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Abstract: Alzheimer’s disease (AD) is characterized by progressive memory failures accompanied by
microcirculation alterations. Particularly, impaired endothelial microvascular responsiveness and
altered flow motion patterns have been observed in AD patients. Of note, the endothelium influences
the vascular tone and also the small superficial blood vessels, which can be evaluated through infrared
thermography (IRT). The advantage of IRT with respect to other techniques relies on its contactless
features and its capability to preserve spatial information of the peripheral microcirculation. The
aim of the study is to investigate peripheral microcirculation impairments in AD patients with
respect to age-matched healthy controls (HCs) at resting state, through IRT and machine learning
(ML) approaches. Particularly, several classifiers were tested, employing as regressors the power
of the nose tip temperature time course in different physiological frequency bands. Among the
ML classifiers tested, the Decision Tree Classifier (DTC) delivered the best cross-validated accuracy
(accuracy = 82%) when discriminating between AD and HCs. The results further demonstrate the
alteration of microvascular patterns in AD in the early stages of the pathology, and the capability of
IRT to assess vascular impairments. These findings could be exploited in clinical practice, fostering
the employment of IRT as a support for the early diagnosis of AD.

Keywords: Alzheimer’s disease; infrared thermography (IRT); microcirculation; autonomic impairments;
frequency bands analysis; machine learning (ML)

1. Introduction

Alzheimer’s disease (AD) is a kind of dementia that mainly affects human memory
abilities [1,2], and it is characterized by senile plaques, neurofibrillary tangles, and amy-
loid angiopathy [3]. The senile plaques are mainly constituted of amyloid beta peptide,
which is generally associated with cerebrovascular alterations, indicating that vascular
damage could be involved in the development of AD and not only in the pathogenesis of
vascular dementia [4].

In addition, although AD is mainly considered a neuronal disease, peripheral alter-
ations have been found, particularly in the hemostatic cells such as platelets. Several
authors, in fact, reported platelet abnormalities in protein kinase C (PKC)- and phospholi-
pase C (PLC)-dependent signal transduction [5], serotoninergic and glutamatergic pattern
receptors [6], and membrane fluidity [7]. Of note, it has been demonstrated that AD is
specifically associated with abnormalities in the patterns of platelet amyloid precursor
protein forms [8,9]. Furthermore, altered peripheral endothelial cell functions have been
assessed [10]. For instance, Khalil et al. demonstrated altered peripheral endothelial vascu-
lar responses in AD [11] by employing laser doppler flowmetry, a technique that allows to
continuously and non-invasively monitor changes in microvascular perfusion, with regard
to the relative changes of blood volume and velocity [12].
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Moreover, hemodynamic alterations in AD have been investigated through pho-
toplethysmography (PPG), an optical technique able to measure the blood volumetric
oscillations in vessels related to heart rate [13]. Particularly, Iwamoto et al. assessed a rela-
tionship between the decreased distensibility in the aortic wall and the white matter lesions
in AD [14], and Gwak et al. developed a method to support a mild cognitive impairment
(MCI) diagnosis based on PPG [15].

Together with peripheral dysfunctions and central nervous functioning decline, subtle
autonomic abnormalities in AD have been investigated in several studies [16-18] demon-
strating pathological changes in the autonomous nervous system (ANS) in AD. For instance,
an increase in cold intolerance was found to be associated with the course of the disease,
highlighting both pathophysiological changes and adaptive behavior [19]. This demon-
strates that this symptom is not only related to the decline of neural mechanisms involved
in autonomic thermoregulatory strategies but also to behavioral thermoregulation, whose
neural and physiological substrates need to be further investigated [20]. Concerning
ANS impairments, other studies have focused on core body-temperature modifications in
AD [21,22], or alterations of the circadian rhythm [23]. Moreover, differences between AD
patients and healthy controls (HCs) have been investigated through infrared thermography
(IRT) [24,25] during the execution of cognitive tasks commonly used for an AD diagnosis.
These studies reported an altered autonomic response in AD patients with respect to HCs,
which could be related to impairments of the ANS or abnormal emotional responses [26].

IRT is a technology able to measure the cutaneous temperature of an individual in a con-
tactless manner [27]. The temporal modulation of the cutaneous temperature of responsive
regions (e.g., nose tip, chin, and perioral regions) have been demonstrated as sensitive to
the autonomic state of an individual [28]. Hence, given its sensitivity in detecting stress,
anxiety, fatigue, and emotions [29-33], IRT has been widely employed for monitoring the
psychophysiological status of a subject and for affective computing applications.

The data analysis for IRT signals is generally based on time-domain data analysis (e.g.,
differential or slope analysis) or frequency-based analysis [34]. Moreover, approaches of
machine learning (ML) and deep learning (DL) have been proposed for the IRT signals’
data analysis in order to increase the capability of this technique to assess pathologies
and autonomic activations [35,36]. ML is a field of applied statistics that uses multivariate
approaches for prediction purposes [37], often used in biomedical applications to classify
patients from HCs by employing features computed on physiological signals. The ML
approach is accompanied by a cross-validation procedure that reduces the overfitting effect
of the results, hence improving the generalization performance of the model [38].

Several studies have employed ML algorithms to discriminate HCs from AD, mainly
relying on the analysis of central nervous system activity. Specifically, the classification
of AD patients from HCs and MCI has been based on electroencephalography (EEG) [39],
functional magnetic resonance imaging (fMRI) [40—42], and functional near-infrared spec-
troscopy (fNIRS) [43]. Of note, a recent review by Tanveer et al. [44] describes how multiple
ML approaches (e.g., SVM, artificial neural network (ANN), DL, and ensemble methods)
have been proposed so far to discriminate AD from HCs and MCI; however, studies regard-
ing the employment of ML techniques for IRT data analysis to discriminate AD from HCs
are missing.

In this study, IRT was employed to detect microvascular dysregulations in early
AD patients. Specifically, the frequency-domain analysis of IRT signals acquired during
rest was performed to feed a cross-validated ML framework. In detail, the power of
the thermal signal collected over the nose tip in specific frequency bands [45,46] was
computed: neurogenic band (0.02-0.04 Hz), associated with neuronal activity; myogenic
band (0.04-0.15 Hz) indicative of the activity of the smooth muscles of arterioles; respiratory
band (0.15-0.5 Hz), suggestive of the breathing status; cardiac band (0.5-1 Hz), indicative
of the heart functioning. The average power of the most indicative frequency bands was
used as input for the ML algorithms. A leave-one-out cross-validation was implemented to
preserve the generalization performance of the classification.
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The novelty of this study consists in the assessment of microvascular dysregulation in
early AD patients during a resting state through IRT. In fact, previous studies have assessed
abnormal thermal modulations in early AD patients during the execution of cognitive
tasks, but, to the best of the Authors” knowledge, this is the first paper evaluating altered
spontaneous skin thermal modulation in early AD patients. The advantages of employing
IRT, with respect to other techniques able to measure microvascular alterations, rely on its
contactless and non-invasive features, hence being suitable for clinical screening finalized
for an early diagnosis of this kind of dementia.

2. Materials and Methods
2.1. Participants

Twenty-six participants were enrolled in the study. The study sample was composed
of 11 AD patients (mean age + standard deviation (SD): 71.4 & 4.7 years; M/F: 6/5) and
15 HCs (mean age + SD: 69.3 & 5.8 years; M/F: 10/5). The AD patients had a diagnosis of
mild, probable Alzheimer’s disease, as defined by the Diagnostic and Statistical Manual of
Mental Disorders, 5th edition (DSM-5). The exclusion criteria of the study were: vascular
dementia, behavioral or psychiatric disorders, brain lesions or a history of stroke or trau-
matic brain injury, and moderate cognitive impairment (Mini-Mental State Examination,
MMSE < 20/30) [47]. Moreover, participants with circulatory diseases that could affect the
cutaneous temperature were not enrolled in the study. Of note, MCI patients also were not
included in the study. During the experimental session, participants sat comfortably on
a chair and were asked to stay as still as possible with their eyes closed and to not think
about anything specific during the recordings; hence, 5 min of resting-state recordings
were performed. Standard guidelines for thermal measurements were followed during
the experimental session [48]. In particular, the measurements were performed in a ther-
moneutral environment to avoid thermoregulatory-induced alterations; moreover, patients
had a period of 15 min of acclimation before the session, to reach thermal equilibrium
with the environment [49]. Furthermore, in order to prevent potential effects related to
circadian-rhythm variations, all sessions were scheduled at the same time of day [50].

2.2. IRT Instrumentation and Thermal Signals Data Analysis

The facial temperature was recorded through a digital thermal infrared camera, the
FLIR SC660 (FLIR, Wilsonville, OR, USA) (640 x 480 bolometer FPA, sensitivity /noise
equivalent temperature difference: <30 mK @ 30 °C, field of view: 24° x 18°). The camera
was placed at a distance of 60 cm from the participant and pointed toward his/her face.
The sampling frequency was 10 Hz. In order to minimize the potential drift/shift of the
sensor’s response and optical artifacts, the camera was blackbody calibrated.

The quality of recorded thermal signals was first checked by visual inspection, no
video was rejected. One region of interest (ROI) was selected on the nose tip of each subject
(Figure 1a). This ROI moved in solidarity with the nose tip within each frame of the video
through the employment of a tracking algorithm [51]. When the tracking algorithm failed
(e.g., due to too wide a head rotation), the contaminated samples were substituted with
the mean value of six samples before and after the motion period. The tracking algorithm
allowed us to obtain the time course of the temperature of the ROI selected (Figure 1b).

The power spectral density (PSD) of the thermal time-course was computed. The area
under the curve of the PSD was evaluated for the neurogenic band (0.02-0.04 Hz), the
myogenic band (0.04-0.15 Hz), the respiratory band (0.15-0.5 Hz), and the cardiac band
(0.5-1 Hz).
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Figure 1. (a) Thermogram of a representative participant and ROI placement over the nose tip;
(b) temperature oscillations over the selected ROL

2.3. Multivariate Data-Driven Analysis and Statistical Inference

Supervised ML refers to the learning of a set of rules from instances aiming to define
functions to link an input to an output. The model is usually defined on a training dataset,
and tested and validated on data not used for the training process. This approach allows
us to investigate the accuracy of the learned function and the generalization performance
of the model [52]. In this study, four kinds of classifiers were compared: the Nearest
Neighbor (kNN), Ensemble Classifier, Decision Tree Classifier (DTC), and Support Vector
Machines (SVM).

The kNN classifiers are non-parametric classifiers that predict the label of the test
samples by relying on the predominant class of its k most similar training samples in the
feature space [53]. In this study, fine, medium, and coarse kNN models were investigated.

The Ensemble classifiers employ several learning algorithms to reach higher classi-
fication performance with respect to those obtained by the single constituent learning
algorithms [54]. Bagged trees and the subspace discriminant were considered in this work.

The SVM classifiers estimate the optimal separating boundaries between groups for
solving a constrained quadratic optimization problem. The model could include several
degrees of nonlinearity, employing different kernel functions. In this study, linear, quadratic,
cubic, and radial basis function (RBF) kernels were considered. Specifically, the RBF
function is characterized by the following formula for two vectors, u and v:

RBF (u, v) = exp(—v/|[u—v]*)

where vy is a hyperparameter used as a similarity measure between two data points. In this
study, y was set as 0.5.
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DTC s a supervised ML algorithm that uses a set of rules to make decisions, employing
dataset features to create yes/no questions and continually splitting the dataset until it is
possible to isolate all data points belonging to each class. This process allows us to organize
the data in a tree structure, in fact, each question adds a node and branches to the tree.

In order to avoid the overfitting effect that could derive from a high number of
features with respect to the sample numerosity, only 2 metrics (i.e., power at the cardiac and
respiratory frequency bands) were considered (i.e., 2 input features). The input metrics were
normalized (z-score). The choice of these metrics was driven by an explorative inferential
statistic finalized to assess the differences between the two groups. The normality of the
distribution of the metrics was checked by Shapiro-Wilk’s normality test. Since all the data
met the assumption of normality, the statistical differences between the two groups were
assessed by a parametric test (i.e., t-test).

The models were trained on all subjects except one and tested on the remaining subject
in an iterative manner (i.e., leave-one-out cross-validation) [38,55]. The out-of-training-
sample output of the regression was investigated through a receiver operating characteristic
(ROC) analysis, associating a labeling value to AD and HCs, to investigate the capabilities
of the developed models to discriminate between the two groups.

A flowchart describing the processing pipeline is reported in Figure 2.

IRT recordings

3

Tracking of the selected
ROI through the IRT video

$

Features computation and
selection

$

ML based classification

3

Classification performance
evaluation: ROC curve and
Confusion Matrix

Figure 2. Flowchart describing the processing pipeline: data acquisition, processing, and ML-
based classification.

Concerning the computation efficiency of the proposed method, tracking the ROI
through the IRT video required an average time of 0.057 s/frame. Considering the length of
the IRT recordings of 3000 frames (duration: 5 min; sample frequency: 10 Hz), the average
computation time was 171 s. The evaluation of the PSD of the temperature time course for
the feature extraction required 0.04 s. Finally, the classifier that should be run for the single
participant required a computation time of 0.275 s. Notably, the analysis was performed
using a PC with Windows 10Pro (Intel(R) Core (TM) i7-7700; CPU @ 3.60 GHz; RAM:
16 GB).

3. Results
3.1. Inferential Statistics

Table 1 reports the results of the ¢-tests between AD and HCs for all the PSD evaluated
in the considered frequency bands on the thermal signals collected from the nose tip. The
inferential statistics did not show significant differences between AD and HCs. Figure 3
shows the boxplot associated with each metric evaluated for the two groups.
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Table 1. The t-test results concerning the differences between AD and HCs for each PSD at the

different frequency bands.

Frequency Band t-Stat d.f. p-Value
Neurogenic —0.154 24 0.879
Myogenic 0.029 24 0.977
Respiratory —-1.794 24 0.085
Cardiac —1.376 24 0.182

Neurogenic Frequency Band
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Figure 3. PSD evaluated in the considered frequency bands on the thermal signal collected from the
nose tip. Each box shows the median and interquartile range, with the whiskers indicating the range
of values. Data points beyond the whiskers are displayed as red ‘+" in the figure.

3.2. Machine Learning Analysis

The ML frameworks were implemented employing the PSD at the cardiac and respira-
tory frequency bands in the thermal signal acquired over the nose tip at rest since these
two features were found to be more discriminative of the two groups by the inferential
statistics analysis. The classification performances are reported in Table 2.

Table 2. Accuracy, sensitivity, and specificity (expressed as percentage) of the ML classifiers investi-
gated. The best performances are highlighted in bold.

ML Classifier Accuracy Sensitivity Specificity
KNN
Fine 53.8 46.7 63.6
Medium 57.7 80 27.3
Coarse 69.2 86.7 455
Ensemble classifiers

Bagged Trees 65.4 66.7 63.6
Subspace 61.5 60 63.6

Discriminant
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Table 2. Cont.
ML Classifier Accuracy Sensitivity Specificity

SVM

Linear 61.5 93.3 18.2

Quadpratic 69.2 73.3 63.3

Cubic 61.5 73.3 455

RBF 79.7 72.7 86.7

DTC 82.1 90.9 73.3

Considering the performances obtained in terms of accuracy, sensitivity, and speci-
ficity, the best models for discriminating AD and HCs are the DTC and the SVM with
an RBF kernel.

Specifically, the ROC analysis performed on the out-of-sample output of the SVM
to classify the AD patients from HCs delivered an Area Under the Curve (AUC) of 0.84
(Figure 4a). The associated confusion matrix is reported in Figure 4b. The sensitivity of
the model is 72.7% whereas the specificity is 86,7%, delivering an accuracy of 79.7%. The
parameters of the SVM model were: v = 0.5 and ¢ = 1000, where v is the inverse of the
radius of influence of samples selected by the model as support vectors, and c trades
off correct classification of training examples against the maximization of the decision
function’s margin.

(a) (b)

0.8 /—‘

@
z 0.6 s
2 pud
% §
g 04 .

0.2

AUC =0.84
0
0 0.2 0.4 0.6 0.8 1 0 1
1-Specificity Predicted Class

Figure 4. (a) ROC curve delivered by the cross-validated SVM classifier when discriminating AD
and HCs, and (b) associated confusion matrix.

Figure 5a reports the ROC curve delivered by the DTC model, with an AUC of
0.69. Figure 5b shows the relative confusion matrix, disclosing a sensitivity of 90.9% and
a specificity of 73.3%, with an accuracy of 82.1%. The optimal DTC parameters were a max
depth = 10 and a minimum samples leaf = 1, where the max depth indicates how deep the
tree can be, and the minimum samples leaf is the minimum number of samples required to
be at a leaf node.

Of note, the AUCs delivered by the two types of machinery do not exhibit statistical
differences (z = —1.09; p = 0.275).
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Figure 5. (a) ROC curve delivered by the cross-validated DTC when discriminating AD and HCs,
and (b) associated confusion matrix.

4. Discussion

AD is a kind of dementia that is denoted by a cognitive decline that can impair daily
life [56]. Although the diffusion of this pathology, the physiological mechanisms under-
lying the etiology of the AD symptoms, are mainly unknown [57]. The AD diagnosis is
currently performed by administering clinical cognitive tests able to assess the memory and
visuo-spatial abilities of the patients. The diagnosis is usually confirmed by MRI imaging,
which reveals deposits of the amyloid beta peptide. Moreover, it was demonstrated that
advanced data analysis methods applied to signals collected by employing ecological
neuroimaging tools (i.e., EEG and fNIRS) could support early AD diagnosis. In fact, these
technologies could be easily introduced into clinical practice to assess the impaired brain
functionality of AD patients, with respect to HCs during the administration of clinical
tests [2]. Moreover, it was demonstrated that brain functionality is altered in AD patients
in resting-state conditions, as seen by changes in the brain electrical activity modulations,
cortical hemodynamics, and neurovascular coupling [58,59]. Of note, these techniques are
able to assess abnormal brain activities and impaired resting-state oscillations. Furthermore,
the synchronous measurements of EEG and fNIRS can deliver information on neurovas-
cular coupling, the phenomena responsible for the blood-oxygenated-level-dependent
(BOLD) effect. A disruption in neurovascular coupling could be related to alterations in the
functionality of the brain vessels [60,61], or it could be plausible that the impaired brain
microcirculation may trigger the pathology [62]. Moreover, an altered brain circulation
could be indicative of a more generalized alteration of the circulatory system that also
affects the peripheral vessels.

In this regard, several studies focused on the link between AD symptoms and the
vascular state. Particularly, it was demonstrated that AD patients exhibit altered peripheral
endothelial vascular activity [11], and the relationship between decreased distensibility of
the aortic wall and white matter lesions in AD was assessed [14]. These studies suggested
that as well as cognitive decline, AD is accompanied by disrupted brain circulation, and
altered peripheral circulation could also be associated with dysfunctions of the ANS.

For instance, differences in ANS activation during the administration of clinical tests
used for the diagnosis of pathologies have been assessed [25]. The findings demonstrated
that during the execution of clinical tests, not only the cognitive functions involved but
also the ANS plays a fundamental role, which could disclose differences between AD
patients and HCs. Moreover, many authors investigated autonomic disorders in AD
patients [18]. For instance, several studies focused on sleep-breathing-related disorders
in AD patients identify obstructive sleep apnea as a potentially modifiable risk factor for
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AD [63]; furthermore, it has been demonstrated that continuous positive airway pressure
treatment for sleep-breathing-related disorders may delay the progression of cognitive
impairment in AD patients [64]. AD patients were found to exhibit an altered heart
rate variability (HRV) with respect to HCs assessed through the low-frequency and high-
frequency ratio (LF/HF). Particularly, the AD patients showed hyper-sympathetic activity
during 5 min of rest in different positions (upright and supine posture) with respect to
HCs [65]. Conversely, Mellingseeter and colleagues found a lower LF/HF ratio of the
HRYV in AD patients when compared to HCs during a head-up tilt test [66]. Furthermore,
abnormal vasomotor sympathetic functions were revealed in AD patients as a reduced
finger pulse amplitude during the Valsava maneuver, disclosing both parasympathetic and
sympathetic vasomotor dysfunctions [17]. Notably, the latter finding could explain the
variations in the circadian temperature [67] and thermoregulation [19], typical of AD. In
fact, the vessel’s vasomotor regulation influences skin temperature, thus, this could be the
physiological substrate of the altered cutaneous temperature oscillations assessed in this
study. Moreover, it should be highlighted that impairments in the endothelium, typical of
AD, can influence the vascular tone as well as in the small, superficial blood vessels [68].

The aim of this study was to assess microcirculatory dysfunctions in AD patients
during a resting-state period of 5 min through facial IRT. In detail, the PSD of the thermal
signal acquired on the nose tip was evaluated for the different frequency windows. The
inferential statistic did not show significant differences between the two groups. Particu-
larly, the cardiac and respiratory bands exhibited a tendency towards significance, whereas
the other frequency bands were quite far from the level of significance accepted (p < 0.05).
The results are in line with previous studies, demonstrating an altered HRV and breathing
disorders in AD patients. However, with reference to the previous literature, a significant
difference for the myogenic band was expected. The myogenic band is associated with
the activity of the smooth muscles of arterioles, and hence could be indicative of impaired
vasomotor functions. These findings could be related to the limited number of participants
and/or to the anatomy of the nose tip. In fact, it is known that the main blood supply
source of the nasal tip is the lateral nasal artery for most people [69], hence it could be
plausible that the finding of this study is related to the ROI placement. However, it should
be highlighted that in previous studies the nose tip has been proved to be highly indicative
of ANS activity, highlighting differences between AD patients and HCs better than other
facial regions [24,25]. Moreover, the nose tip could be sensitive to the convective movement
of the air due to the breathing rate modulations, related to ANS activity. For this reason, the
ROI was placed over the nose tip, and it was preferred to use only one ROI because of the
limited sample size of the study. In fact, the employment of a reduced number of features
to feed the multivariate ML approach could be useful to decrease the risk of overfitting
when a limited number of participants are available.

Concerning the performances of the two best ML frameworks tested, it is possible to
observe a non-statistically different AUC between the two methods, demonstrating a similar
performance in accuracy. However, it should be highlighted that the SVM model delivers
a higher specificity to AD with respect to DTC but the latter shows higher sensitivity. This
finding suggests that the application of these models should be related to the aim of the
applications; in fact, the DTC model should be preferred when high sensitivity is necessary,
while the SVM should be employed when a large specificity to the pathology is needed.

Several studies have been performed so far to detect AD, relying on EEG, fMRI, com-
puted tomography (CT) scans, positron emission tomography (PET), and fNIRS reaching
performances of accuracy above 98%, as reported in the review by Alberdi et al. [70]. Of
note, the introduction of deep learning approaches further improved the classification per-
formances, reaching through the Convolutional Neural Network (CNN) applied to fMRI
data accuracies above 99% [71,72]. These results demonstrate that CNN-based approaches
outperformed conventional methods but require large training data sets to achieve optimal
performance. Although the accuracy reached in the present study (~80%) is lower than
those reported in the literature, it is worth highlighting that it could be ascribed to the
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limited sample size. Moreover, it should be stressed that the proposed method, to the best
of the author’s knowledge, is the first attempt to classify AD from imaging techniques that
measure the alterations of peripheral microcirculation and ANS activity, rather than central
nervous modifications, demonstrating in a data-driven approach that AD also produces
microcirculatory peripherical modifications.

Concerning the computational efficiency of the proposed method, the computation
time was around 3 min, employing a PC with Windows 10pro (Intel(R) Core (TM) i7-7700;
CPU @ 3.60 GHz 3.60 GHz; RAM: 16 GB). Hence, the low computation load allows us
to employ the model in a not highly performing PC, fostering the employment of the
method in outpatient environments; in this aspect, it should be highlighted that specialized
operators are not necessary to run the model.

The first limitation of the study concerns the sample size. Further studies should
indeed be performed, increasing the number of participants. In fact, since the IRT-based
classification proposed relies on multivariate analysis, the outcome of the procedure might
highly increase with larger sample numerosity. Of note, the classification outcome was
cross-validated with a leave-one-out procedure, which is to train the classifier excluding
one subject at a time and test its performance on that subject. Thus, although the sample
size could be considered limited, the results obtained are indeed generalizable. It is worth
highlighting that, given the small sample numerosity, the leave-one-out cross-validation
was preferred in order to train the model employing the largest train sample but further
studies are indeed necessary to test the performances of the models employing other
methods of cross-validation (e.g., K-fold cross-validation).

Moreover, increasing the sample size may improve the performance of the classifier
by decreasing a possible in-sample overfitting effect, which may allow us to consider
more ROIs in the analysis and employ more complex machinery, such as deep learning.
In addition, advanced SVM classifiers have been proposed to provide more robust and
accurate classifications with respect to the canonical SVM [73-75]. Hence, further studies
should absolutely be performed enlarging the sample size in order to test the capabilities
of these SVM advanced algorithms to classify AD patients.

Another limitation of the study is related to the length of the resting state recording
(5 min). In fact, this temporal window does not allow for a reliable analysis of the low-
frequency bands, such as the metabolic band (0.003-0.02 Hz). Of note, the duration of
the recordings was limited to 5 min because of the clinical management of the patients
but further studies are indeed necessary to investigate the impairments related to lower
frequency ranges; these may be associated with circadian thermoregulatory dysregulations,
already observed in AD patients [23,67].

Furthermore, it could be of great interest to foster a multimodal approach for the ANS
activity monitoring AD patients during resting state, combining IRT with other techniques
such as EEG, electrocardiography, and galvanic skin response. Such a multimodal approach
could provide information regarding possible associations between peripheral impairments
and central nervous system disruption, in order to provide a more comprehensive investi-
gation of the physiology related to the origin of the symptoms of AD.

In addition, it could be worth investigating the capability of IRT to assess altered
microcirculation not only in the facial region but also in other body areas such as the hands.
From this perspective, the capability of low-cost IR cameras to discriminate AD from HCs
in not-controlled thermal environments should be investigated. In fact, these kinds of
cameras could be easily integrated into portable devices (e.g., mobile phones), providing
the possibility to perform AD classification directly by the users. Hence, the obtained
information could be integrated into an Internet of Things (IoT) framework, supporting
telemedicine applications.

The results of this study cannot provide an alternative tool for the early AD diagnosis
but they suggest further exploring the IRT diagnostic potentialities and paving the way
to possible employment of this technique as a supporting clinical procedure. In fact, IRT
is a completely non-invasive, contactless, portable, and relatively cheap technique that
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could be easily employed in an outpatient environment, with no need of highly specialized
operator. These findings show the possibility to evaluate microvascular dysregulation in
early AD patients during resting state through IRT. Recordings performed during resting
state in a controlled thermal environment allow us to exclude thermoregulatory effects
and autonomic responses due to external stimuli (e.g., cognitive tasks) in the analysis. In
fact, the novelty of this study relies on the possibility to assess peripheral microcirculation
impairments in a contactless manner during the resting state by means of IRT and ML.
Finally, since the results obtained are based on a frequency-domain data analysis of the IRT
signals, the dysregulation of the microcirculatory system is not highlighted by different
superficial temperatures but by modifications of the heat transmission mechanism to
the skin due to impaired microcirculatory functionality. Hence, these results foster the
investigation of further metrics to analyse microvascular impairments from the temperature
time course.

5. Conclusions

In this study, vascular impairments in AD patients at rest have been investigated
through IRT. The approach based on ML demonstrated a strong sensitivity of the frequency
content of the thermal time course of the nose tip to the presence of AD. Specifically,
an accuracy of 79.7% and 82.1% were reached for DTC and SVM classifiers respectively.
This study opens the possibility of using ML statistical approaches for IRT data analysis,
with the aim to improve its diagnostic capabilities to detect AD dementia. The results
confirmed that altered microcirculation in early AD patients is detectable through facial
IRT during the resting state, suggesting possible employment of this technique in clinical
practice for early AD screening. Further studies are indeed necessary to provide effective
technological support for AD early detection, which could be easily integrated into an IoT
framework for telemedicine applications.
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