in Equation (9). The number of
leaf nodes that give optimum output is 20 in the training process. The decision tree of the
CART algorithm in our dataset is given in Figure A1 (Appendix A).

2.4.2. Support Vector Regression (SVR)

The Support Vector Regression (SVR) algorithm is another technique for regression
problems. The SVR tries to find a function ŷ = f (x) that has at most ε (a prescribed
parameter by algorithm) deviation from the actually obtained targets y for all the training
data. In this algorithm, any deviation less than ε is ignored, and any deviation larger than ε
will be treated as a regression error. Therefore, a trade-off between the fitting accuracy and
prediction accuracy is implemented, and the threshold is used to zero out training data
fitting errors [51]. The loss function used in SVR can be described using Equation (10) [52].

|y− f (x)|ε ,
{

0 i f |y− f (x)| ≤ ε

|y− f (x)| − ε otherwise
(10)
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Here, the loss function defines an ε− insensitivity zone (also known as ε-tube), and an
increase in ε (reduction in accuracy requirements) results in smoothing effects on modeling
noisy data.

SVR is more robust than other algorithms that use Sum of Squared Error (SSE) based
criteria and is also more tolerant to noises in the dataset. It has been successfully trained
on many different types of data sets.

To assess the applicability of SVR on the focused ultrasound dataset, we have eval-
uated it for developing the response model. The LIBSVM library package of scikit-learn
0.24.1 is used to implement this algorithm [43]. In addition, the model is trained separately
for each of the outputs (maximum pressure, maximum intensity, and maximum tempera-
ture) for corresponding inputs. After training for prediction, target columns (3 outputs) are
stacked to obtain the final set of outputs.

The adjustable parameters of SVR model were selected using the grid-search algorithm
so that the parameters are optimized by cross-validation [53]. For the maximum pressure
and maximum temperature prediction, the Radial Basis Function (RBF) kernel was used
with the regularization parameter, C = 5, epsilon = 0.1 (epsilon-tube within which no
penalty is associated in the training loss function), and kernel coefficient gamma = 1/(num
of features * X.var()) [43]. For the maximum power prediction, the radial basis function
(RBF) kernel was used with the regularization parameter C = 100, epsilon = 0.1, and gamma
= 1/(num of features).

2.4.3. Random Forest Regression

Random forest is an ensemble machine learning method in which a model makes
more reliable decisions to create a combination of outputs of many different decision
trees. Overall, it builds upon a forest of random decision trees, where each tree grows
separately [54]. Here, many decision trees are constructed (in a forest) and parallelly trained
to act as a group of learners. After that, a classifier, also known as the random classifier, is
used to vote and determine the final class of the tree. For this unique method, random forest
is suitable for very large datasets and typically does not overfit [55,56]. Since this algorithm
uses many decision trees simultaneously, more computation power is required, but on
the other hand, it gives higher accuracy. In our analysis, we have used “sklearn.ensemble
method” from scikit-learn 0.24.2 to implement the random forest algorithm. The optimum
number of trees in the forest (estimator) is found to be 1000. To control both the randomness
and bootstrapping of the samples when building trees, random state method is used [57],
and the sampling of the features were considered for the best split at each node.

2.5. Performance Metrics

To evaluate the performance of the model, Root Mean Squared Error (RMSE), R-
Squared (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion
(BIC) parameters are analyzed. The RMSE is the square root of the Mean Squared Error
(MSE) and can be determined using Equations (11) and (12).

MSE =
1
n

n

∑
i
(yi − ŷi)

2 (11)

RMSE =
√

MSE (12)

To identify the proportion of variation in the outcome, R-Squared (R2) or the coefficient
of determination is calculated, which is also an indication of goodness of fit and gives an
insight into how well unknown samples are likely to be predicted. For yi and ŷi being the
true value and predicted value of i-th data point respectively, the estimated R2 is defined
using Equation (13) [58].

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (13)
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where, y = 1
n ∑n

i yi.
Other relevant metrics, Akaike Information Criterion (AIC) and BIC (Bayesian Infor-

mation Criterion) are used in our evaluation. AIC and BIC are considered as unbiased
estimates of the model’s error prediction. They use the model’s maximum likelihood
estimation using the following Equations (14) and (15) [59].

AIC = −2 ln(L) + 2k (14)

BIC = −2 ln(L) + 2 ln(N)k (15)

where, L = value of likelihood and k = number of estimated parameters.
AIC is low for models with high log-likelihoods but adds a penalty parameter for

models with more parameters that likely to overfit. In general, a lower AIC and BIC indicate
a better fit. The optimal model should be chosen based on the highest R2 and minimum
AIC and BIC values.

Other performance metrics that give unbiased estimates, such as AICc (AIC corrected)
and Mallows Cp, are directly related to the AIC values. Therefore, AICc and Mallows Cp
metrics are not considered in our study.

3. Results
3.1. Inference on Test Data

The performance of the decision tree (CART), SVR, and random forest in predicting
maximum pressure, intensity, and temperatures are given in Table 3. A result from ordinary
multivariable regression is included in this table for making comparisons. In our analysis,
the random forest gives superior statistical performance with an R2 value of 0.9997, RMSE
of 0.0032, AIC of −44164.63, and BIC of −44145.87. Since it will be unreasonable to find
a better result than the random forest, other advanced machine learning models such as
xgBoost and LightGBM are not considered in our study.

Table 3. Performance comparison of machine learning models for test data.

Model RMSE R2 AIC BIC

Multiple Linear Regression 0.0708 0.8554 −20,410.13 −20,391.36

Decision Tree 0.0587 0.9045 −21,858.23 −21,839.46

Support Vector Regression 0.0484 0.9330 −23,301.89 −23,283.13

Random Forest 0.0032 0.9997 −44,164.63 −44,145.87

RMSE = Root Mean Squared Error, R2 = R-Squared, AIC = Akaike Information Criterion, and BIC = Bayesian
Information Criterion.

The results presented in Table 3 indicate that the random forest algorithm is most
suitable for the focused ultrasound dataset, and we can use this model as a prediction
tool for maximum pressure, intensity, and temperatures during ultrasound therapy. All
evaluation metrics in Table 3 are evaluated based on the testing dataset, which is 20% of
the total number of simulations. The AIC and BIC metrics are used to evaluate the relative
quality of the models. Using the random forest model, we achieved the highest R2, and
lowest AIC and BIC values, which is also a strong indication of a better fit model.

3.2. Inference on External Data

To examine the model’s performance on unknown data, which is not part of the
focused ultrasound dataset, we have used 10 simulations using random X, Y elements
and focus distances (Table A2). For these simulations, the data points we have in the
training and testing phase were avoided. The performance of the evaluated models on
these external data is shown in Table 4.
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Table 4. Performance comparison of machine learning models for external data.

Model RMSE R2 AIC BIC

Multiple Linear Regression 0.0548 0.9412 −52.74 −51.84

Decision Tree 0.0641 0.9195 −49.29 −48.38

Support Vector Regression 0.0363 0.9707 −61.69 −60.79

Random Forest 0.0123 0.9970 −82.56 −81.65

RMSE = Root Mean Squared Error, R2 = R-Squared, AIC = Akaike Information Criterion, and BIC = Bayesian
Information Criterion.

For these external data, the best performance is found for random forest algorithm
with an R2 value of 0.9970, RMSE of 0.0123, AIC of −82.56, and BIC of −81.65. It is noted
that in external data, multiple linear regression is performing better than the decision
tree algorithm due to the small volume of data. Table A2 in Appendix A compares the
maximum pressure, power, and temperatures in the external data points by modified
angular spectrum simulation and the random forest prediction model.

4. Discussion

Predicting maximum pressure, power deposition, and temperature rise in the focus
during ultrasonic surgery or hyperthermia is a very critical part of treatment planning.
Numerical simulation is one of the best approaches for making such predictions. Due to
the complexity of the simulation environment, many different approximations of numer-
ical models are utilized, but the overall simulation time remains relatively high. Often,
therapeutic simulations are conducted on a similar patient model. Therefore, a fast simula-
tion method based on existing reference data would facilitate the process of determining
the responses during medical treatment planning. A fast prediction model can also help
surgeons to make a quick decision by comparing different treatment options.

In this study, we presented an alternative approach for modeling these responses
using machine learning algorithms. The dataset on which machine learning algorithms are
trained is created using a modified angular spectrum method developed in this study, and
the validity of the simulation approach is checked by using an experimental study found
in the literature. All the simulations were performed by focusing ultrasound beam inside
pancreas tissues.

The focused ultrasound dataset contains simulations for different X elements, Y
elements, and focus distances. Several predictive models (both statistical and machine
learning) are evaluated, and the machine learning algorithm, random forest was found to
be the best one in our study. To further check the model performance, we used external
random simulations that were not part of the focused ultrasound dataset but within the
ranges of the original dataset: X elements ranging from 16 to 128, Y elements ranging
from 16 to 64, and focus distances from 25 to 75 mm. In the external dataset, the random
forest algorithm demonstrated superior performance compared to other models, and
Table A2 (Appendix A) shows a comparison of the random forest model with numerical
simulation results.

In previous studies, we demonstrated that if we change the simulation tissue prop-
erties, the maximum pressure, power, and temperatures field patterns shift up or down
in values but follow a similar pattern in a 3D space [22,60]. Therefore, it is reasonable
to conclude that if we enrich the dataset by adding different tissue properties and trans-
ducer geometries, the random forest model will remain very effective in modeling focused
ultrasound responses.

5. Conclusions and Future Work

The current study presents a model that is trained on a very large dataset (19,227
focused ultrasound simulations). The efficacy of the model is tested using standard
statistical performance metrics, such as RMSE, R2, AIC, and BIC. It is noted that a machine
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learning model does not perform well outside of the range of the dataset. So, an extension
of this dataset covering most of the commercial transducer surface area and element
distributions found in the soft tissue necrosis scenario will be required for more robust
model performance.

In the future, we plan to extend this dataset by incorporating wide-ranging transducer
surface, element distributions, tissue layer thicknesses, and properties. With further data
inclusion, the applicability of this method can become more valuable in practical ultrasound
treatment planning.
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Appendix A

Table A1. The cross-validation error and accuracy in grid-search.

SVR
Decision Tree Random Forest

Pressure Power Temperature Rise

RMSE 0.0448 0.0507 0.0491 0.0588 0.0042

R2 0.9455 0.9113 0.9426 0.9038 0.9995

RMSE = Root Mean Squared Error, R2 = R-Squared.

Table A2. Comparison of random forest model with angular spectrum method at 10 random and external data points.

Angular Spectrum Random Forest

No. of
X Elements

No. of
Y Elements

Focus
Depth

Maximum
Pressure

Power
Deposition

Temp.
Rise

Maximum
Pressure

Power
Deposition

Temp.
Rise

a Units mm MPa KW/m2 ◦C MPa KW/m2 ◦C

68 21 50.00 4.862 707.630 45.516 4.913 722.746 46.645
31 63 57.00 2.008 120.799 9.212 1.969 116.171 8.812
37 40 68.40 2.677 214.536 19.918 2.701 218.420 20.075
57 21 46.28 5.298 840.119 50.037 5.398 872.386 51.704
72 17 46.98 5.383 867.439 52.269 5.438 885.294 53.389
46 27 35.80 5.673 963.298 48.749 5.543 919.806 46.990
32 46 68.33 2.413 174.412 16.103 2.510 188.719 17.332
62 49 36.19 4.004 479.941 24.126 4.074 496.900 24.944
19 55 61.63 1.977 117.040 10.372 1.969 116.239 10.168
33 21 29.45 6.1330 1125.80 51.030 6.147 1133.200 51.471

a Units: mm = millimeter, MPa = mega pascal, KW = kilo watt, ◦C = degree centigrade.
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Table A3. Selected properties of tissues for focused ultrasound simulation in layered media [61–67].

Parameters Unit (SI) a Coupling
Medium Skin Fat Pancreas

Sp Heat capacity of blood J/kg-K 3480 3480 3480 3480
Blood perfusion Kg/m3-s 0 5 0.54 10

Density Kg/m3 1033 1200 950 1050
Speed of sound m/s 1490 1560 1478 1591

Power law exponent unitless 2 2 1.4 0.78
Attenuation dB/cm-MHz 0.58 2.5 0.61 0.955

Sp Heat of medium J/kg-K 3960 3400 3800 3160
Thermal conductivity W/m-K 0.5574 0.23 0.217 0.547

Nonlinearity parameter unitless 0.35 4.435 5.5 2.85
a Units are the same as International System Units (SI); J = Joule, kg = kilogram, K = kelvin, m = meter, s = second,
dB = decibel, cm = centimeter, MHz = megahertz, W = watt.
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