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Abstract: The purpose of the present study was to examine the effect of the selective α1 antagonist
tamsulosin (TAM) on human retinal pigment epithelium cells, ARPE 19. Two-dimension (2D) and
three-dimension (3D) cultured ARPE 19 cells were used in the following characterizations: (1) ul-
trastructure by scanning electron microscopy (SEM) (2D); (2) barrier functions by transepithelial
electrical resistance (TEER) measurements, and FITC-dextran permeability (2D); (3) real time cellular
metabolisms by Seahorse Bioanalyzer (2D); (4) physical properties, size and stiffness measurements
(3D); and (5) expression of extracellular matrix (ECM) proteins, including collagen1 (COL1), COL4,
COL6 and fibronectin (FN) by qPCR and immunohistochemistry (2D and 3D). TAM induced signifi-
cant effects including: (1) alteration of the localization of the ECM deposits; (2) increase and decrease
of the TEER values and FITC-dextran permeability, respectively; (3) energy shift from glycolysis
into mitochondrial oxidative phosphorylation (OXPHOS); (4) large and stiffened 3D spheroids; and
(5) down-regulations of the mRNA expressions and immune labeling of most ECM proteins in a
concentration-dependent manner. However, in some ECM proteins, COL1 and COL6, their immuno-
labeling intensities were increased at the lowest concentration (1 µM) of TAM. Such a discrepancy
between the gene expressions and immunolabeling of ECM proteins may support alterations of
ECM localizations as observed by SEM. The findings reported herein indicate that the selective
α1 antagonist, TAM, significantly influenced ECM production and distribution as well as cellular
metabolism levels in a concentration-dependent manner.

Keywords: 3D spheroid culture; ARPE19; tamsulosin; α1 antagonist

1. Introduction

α1 adrenergic receptors (ARs), a heterogeneous family of receptors, are well recognized
as playing significant roles in the regulation of the sympathetic regulatory system. So far,
three α1 AR subtypes, α1A, α1B and α1D AR, have been identified in many species [1–6].
In addition, splice variants of the α1A AR subtype were also found in humans (α1A HSA.1-,
2-, 3- and 4-AR) [7,8] and in rabbits (α1A OCU.1-, 2- and 3-AR) [9]. Within ocular tissues,
it has been revealed that α1A AR, or α1B AR, are predominantly expressed within the
iris, choroid and retina or the ciliary body in the rabbit eye [10], and in fact, α1A ARs act
as pivotal regulatory mechanisms for iris dilator muscle contraction [11,12], intraocular
pressure (IOP) homeostasis [13–17] and corneal endothelial cell functions [18]. However,
as of this writing, the contributions of α1A ARs are not well understood in terms of
ocular pathophysiology, especially in posterior segments such as the retina, retinal pigment
epithelium (RPE) and choroid.
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Tamsulosin (TAM), a selective antagonist of the α1 AR, commonly used to treat
urinary tract stones and dysuria associated with benign prostatic hyperplasia [19], has
been shown to induce unfavorable ocular side effects called intraoperative floppy iris
syndrome (IFIS) during cataract surgery [20–22]. As the clinical manifestations of IFIS,
progressive miosis, iris waving and iris prolapse are frequently observed [23,24]. Since α1A
AR is predominantly expressed within RPE [25], which is categorized within uveal tissues
as similar to the iris and choroid, in which α1A AR is also expressed [10], we rationally
speculated that TAM may also influence some functions and morphology changes within
RPE cells. If such unknown TAM-induced effects on RPE occur, it would be of great interest
to examine the drug-induced effects of TAM on RPE cells under physiological as well as
pathological conditions.

Therefore, in the current study, as an initial step to elucidating possible unidentified
TAM-induced effects on RPE under physiological conditions, two-dimension (2D) and
three dimension (3D) cell cultures of the human retinal pigment epithelium cell line, ARPE
19 cells, were used and those were subjected to the following analyses: ultrastructure
by scanning electron microscope (2D); barrier functions by transepithelial electron resis-
tance (TEER) and FITC-dextran permeability (2D); real time cellular function by Seahorse
Bioanalyzer (2D); physical properties (3D); and ECM protein expressions by qPCR and
immunocytochemistry (2D and 3D).

2. Materials and Methods
2.1. 2D Culture of ARPE 19 Cells

All experiments using human derived cells were conducted in compliance with the
tenets of the Declaration of Helsinki after approval by the internal review board of Sapporo
Medical University. A commercially available human retinal pigment epithelium cell
line, ARPE 19, was purchased from the American Type Culture Collection (ATCC, #CRL-
2302™, certification from company is attached in the Supplemental Material) and cultured
in 150 mm 2D culture dishes until they reached 90% confluence at 37 ◦C in 2D growing
medium composed of HG-DMEM containing 10% FBS, 1% L-glutamine, 1% antibiotic–
antimycotic, and the cultures were maintained by changing the medium every other day.
For study of the drug-induced effects by tamsulosin (TAM) (Tokyo Chemical Industry,
Tokyo, Japan), the 2D cultures of ARPE 19 cells were processed during Day 1 through 5 in
the absence or presence of 1, 10 or 100 µM TAM, of which the concentration levels were as
described in a previous study in which neural cells were used [26].

2.2. Scanning Electron Microscopy (SEM) Analysis, Transepithelial Electron Resistance (TEER)
and FITC-Dextran Permeability Measurements of 2D Cultured ARPE 19 Cell Monolayer

ARPE 19 cell monolayers were cultured in a TEER plate (0.4µm pore size and 12 mm
diameter; Corning Transwell, Sigma-Aldrich, St. Louis, MA, USA) and analyzed by
(1) scanning electron microscopy using HITACHI S-4300 microscope operated at 5 keV
(the detector features 1280× 960 pixel), (2) the TEER values (Ωcm2) using an electrical
resistance system (KANTO CHEMICAL CO. INC., Tokyo, Japan) and (3) FITC-dextran
permeability measurements by measuring the fluorescence intensity of the amount of
FITC that permeated through the membrane from the basal compartment to the apical
compartment during a period of 60 min as described in a previous study [27–29].

2.3. Measurement of Real-Time Cellular Metabolic Functions of 2D ARPE 19 Cells

The rates of oxygen consumption (OCR) and extracellular acidification (ECAR) of 2D
cultured HRPE cells in the absence and presence of 1, 10 or 100 µM TAM were measured
using a Seahorse XFe96 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) according
to the manufacturer’s instructions. Briefly, approximately 20 × 103 of 2D cultured cells
were each placed in a well of a XFe96 Cell Culture Microplate (Agilent Technologies,
CA, USA, #103794-100). Following centrifugation of the plate at 1600× g for 10 min, the
culture medium was replaced with 180 µL of assay buffer (Seahorse XF DMEM assay
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medium (pH 7.4, Agilent Technologies, #103575-100), supplemented with 5.5 mM glucose,
2.0 mM glutamine and 1.0 mM sodium pyruvate). The assay plates were incubated in
a CO2-free incubator at 37 ◦C for 1 hour prior to the measurements. OCR and ECAR
were simultaneously measured using the Seahorse XFe96 Bioanalyzer under 3 min mix
and 3 min measure protocols at baseline and following the injection of oligomycin (final
concentration: 2.0 µM), carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP, final
concentration: 5.0 µM), a mixture of rotenone/antimycin A (final concentration: 1.0 µM)
and 2-deoxyglucose (2-DG, final concentration: 10 mM). Spare Respiratory Reserve was
determined by the difference between the baseline OCR and those supplemented with
FCCP. Glycolytic Reserve was determined by the difference in ECAR after the addition
of oligomycin.

2.4. Preparation of 3D ARPE 19 Spheroids

The 2D cultured ARPE 19 cells prepared as above were further processed for 3D
spheroid preparation by a method described recently [30,31]. Briefly, 2D cultured ARPE-19
were suspended in spheroid medium composed of 2D growth medium supplemented
with 0.25% methylcellulose (Methocel A4M) to facilitate stable 3D spheroid morphology.
Approximately 20,000 ARPE 19 cells/28 µL of spheroid medium were placed into each well
of the hanging drop culture plate (# HDP1385, Sigma-Aldrich) at Day 0, and thereafter half
of the medium was replaced on each following day until Day 5. As shown in Supplemental
Figure S1, the 3D ARPE 19 spheroid became a down-sized and matured form during the
five days culture. For studying drug-induced effects of TAM at different concentrations (0,
1, 10 or 100 µM), TAM was added to the spheroid medium to maintain these concentrations
during Days 1 through 5, as above.

To evaluate physical properties of the 3D ARPE 19 spheroids, the mean size and
the physical stiffness were determined as described recently [30]. Briefly, the mean size
was determined by measuring the largest cross-sectional area (CSA) of the phase contrast
images (PC, Nikon ECLIPSE TS2; Tokyo, Japan) using the Image-J software version 1.51n
(National Institutes of Health, Bethesda, MD, USA). For the physical stiffness, the force
required (µN) to compress a single living 3D spheroid to its semidiameter (µm) during
20 sec was measured using a micro-squeezer (MicroSquisher, CellScale, Waterloo, ON,
Canada), and force/displacement (µN/µm) was calculated [30].

2.5. Immunocytochemistry of 2D ARPE 19 Cells and 3D ARPE 19 Cells Spheroids

Immunocytochemistry of the 2D and 3D cultured ARPE 19 cells was processed as
described previously, with minor modifications [31,32]. All procedures were performed
at room temperature unless otherwise stated. Briefly, 2D and 3D cultured ARPE 19 cells
were fixed in 4% paraformaldehyde in PBS overnight, blocked in 3% BSA in PBS for 3 h,
washed twice with PBS for 30 min, and thereafter they were sequentially treated with (1) an
anti-human COL1, COL4, COL6 or FN rabbit antibody (1:200 dilutions) at 4 ◦C overnight;
(2) washing three times with PBS for 1 h each; (3) 1:1000 dilutions of a goat anti-rabbit IgG
(488 nm), phalloidin (594 nm) and DAPI for 3 h; and (4) mounting ProLong Gold Antifade
Mountant with a cover glass. Immunofluorescent serials-axis images with a 2.2 µm interval
at 35 µm height from their surface were obtained with a Nikon A1 confocal microscope
using a ×20 air objective with a resolution of 1024 × 1024 pixels.

2.6. Other Analytical Methods

Quantitative PCR analysis using specific primers and Taqman probes (Supplementary
Table S1) and all statistical analyses using Graph Pad Prism 9 (GraphPad Software, San
Diego, CA, USA) were performed as described previously [30].

3. Results

To study the drug-induced effects of the selective α1 antagonist tamsulosin (TAM) on
RPE cells under physiological conditions, 2D cultured ARPE 19 cells were subjected to the
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following analyses: (1) ultra-structure determination by scanning electronic microscopy
(SEM); (2) barrier functions of their 2D monolayers by transepithelial electron resistance
(TEER) measurements and FITC-dextran permeability; (3) the expression of ECM proteins,
including COL1, COL4, COL6 and FN; and (4) real time cellular metabolism analyses using
a Seahorse XFe96 Bioanalyzer. As shown in Figure 1A, SEM revealed that dense ECM
protein deposits spread all over the surface of the ARPE monolayers in the absence of TAM.
However, in contrast, TAM significantly altered the localizations of the ECM proteins in a
concentration-dependent manner; that is, there were many substantially enlarged ECM
deposits located on the surface sparsely covered by ECM proteins. Consistent with these
SEM observations, TAM induced a substantial increase of the barrier functions, that is, the
increase of the TEER values and decrease of the FITC-dextran permeability of the 2D ARPE
19 monolayers (Figure 1B,C). In addition, those observations were rationally supported by
a qPCR analysis (Figure 2) and immunocytochemistry findings (Supplemental Figure S1)
concerning major ECM proteins; namely, the expression of COL1, COL4, and FN or COL6
were significantly or relatively down-regulated by TAM in a concentration-dependent
manner. Furthermore, a Seahorse real time cellular metabolic analysis of our prepared 2D
cultured ARPE 19 cells showed acceptable responses, suggesting that the biological states
of these cells were quite healthy, and that TAM induced an energy shift from glycolysis
to mitochondrial oxidative phosphorylation (OXPHOS) (Figure 3), as evidenced by a
concentration-dependent increase in the Spare Respiratory Reserve of the OCR and a
decrease in the Glycolytic Reserve of the ECAR in the presence of TAM. Therefore, these
results indicated that TAM caused significant effects on the structure and functions of 2D
cultured ARPE 19 cells in a concentration-dependent manner.
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Figure 1. Effects of different concentrations of tamsulosin (TAM) on (A) ultrastructure by scanning
electron microscopy (SEM), (B) transepithelial electrical resistance (TEER) and (C) FITC-dextran
permeability of an ARPE 19 monolayer. Ultra-structure and barrier functions of an ARPE 19 cells
monolayer obtained by their 2D culture at Day 5 in the absence or presence of 1 µM, 10 µM or
100 µM tamsulosin (TAM) were analyzed. Representative images by scanning electron microscopy
(SEM, scale bar; 100 µm) are shown in panel A, and transepithelial electrical resistance (TEER)
values and FITC-dextran permeability were plotted at panels (B,C), respectively. All experiments
were performed in duplicate using fresh preparations (n = 5). Data are presented as arithmetic
means ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001 (ANOVA
followed by a Tukey’s multiple comparison test).
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Figure 2. Effects of different concentrations of tamsulosin (TAM) on the mRNA expression of ECM
proteins of the 2D cultured ARPE 19 cells. 2D cultured ARPE 19 cells at Day 5 in the absence or
presence of 1 µM, 10 µM or 100 µM tamsulosin (TAM) were subjected to qPCR analyses to estimate
the mRNA expression of ECM proteins including COL1, COL4, COL6 and FN. All experiments
were performed in duplicate using fresh preparations (n = 5). Data are presented as the arithmetic
mean ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.005 (ANOVA followed by a
Tukey’s multiple comparison test).

Since it is well known that the uveal structures, including the iris, ciliary body and
choroid, are not simple cell monolayer structures of RPE, this suggests that 3D culture mod-
els will be required to develop these related research fields [33] as well as the pathologic
conditions of RPE such as proliferative vitreoretinopathy (PVR) [34]. Therefore, in prepara-
tion for future research studies, the drug-induced effects of TAM on the physical properties,
size and stiffness, and the expression of ECM proteins of the 3D ARPE 19 spheroids, which
are generally considered to be a more representative model for replicating organs [35], were
investigated. As shown in Figure 4, Figures S2 and S3, TAM induced significant enlarge-
ment and hardening of the 3D ARPE 19 spheroids in a concentration-dependent manner.
In addition, the mRNA expression of all four ECM proteins was significantly decreased
upon the administration of TAM in a concentration-dependent manner as observed in
the 2D ARPE 19 cells (Figure 5). However, in contrast, immunocytochemistry analysis
indicated that expressions of COL1 and COL6 were increased in the presence of 1 µM
TAM as compared with the non-treated control, although those of all ECM proteins were
decreased with increasing TAM concentrations (Figure 6). Taken together, these results
suggested that the discrepancy between qPCR and immunocytochemistry may be caused
by TAM-induced alteration of the distributions of the ECM proteins as observed in the 2D
ARPE 19 cells, resulting in the characteristic changes of the physical properties of the 3D
ARPE 19 spheroids, as above.
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Figure 3. Effects of different concentrations of tamsulosin (TAM) on the cellular metabolic phenotype
of the 2D cultured ARPE 19 cells. 2D cultured ARPE 19 cells at Day 5 were prepared in the absence
or presence of 1 µM, 10 µM or 100 µM tamsulosin (TAM), and each sample was subjected to a
real-time metabolic function analysis using a Seahorse XFe96 Bioanalyzer. Measurements of oxygen
consumption rate (OCR, panel (A)) and extracellular acidification rate (ECAR, panel (B)) before
drug injections (at baseline) were represented as 100% and their changes were determined by the
following injections: oligomycin (a complex V inhibitor), FCCP (a protonphore), rotenone/antimycin
(complex I/III inhibitors), and 2-DG (a hexokinase inhibitor). Relative ratios of the Spare respiratory
Reserve and Glycolytic Reserve are plotted in panel (C,D), respectively. Oligo = oligomycin, Rot/AA
= rotenone/antimycin A, 2-DG = 2-deoxyglucose. Fresh preparations were used in all experiments
(n = 3). Data are presented as the mean ± the standard error of the mean (SEM). * p < 0.05 (ANOVA
followed by a Tukey’s multiple comparison test).
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Figure 4. Effects of different concentrations of tamsulosin (TAM) on the physical properties, mean
sizes and physical stiffness of the 3D ARPE 19 spheroids. The 3D ARPE 19 spheroids at Day 5 were
prepared in the absence or presence of 1 µM, 10 µM or 100 µM tamsulosin (TAM). In the panel
(A), their mean sizes and physical stiffness obtained by measuring the phase contrast images were
plotted. In the panel (B), their physical stiffness was evaluated by the compressing them into their
semidiameter (µm) during 20 sec using a micro-squeezer, and the requiring force/displacement
(µN/µm) values were plotted. All experiments were performed in duplicate using fresh preparations
(n = 12 and 15–20 for size and stiffness measurement, respectively). Data are presented as the
arithmetic mean ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01, **** p < 0.001 (ANOVA
followed by a Tukey’s multiple comparison test).
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Figure 5. Effects of different concentrations of tamsulosin (TAM) on mRNA expression of ECMs in 3D
spheroids of ARPE 19 cells. 3D ARPE 19 spheroids at Day 5 in the absence or presence of 1 µM, 10 µM
or 100 µM tamsulosin (TAM) were subjected to qPCR analysis to estimate their mRNA expression
of ECM proteins including COL1, COL4, COL6 and FN were performed. All experiments were
performed in duplicate using fresh preparations (n = 10–15, each). Data are presented as arithmetic
means ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.005 (ANOVA followed by
a Tukey’s multiple comparison test).
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Figure 6. Representative confocal images showing the expression of ECMs in 3D ARPE 19 spheroids
under several conditions. 3D ARPE 19 spheroids at Day 5 in the absence or presence of 1 µM, 10 µM
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or 100 µM tamsulosin (TAM) were subjected to immunohistochemistry analysis. Representative
immunolabeling images by specific antibodies against collagen 1 (COL 1), collagen 4 (COL 4), collagen
6 (COL6), or fibronectin (FN) (green), DAPI (blue) and Phalloidin (red) are shown in panel A (scale
bar: 100 µm). The staining intensities of the labeling of each ECM proteins were plotted in panel B.
All experiments were performed in duplicate using fresh preparations consisting of 5 spheroids each.
Data are presented as the arithmetic mean ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01,
*** p < 0.005 (ANOVA followed by a Tukey’s multiple comparison test).

4. Discussion

The lower urinary tract symptoms caused by benign prostatic hypertrophy (BPH) are
well known and recognized as the most frequent urologic conditions in older men, and they
are usually treated by α1 AR antagonists (α-1ARAs) [36,37]. Among the several α1ARAs,
TAM is most commonly used because of the fewer adverse effects as compared with other
α1ARAs, such as terazosin and doxazosin [38]. However, to the contrary, previous studies
have demonstrated that the risk for IFIS is particularly higher in the TAM user as compared
with users of other α1ARAs during cataract surgery [23,39–41]. IFIS increases the risk
of serious complications during cataract surgery, particularly if surgeons are unaware
of the use of α1ARAs [42]. In addition, it is known that α1AR is also expressed within
RPE [10], so we reasonably speculated that the presence of the unidentified TAM induced
some effects on RPE. In fact (and quite interestingly), it has been suggested that TAM
may induce some favorable effects in RPE cells in diabetic retinopathy (DR) based on a
recent study reporting that TAM may induce beneficial effects in diabetic nephropathy
(DN) [43]. These conclusions were supported by the following results: (1) TAM reduced
a high glucose-induced expression of TNF-α, IL-6, IL-8, MMP-2 and MMP-9; (2) TAM
inhibited the expression of VCAM-1 and ICAM-1, and a high glucose-induced expression
of fibrosis factors such as COL-1 and TGF-β1; and (3) TAM reduced oxidative stress by
inhibiting the generation of ROS, thus preventing the activation of p38. In addition, therapy
involving the use of a combination of drugs that regulate G protein couple receptor (GPCR)
signaling pathways including TAM was found to beneficially inhibit the development of
early diabetic retinopathy [44] as well as retinal degeneration [45,46], as compared with
the use of each drug individually. In the current study, using 2D and 3D cultures of ARPE
19 cells, we were able to successfully evaluate the drug-induced effects of TAM and obtained
the following results: TAM significantly altered the distribution of ECM deposits and the
energy balance between glycolysis and OXPHOS, and the increased barrier functions in the
2D ARPE 19 monolayers, and large and stiffer 3D ARPE 19 spheroids, and these effects were
concentration dependent. Therefore, considering the collective findings reported herein,
it appears that TAM not only modulates the biological activities of RPE cells, but also
may potentially become a therapeutic target for the treatment of RPE-affected disorders,
although some TAM-induced ocular adverse risks need to be taken into consideration,
in addition to IFIS. In fact, it was reported that TAM induced an increase in choroidal
thickness [47] and choroidal detachment [48].

So far, it is postulated that α1ARAs affect the iris dilator muscle through α1AR causing
irreversible atrophy of the iris dilator muscle because pre-operative cessation of α1ARAs
does not decrease the risk of IFIS [22,23,49,50]. In fact, several in vitro studies have shown
that α1AR is expressed within the iris dilator muscle in rats [51] and rabbits [52]. However,
possible mechanisms of antagonism of α1AR by TAM within the iris dilator muscle have
not been fully identified yet, although previous in vitro studies in rabbits indicated that
TAM binds to iris melanin and, in turn, inhibits dilator muscles [53,54]. Since, for studying
this issue further, some in vitro models replicating IFIS etiology will be required, our
current study using 2D and 3D cultures of ARPE 19 cells may also be applicable for this
study purpose. In contrast to RPE, the structure of the iris is very complicated, that is,
the iris is composed of several types of cells including IPE, dilator and sphincter muscle,
melanocytes and others [55], although both RPE and iris are categorized within uveal
tissues epithelium, and α1AR is present in both tissues [25]. Therefore, to establish in vitro
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models replicating IFIS, 3D organoid culture will be required rather than 3D spheroid
culture using iris derived cells.

As of this writing, despite our current insufficient understanding of the pathophysio-
logical roles of α1AR and α1ARA within ocular tissues, our developed research strategy
using newly developed 3D spheroid cultures in addition to the conventional 2D cell cul-
tures represents a promising approach in this research field. However, as study limitations
in the current investigation, no in vitro studies using RPE cells have appeared as far we
know; therefore, we used 1–100 µM concentrations of TAM as was reported in a previous
study of the TAM-induced effects on neuronal cells [26], which are anatomically similar to
retinal cells. Nevertheless, in terms of the intraocular levels of TAM, previous studies by
liquid chromatography-electrospray ionization tandem mass spectrometry indicate that
the concentrations of TAM in aqueous humor and serum specimens were much lower,
0.1–4.7 ng/mL (2.4–11.5 nM) and 0.1–19.3 ng/mL (2.4–47.3 nM), respectively [22,56], as
compared to the concentrations used in the current study (1–100 µM). It has also been
shown that the AH and vitreous levels of drug concentrations were significantly differ-
ent in topical versus systemic administration. That is, those levels were higher in AH
than vitreous in the case of topically administered drugs [57], but, in contrast, vitreous
levels were comparable or even higher than AH in the case of systemically administered
drugs [58,59] or serum derived factors [60]. In addition, TAM-induced effects on RPE cells
would also be expected to be different between short-term and long-term exposure, even
when the same concentrations were used. Therefore, to develop a better understanding of
the TAM-induced effects on RPE cells, we plan to perform additional experiments including
measurements of cell growth, migration ability and related issues under a wider range of
concentrations and different exposure periods, as well as using pathological states of RPE,
as our next project.

5. Conclusions

In conclusion, as an initial step to investigate TAM-induced effects on RPE cells,
and using 3D ARPE 19 spheroid cultures in addition to the conventionally used 2D cell
cultures under physiological conditions, we found that TAM significantly modulated ECM
expression and distribution as well as cellular metabolism states and that this modulation
was concentration dependent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9100556/s1, Figure S1: Representative confocal
images showing the expression of ECMs in 2D ARPE 19 monolayers under several conditions;
Figure S2: Time course of changes in the mean sizes of the 3D ARPE 19 spheroids during 5 days
culture; Figure S3: The measurement of the physical stiffness using a microsqueezer; Table S1: The
Quantitative PCR primers are shown.
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