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Abstract: Evaluating the severity of ulcerative colitis (UC) through the Mayo endoscopic subscore
(MES) is crucial for understanding patient conditions and providing effective treatment. However,
UC lesions present different characteristics in endoscopic images, exacerbating interclass similarities
and intraclass differences in MES classification. In addition, inexperience and review fatigue in
endoscopists introduces nontrivial challenges to the reliability and repeatability of MES evaluations.
In this paper, we propose a pyramid hybrid feature fusion framework (PHF3) as an auxiliary di-
agnostic tool for clinical UC severity classification. Specifically, the PHF3 model has a dual-branch
hybrid architecture with ResNet50 and a pyramid vision Transformer (PvT), where the local features
extracted by ResNet50 represent the relationship between the intestinal wall at the near-shot point
and its depth, and the global representations modeled by the PvT capture similar information in
the cross-section of the intestinal cavity. Furthermore, a feature fusion module (FFM) is designed
to combine local features with global representations, while second-order pooling (SOP) is applied
to enhance discriminative information in the classification process. The experimental results show
that, compared with existing methods, the proposed PHF3 model has competitive performance. The
area under the receiver operating characteristic curve (AUC) of MES 0, MES 1, MES 2, and MES
3 reached 0.996, 0.972, 0.967, and 0.990, respectively, and the overall accuracy reached 88.91%. Thus,
our proposed method is valuable for developing an auxiliary assessment system for UC severity.

Keywords: ulcerative colitis; Mayo endoscopic subscore; deep learning; hybrid architecture;
feature fusion

1. Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by mu-
cosal inflammation, which begins in the rectum and extends proximally into the colon in a
continuous manner. Bloody diarrhea is the most common early symptom of UC, and other
clinical symptoms include abdominal pain, faecal urgency, tenesmus, and vomiting [1,2].
In recent years, although the incidence of UC has stabilized in developed regions, the disease
burden remains high [3]. Moreover, in developing regions, with the acceleration of urban-
ization, the incidence of UC continues to increase, reaching 5.41 cases per 100,000 persons
in India [4]. Endoscopy plays a fundamental role in the diagnosis, treatment, and man-
agement of UC, especially in monitoring disease activity and responses to treatment [5].
Endoscopic mucosal remission is an important therapeutic goal for UC, as well as the basis
for evaluating future colorectal cancer risk and improving the prognostic quality of life [6].
Therefore, accurately assessing UC activity and the overall severity of the disease is critical
for selecting the best management strategy for patients [7].
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At present, the most commonly used evaluation index for assessing the severity of UC
in clinical practice is the Mayo score [8], and the Mayo endoscopic subscore (MES) is the
most important component of the overall Mayo score [6,9]. The MES evaluates the degree
of damage to the intestinal mucosa. As shown in Figure 1, the MES classifies mucosal
injury into four levels: normal or inactive, mild disease, moderate disease, and severe
disease. However, the use of the MES for endoscopic evaluation is difficult and requires
that endoscopists be trained. The reliance on subjective interpretations by endoscopists
also hinders the reliability and repeatability of MES classification [10,11]. In addition,
inexperience and review fatigue may lead endoscopists to misjudge the severity of UC,
which may result in delayed treatment and missing the best time to change treatment
decisions. However, artificial intelligence technology has been used to assist endoscopists
in the rapid and accurate determination of UC severity classification.

(a) MES 0 (b) MES 1 (c) MES 2 (d) MES 3

Figure 1. Representative images of Mayo endoscopy score. (a) MES 0: normal or inactive; (b) MES 1:
mild, erythema, decreased vascular pattern, mild friability; (c) MES 2: moderate, marked erythema,
absent vascular pattern, friability, erosions; (d) MES 3: severe, spontaneous bleeding, ulcerations.

In recent years, convolutional neural networks (CNNs) have made substantial progress
in the field of computer vision and are widely used in medical image classification [12,13],
segmentation, registration, reconstruction, and object detection [14–16]. Due to the power-
ful feature extraction ability of CNNs, CNN-based deep learning models have been applied
to colonoscopies to identify a variety of diseases in the small intestine [17] and detect
polyps [18], significantly reducing the workload of endoscopists. The excellent remote
dependency modeling capabilities of the Vision Transformer (ViT) have popularized this
approach in the field of computer vision [19]. Moreover, the number of technical reports
on the ViT in medical image analysis has increased exponentially [20]. While the ViT can
compensate for the CNN’s inability to capture global representations, the input mode
of patch embedding ignores local details and lacks local inductive bias and an overall
hierarchical structure. As a result, many excellent studies that combine the ViT and CNN
to utilize their complementary advantages have emerged [21,22].

Compared with other medical imaging methods, colonoscopy images are closer to
natural images and have three color channels. The progressive shooting characteristics of
colonoscopy cause colonoscopy images to appear diversified, and many shooting points
contain not only the features of the same intestinal lumen cross-section, but also the depth
features of the intestinal cavity. In one colonoscopy image, although the upper left corner
may be far from the lower right corner, the characteristics of these regions may be similar in
the bowel lumen sectional space. Therefore, remote relationship modeling may be critical
for extracting information from colonoscopy images. Inspired by the pyramid vision
Transformer (PvT) proposed by Wang et al. [23,24] and rich CNN-Transformer feature
aggregation networks [25], we propose a pyramid hybrid feature fusion framework (PHF3)
for UC severity classification. Compared with the ViT, the PvT can learn high-resolution
representations while taking into account the problem of computational consumption and
has a more nuanced local feature extraction process, but its relationship modeling is still
global and lacks the inductive bias unique to convolution. The pyramidal hierarchical
structure of the PvT creates a unique condition for its fusion with the CNN, which avoids the
problem of feature dimension mismatch when the CNN is combined with Transformer. The
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design of the PHF3 dual-branch stream hybrid architecture ensures that the local features
and the global representation are relatively independent while complementing each other,
which provides a simple and effective way of feature fusion. The main contributions of this
article can be summarized as follows:

(1) The dual-branch pyramid hybrid architecture combines two feature extractors, namely
a CNN and a PvT, to extract the deep features and cross-sectional spatial features of
the intestinal cavity in colonoscopy images.

(2) A feature fusion module was designed to integrate the local features extracted by
the CNN and the global dependencies modeled by the PvT, thereby improving the
classification accuracy by enhancing the feature representation ability.

(3) At the output of the model, the second-order aggregation of the features was applied
to enhance discriminative representations, which is effective for classifying the UC
severity. In addition, an iterative method for covariance normalization was utilized to
accelerate network training.

The remainder of this article is organized as follows. In Section 2, related work on UC sever-
ity classification and the hybrid architecture of the CNN and ViT is summarized. The proposed
PHF3 model for UC severity classification is described in detail in Section 3. The performance of
the PHF3 model is evaluated in Section 4 and compared with that of conventional deep models.
A discussion and some conclusions are presented in Sections 5 and 6, respectively.

2. Related Work
2.1. Deep Learning for UC Severity Classification

In recent years, deep-learning-based algorithms have replaced traditional machine
learning methods due to superior recognition ability and end-to-end training strategies and
have shown promise in gastroenteroscopy image diagnosis applications [26,27]. However,
few studies have assessed the severity of UC. Ozawa et al. [28] constructed a computer-
aided diagnosis system based on GoogleNet to identify MES 0 and MES 0-1, which was the
first study that explored the performance of CNNs in evaluating different disease activity
levels in UC. Subsequently, Stidham [29] showed that the deep learning model performed
similarly to experienced human reviewers in grading the endoscopic severity of UC. In the
recognition of MES 0-1 and MES 2-3, an Inception V3-based image classification architecture
achieved an area under the receiver operation curve (AUC) of 0.970 (95% CI, 0.967–0.972).
Bhambhvani et al. [6] developed a deep learning model based on ResNeXt101, with the aim
of automatically classifying the MES of individuals with UC. However, this study included
only three categories (MES 1-3), and the number of samples was small. Thus, recent deep-
learning-based UC severity classification strategies are based on CNNs, and there have
been few reports on four-level MES assessments. In a new study, Luo et al.[30] designed
an efficient attention mechanism network (EAM-Net), and fed the features extracted from
convolutional neural networks into EAM-Net and recurrent neural networks, respectively,
achieving advanced results in the UC severity classification task, with an overall accuracy
of 0.906 and 0.916 on two datasets, respectively. However, its DenseNet-based backbone
may be difficult to complete the global modeling of the overall relationship [31].

2.2. Dual-Branch Stream Hybrid Architecture of CNN and ViT

Since the advantages and disadvantages of the CNN and ViT have been revealed,
the combination of a CNN and ViT to develop a model with better performance has be-
come a popular research topic. In general, these diverse works can be divided into three
categories: conv-like Transformers, Transformer-like ConvNets, and conv-Transformer
hybrids [32]. Among them, the conv-Transformer hybrid takes advantage of the CNN
and ViT in a more direct and simpler way, and the dual-branch stream structure is one
example of this type of model. In this kind of structure, an effective feature fusion module
is critical. Peng et al. [31] proposed Conformer, which utilizes a convolution operation and
a self-attention mechanism to enhance representation learning. The feature coupling unit
of Conformer integrates local features and global representations at different resolutions in
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an interactive manner. Chen et al. [33] presented Mobile-Former, which adopts a parallel
lightweight bidirectional bridge design between MobileNet and Transformer. Yoo et al. [25]
designed a more concise feature aggregation method in which the flat features of Trans-
former linear embeddings are rearranged and concatenated and combined with CNN
features. Due to the mismatch between the intermediate feature dimensions of the CNN
and ViT, the design of the feature fusion module in these studies was relatively complex.
Liu et al. [34] developed a hybrid architecture named CVM-Cervix, which does not include
any interactions or fusion between the CNN and ViT branches, with a multilayer percep-
tron applied only at the output to combine the features of the two branches. The excellent
performance of CVM-Cervix in cervical cancer classification tasks suggests that effective
fusion at the output may be indispensable.

2.3. Higher-Order Statistics in Deep Learning

Since Lin et al. [35] proposed bilinear CNNs, many studies [36,37] have found that
high-order pooling representations and deep CNN integration introduce promising im-
provements in challenging fine-grained visual classification tasks. Li et al. [37,38] conducted
global covariance pooling for convolution features, achieving better improvements than
those achieved by first-order pooling, and proposed a covariance iterative normalization
method. Dai et al. [39], inspired by the work of Li et al., considered learning the fea-
ture interdependencies through the second-order statistics of the features and designed a
second-order channel attention module for single-image super-resolution. Fang et al. [40]
introduced a novel bilinear attention block for person retrieval, adopting the bilinear pool-
ing method to model local feature interactions in each channel while preserving spatial
structure information. Chen et al. [41] developed a new approach, fitting higher-order statis-
tics with linear polynomials, and constructed a higher-order attention module for person
re-identification, which can be simply realized by 1 × 1 convolution and an element-level ad-
dition/product. These encouraging studies demonstrate that higher-order statistics play a
significant role in deep learning in enhancing the representations of discriminative features.

3. Materials and Methods
3.1. Dataset Details

This study was approved by the Ethics Committee of Daping Hospital affiliated with
Army Medical University and was performed according to the Declaration of Helsinki. A
total of 15,120 colonoscopy images with high quality of 768 cases were collected from the
Daping Hospital affiliated with Army Medical University and Sir Run Run Shaw Hospital
of Zhejiang University from January 2018 to December 2021. Each colonoscopy image was
independently annotated by two endoscopic experts; when their labels were inconsistent, a
third expert assisted in the discussion and they made the final decision together. Finally,
the whole dataset included 4124 MES 0 images, 6669 MES 1 images, 1773 MES 2 images,
and 2554 MES 3 images. Table 1 illustrates the specific data distribution. The whole dataset
was randomly divided into training and test datasets at a ratio of 8:2, with the training
dataset containing 12090 images and the test dataset containing 3030 images. Details on the
datasets are presented in Table 2.

Table 1. The specific data distribution.

MES 0 MES 1 MES 2 MES 3 Total

Daping Hospital 3299 2479 950 1010 7738
Sir Run Run Shaw Hospital 825 4190 823 1544 7382
Total 4124 6669 1773 2554 15,120
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Table 2. Distribution of experimental datasets.

MES 0 MES 1 MES 2 MES 3 Total

Training dataset 3298 5332 1419 2041 12,090
Test dataset 826 1337 354 513 3030
Total 4124 6669 1773 2554 15,120

3.2. Overview of the Framework

The proposed PHF3 model is illustrated in Figure 2. The PHF3 model has a dual-
branch structure, which consists of a PvT branch, a CNN branch, a feature fusion module
(FFM), two dual-branch classifiers, and a fusion classifier based on second-order pooling
(SOP). The structure of the PvT is described in detail in Section 3.2, while the CNN branch
is based on the ResNet50 architecture. The PvT and ResNet50 model were both pretrained
on the ImageNet dataset. In a colonoscopy image, the local features extracted by the
CNN represent the relationship between the intestinal wall at the near-shot point and
the coaxial extension line, while the global representations modeled by the PvT capture
similar information in the cross-section space of the intestinal cavity. The FFM enhances
the visual representation ability by combining local features with global representations
in an interactive manner. The PvT and CNN branches both contain four stages, and the
FFM performs feature fusion on the output from Stages 1 to 3. Then, the fused features
are transmitted back to the two main branches. The PHF3 model has three outputs: the
auxiliary outputs of the dual branches adopt average pooling, while the outputs of the
fourth stage are concatenated and spliced at the channel level and serve as the main output
of the model after SOP and the fully connected (FC) layers. Therefore, the total loss of
the model includes the sum of three losses, Lossall = αLosspvt + βLosscnn + γLosscombine,
and the cross-entropy loss function with label smoothing is applied for all losses. α, β,
and γ are the weight coefficients of the three losses, respectively, and their proportions
are discussed in Section 4.1. Suppose that the true label corresponding to the n-th sample
is yn ∈ {1, 2, . . . , K}, and v = (v1, v2, . . . vK) is the final output of the network, that is the
prediction result of sample n. The calculation is expressed as follows:

LossΩ = (1− ε) · [− 1
N

N

∑
n=1

log(
evyn

∑K
m=1 evm

)] + ε · [− 1
NK

N

∑
n=1

K

∑
k=1

log(
evk

∑K
m=1 evm

)] (1)

where N is the number of samples, K is the number of classification categories, and ε is the
coefficient of label smoothing. Ω can stand for pvt, cnn, and combine.
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Figure 2. Illustration of the pyramid hybrid feature fusion framework (PHF3). The stem consists
of a convolution, a batch normalization, a ReLU activation function, and maximum pooling; FFM:
feature fusion module, SOP: second-order pooling, LayerNorm: layer normalization, FC: fully
connected layer.
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3.3. Pyramid Vision Transformer

The PvT was originally proposed for dense prediction tasks, such as semantic segmen-
tation and target detection, and is a pure Transformer backbone [23]. The progressive shrink-
ing pyramid and spatial-reduction attention layer in the PvT can learn high-resolution
representations, reducing the computational costs. Although the architecture of the PvT is
favorable for dense prediction tasks, it does not show a strong advantage for image classifi-
cation tasks. The improved version of the PvT [24] includes overlapping patch embedding
(OPE) and a convolutional feed-forward network, thereby reducing the computational
costs and exhibiting excellent performance in classification tasks. Each stage of the PvT
consists of one OPE, one block, and one normalization layer, with the block containing N
basic component blocks.

Figure 3 shows the components of the i-th stage of the PvT in our study. Let Hi,
Wi, and di be the height, width, and embedding dimensions of the features in the i-th
stage, respectively. The flattened token output in the (i-1)-th stage is reshaped, and then,
OPE is carried out. In contrast to linear embeddings in the ViT, OPE is realized mainly
by convolution operations with a kernel size larger than the stride size. When i = 1, the
convolution kernel size in OPE is 7 and the stride is 3, while when i = 2,3,4, the convolution
kernel size in OPE is 3 and the stride is 2. In the basic component block, spatial reduction
(SR) is performed first; then, multihead attention (MHA) is implemented. The MHA
mechanism receives a query Q, key K, and value V as the input, and the SR operation
greatly reduces the scale of K and V, effectively reducing the computational overhead
and strongly encouraging the model to learn higher-resolution representations. The MHA
operation can be formulated as follows:

MHA(Q, K, V) = Concat(head1, · · · , headhi
)WO (2)

headj = Attention(QWQ
j , SR(K)WK

j , SR(V)WV
j ) (3)

where hi is the number of heads in the attention layer at stage i and Concat(·) is the
concatenation operation. WO ∈ Rdi×di and WQ

j , WK
j , WV

j ∈ Rdi×(di/hi) are linear projection
parameters. The SR(·) operation can be formulated as follows:

SR(x) = LN(RP2(Conv(RP1(x), Ri
s))W

S) (4)

where x ∈ RHiWi×di denotes the input sequence and RP1(·) and RP2(·) are reshape opera-
tions. x ∈ Rdi×Hi×Wi denotes the feature after RP1(·), and Ri

s represents the spatial reduction
ratio, which is also the size of the kernel and stride in the convolution operation Conv(·).
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Figure 3. The basic component block of the pyramid vision Transformer (PvT). OPE: overlapping
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At the end of the spatial reduction operation, RP2(·) changes x ∈ Rdi×(Hi/Ri
s)×(Wi/Ri

s)

to x ∈ R(HiWi/(Ri
s)

2
)×di and LN(·) refers to layer normalization, while WS ∈ Rdi×di is a linear

projection. Note that the Attention(·) calculation is consistent with the original paper [42]:

Attention(q,k,v) =Softmax(
qk>√
di/hi

)v (5)

Depthwise convolution is introduced into the convolution feed-forward network to
capture the local continuity of the input tensor. The dimensional decay factor between the
two fully connected (FC) layers at the i-th stage is Ri

m. In our study, the settings of d, h, Rs,
and Rm in the four stages were [64, 128, 320, 512], [1, 2, 5, 8], [8, 4, 2, 1], and [8, 8, 4, 4], while
the numbers of basic component blocks in the four stages were 3, 8, 27, and 3.

3.4. Feature Fusion Module

As shown in Figure 2, we developed a complementary design between the two
branches, namely the feature fusion module (FFM). The structure of the FFM is illustrated
in Figure 4. The FFM receives feature maps from the PvT and CNN branches, and after the
fusion at the channel scale, the output is sent back to the two main branches to enhance

the complementary representation. Concretely, Fi
pvt ∈ RCi

pvt×Hi×Wi and Fi
cnn ∈ RCi

cnn×Hi×Wi

are intermediate feature mappings from the PvT and CNN in stage i, which are aggregated
by G f use:

Mi
pvt, Mi

cnn = Split(G f use(Concat(Fi
pvt, Fi

cnn))) (6)

where Concat(·) is the concatenation operation and Split(·) is the tensor split operation. G f use
consists of 1 × 1 convolutions and ReLU activation functions and is designed for channel-

level fusion. The Mi
pvt ∈ RCi

pvt×Hi×Wi and Mi
cnn ∈ RCi

cnn×Hi×Wi obtained by splitting
along the channel dimension are followed by Gpvt and Gcnn. Then, the fused features are
transmitted back to each branch and added to the original input features Fi

pvt and Fi
cnn. It

is worth noting that the FFM aggregates local features and global representations only in
Stages 1 to 3; in Stage 4, the outputs of the two branches are concatenated, followed by SOP
and the final classification.

Figure 4. The structure of the feature fusion module (FFM).

3.5. Second-Order Pooling

In typical CNN structures, global average pooling implements first-order data statis-
tics on the extracted features to determine the final classification. However, compared
with the complex learning process of the CNN, the first-order statistics are relatively
crude. Inspired by [37,38], in our study, second-order pooling was applied for the final

abstraction of the features obtained by each branch. Specifically, F4
pvt ∈ RC4

pvt×H4×W4 and



Bioengineering 2022, 9, 632 8 of 19

F4
cnn ∈ RC4

cnn×H4×W4 are the output features of the PvT and CNN branches in Stage 4, and

Ff inal ∈ R(C4
pvt+C4

cnn)×H4×W4 is obtained after the concatenation operation along the channel
dimension. We reshaped Ff inal to a feature matrix X ∈ RC×S, where C = C4

pvt + C4
cnn and

S = H4W4. The covariance matrix is calculated as follows:

Σ = XĪX> (7)

Ī =
1
S
(I− 1

S
1) (8)

Here, I and 1 are identity and all-ones matrices of size S × S, respectively. Covariance
normalization is beneficial for discriminative representations [39], and this normalization
often relies on eigenvalue decomposition (EIG) or singular-value decomposition of the
matrices. However, since graphics processing units (GPUs) are not ideal for EIG implemen-
tations, Newton–Schulz iterations were adopted to accelerate the covariance normalization
process. To ensure the convergence of the Newton–Schulz iteration, Σ is first normalized
as follows:

A =
1

tr(Σ)
Σ (9)

Here, tr(Σ) = ∑C
i λi denotes the trace of Σ. Given Y0 = A and Z0 = I, for l = 1, . . . , L, the

Newton–Schulz iteration is given as follows:

Yl =
1
2

Yl−1(3I− Zl−1Yl−1)

Zl =
1
2
(3I− Zl−1Yl−1)Zl−1

(10)

Note that the pre-normalization process has an adverse effect on the network since
it nontrivially changes the magnitude of the data. After the Newton–Schulz iteration,
post-compensation is applied to produce the final normalized covariance matrix:

Ŷ =
√

tr(Σ)YL (11)

where Ŷ is a symmetric matrix, and we extracted the upper triangular elements of this
matrix to use as the input to the final fully connected layer.

3.6. Implementation Details

During training, randomly clipped 224 × 224 areas were fed into the network. During
testing, the colonoscopy images were resized to 256 × 256, and center clipped 224 × 224 ar-
eas were used for prediction (for the InceptionV4 model, the image size was resized to
320 × 320 and the input size was 300 × 300). For data enhancement, random horizontal
and vertical flips were adopted with a probability of 0.3. In addition, contrast-limited
adaptive histogram equalization (Clahe) was applied to enhance the representation of
the color features. The work of Mokter et al. [43] suggests that the vascular pattern is
important characteristic information. As shown in Figure 5, the Clahe algorithm improved
the image contrast and could highlight the vascular texture or white ulcers, while random
flipping was conducive to increasing image diversity. The PHF3 model was trained using
the stochastic gradient descent (SGD) optimizer with a weight decay of 1× 10−5 and a
momentum of 0.9. The learning rate was initialized to 0.001 and decreased by 0.1 every
10 epochs in the 50 training epochs, with 128 images included in each small batch. The
cross-entropy loss with label smoothing was adapted, and the coefficient ε was set to
0.1. Our work was implemented using PyTorch with two NVIDIA Quadro GV100 32G
graphics cards.
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(a) (b)

(c) (d) (e)

Figure 5. Data enhancement presentation. (a) The original image; (b) contrast-limited adaptive
histogram equalization (Clahe); (c) image clipping; (d) horizontal flipping; (e) vertical flipping.

For the classification task, we evaluated the performance of all methods according
to the overall accuracy and the accuracy (ACC), sensitivity (SEN), specificity (SPE), pos-
itive predictive value (PPV), negative predictive value (NPV), and F1-score (F1) of each
individual class. These metrics can be calculated as follows:

total accuracy = TNall/N (12)

accuracy = (TP + TN)/N (13)

sensitivity = TP/(TP + FN) (14)

speci f icity = TN/(TN + FP) (15)

positive predictive value = TP/(TP + FP) (16)

negative predictive value = TN/(TN + FN) (17)

F1− score = 2× recall × precision
recall + precision

(18)

Here, N is the number of samples, while TNall denotes the number of all samples with
correct predictions. TP, TN, FP and FN represent the number of true positive, true negative,
false positive, and false negative samples in each prediction category, respectively.

4. Experiment and Results
4.1. Preliminary Study

In the final feature fusion process, the Newton–Schulz iterative procedure was applied
to achieve fast covariance normalization, where the number of iterations was a tunable
hyperparameter. Therefore, we first explored the impact of the number of Newton–Schulz
iterations L on model performance. The results are shown in Figure 6, where L = 0 indicates
that SOP was not adopted. When L = 1–8, the accuracy fluctuated to some extent, but
the overall trend was rising. After L = 8, the overall accuracy decreased, indicating that
increasing the number of iterations is not conducive to improving accuracy, which is
consistent with the discussion in [37]. Therefore, in our final model, L was set to 8.

In addition, we also explored the proportion of weight coefficients α, β, and γ for
the three losses: Losspvt, Losscnn, and Losscombine. Intuitively, we believed that Losscombine
was more important, and the experimental results are shown in Table 3. To a certain
extent, increasing the weight of Losscombine can effectively improve the performance of
the model. Therefore, we applied α:β:γ = 1:1:2 in our final model. On the training set,
5-fold cross-validation was applied to select various parameters for model training, and
the area under the receiver operating characteristic curve (AUC) values of each class in the
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cross-validation analysis were 0.986, 0.951, 0.957, and 0.981 (Figure 7), while the overall
accuracy was 85.45%.
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Figure 6. Performance comparison of PHF3 under different Newton–Schulz iterations L.

Table 3. Exploration of the ratio of α, β, and γ.

α : β : γ 1:1:1 1:1:2 1:1:3 1:1:4 1:1:5

Total ACC 88.55 88.91 88.78 88.45 88.05
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MES 0 AUC=0.986
MES 1 AUC=0.951
MES 2 AUC=0.957
MES 3 AUC=0.981

Figure 7. ROC curves for 5-fold cross-validation.

4.2. The Ablation Experiments and Comparison Experiments with Classical CNNs

The results of the ablation experiments are shown in Table 4. Compared with the
branch structure alone, the PHF3 model was able to combine the local features extracted by
ResNet50 with the global representations modeled by the PvT to achieve better classification
performance. The overall accuracy of ResNet50, the PvT, and the PHF3 model were 86.01%,
87.29%, and 88.91%, respectively. A performance comparison of some representative CNN
models is shown in Table 5. Compared with ResNet50, ResNet101 had no significant
improvement in terms of the recognition performance, suggesting that increasing the
network depth did not enhance the representations of discriminant features. Considering
the balance between performance and efficiency, our proposed PHF3 model adopted
ResNet50 and the PvT as the two main branches and outperformed both individual models.
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The ROC curves of the five models on the test set are shown in Figure 8, and the AUC
values of the PHF3 model for MES 0, MES 1, MES 2, and MES 3 reached 0.996, 0.972, and
0.990, respectively.

Table 4. The ablation study.

Model Metrics MES 0 MES 1 MES 2 MES 3

ResNet50

ACC 95.48 89.04 93.00 94.49
SEN 89.59 88.63 62.71 89.47
SPE 97.69 89.37 97.01 95.51
PPV 93.55 86.81 73.51 80.24
NPV 96.16 90.87 95.16 97.80

F1 91.53 87.71 67.68 84.61

PvT

ACC 95.81 90.17 93.37 95.25
SEN 88.14 91.32 69.77 87.52
SPE 98.68 89.25 96.49 96.82
PPV 96.17 87.03 72.43 84.88
NPV 95.69 92.87 96.02 97.44

F1 91.98 89.12 71.08 86.18

PHF3

ACC 96.77 91.22 93.99 95.84
SEN 90.19 91.17 73.16 91.81
SPE 99.23 91.26 96.75 96.66
PPV 97.77 89.17 74.86 84.86
NPV 96.43 92.90 96.46 98.30

F1 93.83 90.16 74.00 88.20

Table 5. Comparison of the proposed PHF3 with some representative CNN models.

VGG19 ResNet101 DenseNet121 InceptionV4 PHF3

Total ACC 85.81 86.53 85.45 84.65 88.91

MES 0
ACC 95.48 95.84 94.88 94.65 96.77
SEN 89.23 88.98 87.29 88.26 90.19
SPE 97.82 98.41 97.73 97.05 99.23
PPV 93.89 95.45 93.51 91.81 97.77
NPV 96.04 95.97 95.35 95.66 96.43

F1 91.50 92.11 90.29 90.00 93.83

MES 1
ACC 88.75 89.70 88.25 87.62 91.22
SEN 86.91 89.90 90.28 88.11 91.17
SPE 90.19 89.55 86.65 87.24 91.26
PPV 87.50 87.16 84.23 84.51 89.17
NPV 89.72 91.82 91.86 90.28 92.90

F1 87.20 88.51 87.15 86.27 90.16

MES 2
ACC 93.00 92.48 92.67 92.48 93.99
SEN 69.77 68.08 59.60 60.73 73.16
SPE 96.08 95.70 97.05 96.67 96.75
PPV 70.17 67.70 72.76 70.72 74.86
NPV 96.00 95.77 94.78 94.90 96.46

F1 69.97 67.89 65.53 65.35 74.00

MES 3
ACC 94.39 95.05 95.08 94.55 95.84
SEN 88.50 86.55 87.72 86.35 91.81
SPE 95.59 96.78 96.58 96.23 96.66
PPV 80.35 84.57 83.96 82.34 84.86
NPV 97.61 97.25 97.47 97.19 98.30

F1 84.23 85.55 85.80 84.30 88.20
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(a) (b)

(c) (d)

Figure 8. ROC curves for five models. (a) MES 0, (b) MES 1, (c) MES 2, and (d) MES 3.

4.3. Comparative Experiments with Advanced Models

Even the basic ViT (ViT-B) exhibited better prediction accuracy than most CNNs.
Moreover, compared to the ViT-B, the the PvT, which learns higher-resolution representa-
tions, improved the overall accuracy by approximately 1.0 percentage points and exhibited
performance comparable to that of the basic Swin Transformer (Swin-B) [44]. In order to
highlight the advantages of the PHF3 model, we also compared it with advanced mod-
els such as the VAN [45] and MViT [46], and Conformer [31], as a representative of the
two-branch CNN-Transformer structure, was also included in our comparison scope. The
results are shown in Table 6, from which we can find that the VAN did not achieve excit-
ing performance. In comparison, the Swin-B , MViT, and PvT performed better, which
implies that the effectiveness of the pyramid structure and the overlap and transformation
of patches may be beneficial for learning diffuse lesions. The confusion matrices of the
six models are shown in Figure 9, visually illustrating the differences in their predictions.
Compared with the Swin-B, the PHF3 model had slightly higher false negatives for MES 1
and false positives for MES 3, but the Swin-B was more likely to predict MES 0 as MES 1
and MES 3 as MES 2. As a trade-off between recall and precision, the F1-score considers
the false positive and false negative rates, and the PHF3 model had better F1-scores than
the comparison models in all categories.
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Table 6. Comparison of the proposed PHF3 with some advanced Transformer models.

VAN [45] MViT-B [46] ViT-B [42] Swin-B [44] Conformer [31] PHF3

Total ACC 85.68 87.26 86.27 87.46 87.16 88.91

MES 0
ACC 94.95 96.11 95.84 95.87 95.48 96.77
SEN 85.96 88.62 87.77 86.92 85.84 90.19
SPE 98.32 98.91 98.87 99.23 99.09 99.23
PPV 95.05 96.83 96.67 97.69 97.26 97.77
NPV 94.92 95.87 95.57 95.29 94.92 96.43

F1 90.27 92.54 92.01 91.99 91.19 93.83

MES 1
ACC 88.51 90.03 89.27 90.26 89.90 91.22
SEN 89.98 91.62 90.95 91.70 91.55 91.17
SPE 87.36 88.78 87.95 89.13 88.60 91.26
PPV 84.90 86.57 85.63 86.95 86.38 89.17
NPV 91.69 93.07 92.48 93.15 92.99 92.90

F1 87.36 89.03 88.21 89.26 88.89 90.16

MES 2
ACC 92.94 92.94 92.54 93.23 93.33 93.99
SEN 65.82 63.28 66.38 70.06 68.93 73.16
SPE 96.52 96.86 96.00 96.30 96.56 96.75
PPV 71.47 72.73 68.71 71.47 72.62 74.86
NPV 95.53 95.22 95.57 96.05 95.92 96.46

F1 68.53 67.67 67.53 70.76 70.72 74.00

MES 3
ACC 94.95 95.45 94.88 95.54 95.61 95.84
SEN 87.72 90.25 85.38 89.28 90.45 91.81
SPE 96.42 96.50 96.82 96.82 96.66 96.66
PPV 83.33 84.03 84.56 85.13 84.67 84.86
NPV 97.47 97.98 97.01 97.79 98.03 98.30

F1 85.47 87.03 84.97 87.16 87.46 88.20

(a) VAN (b) MViT-B (c) ViT-B

(d) Swin-B (e) Conformer (f) PHF3

Figure 9. Confusion matrix for the six models.

4.4. Visualization of Feature Maps and Heat Maps

The feature maps in the model inference process helped in understanding the feature
capture characteristics of the CNN and PvT branches and the effectiveness of the FFM. As
shown in Figure 10, we plotted partial feature maps before and after fusion for each stage.
Overall, the extracted features of both branches became increasingly abstract as the model
deepened, with the CNN branch focusing on local features and highlighting local details,
while the PvT branch focused on global representations and the overall performance was
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chaotic. The FFM clearly introduced global information into the CNN branch, while the
local details introduced into the PvT branch were more difficult to notice due to the chaotic
feature representations. Furthermore, as shown in Figure 11, to enhance the interpretability
of the model, Grad-CAM [47] was used to draw the heat maps. Some local ulcers and
bleeding were highlighted, which are important features when the model makes decisions.

CNN

PvT

Stage 1-before Stage 1-fusion Stage 1-add Stage 2-before Stage 2-fusion

Stage 2-add

CNN

PvT

Stage 3-before Stage 3-fusion Stage 3-add Stage 4

Figure 10. Partial feature maps before and after fusion at each stage. before: feature maps before
fusion, fusion: feature maps after fusion, add: the blended features are superimposed on the original
image and are also the input for the next stage.

(a) MES 0 (b) MES 1 (c) MES 2 (d) MES 3

Figure 11. Visualization of the attention maps obtained by Grad-CAM.

5. Discussion
5.1. A Novel Deep Learning Framework for UC Severity Assessment

In clinical practice, evaluating the severity of UC through MES is of great significance
for understanding patient conditions and providing effective treatment. Ensuring the
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reliability and reproducibility of UC severity classification remains a nontrivial challenge,
and previous works have been limited to convolutional neural networks, thus ignoring the
global dependencies of features in the intestinal lumen. Our work provides a novel solution
to this challenge. In colonoscopy images, we considered not only the local relationship
between the depth features of the intestinal cavity, but also the global dependencies of the
features in the same intestinal cavity cross-section. The proposed hybrid architecture com-
bines local features and global representations in a simple and effective manner, achieving
better performance than the baseline models. In the ablation study, the overall accuracy
of the PHF3 model was 2.90 and 1.62 percentage points higher than that of ResNet50 and
PvT, respectively. The feature fusion process of the two-branch hybrid framework can be
observed obviously by the visualization of the feature maps. Compared with the classical
CNNs, the accuracy of the proposed method was improved by 2.38–4.26 percentage points,
and the AUC of the proposed method was the highest in all categories. Even compared to
advanced models based on the Transformer architecture and CNN-Transformer combined
framework, the PHF3 model still had the upper hand. Our approach highlighted the
importance of the fusion of local features and global representations in the feature capture
of diffuse lesions and the effectiveness of second-order information in enhancing fused
discriminative features. This exciting result prompted us to believe that our study will
further advance the application of deep learning as an auxiliary diagnostic tool in intestinal
digestive diseases.

5.2. Multi-Branch Hybrid Architectures May Be Irreplaceable

The ViT and CNN are two mainstream models of deep learning at present. However,
they all have their own shortcomings, such as the difficulty of global relationship modeling
for the CNN and the lack of local inductive bias for the ViT. Therefore, a natural idea is to
combine them to complement each other’s advantages, such as introducing convolution
operators for the ViT or adding global attention mechanism for the CNN. Actually, the
convolution operation is introduced into the PvT structure, which is a conv-like Transformer.
Our experiments suggest that, even if convolutions are introduced to capture local relations
in Transformers, the effects may be limited, and there is still room for improvement.
Similarly, it is worth exploring whether Transformer-like ConvNets can be enhanced
further by introducing the ViT. In studies combining the CNN and ViT, a hybrid structure
with multiple branches may be a fusion method that is difficult to replace. Another issue
worth noting is how to weight losses incurred by multiple branches. Although we tested
weighting with different proportions, this artificial setup may not be optimal. If possible,
designing adaptive weighting methods may yield surprising results. In addition, due to the
complex attention mechanism and model design, the training and reasoning of the ViT are
not as fast as those of the CNN, which increases the computational costs of the CNN-ViT
fusion structure. The SR strategy in the PvT effectively reduced the amount of computations.
In a recent report, inspired by the SR in the PvT, Li et al. [48] proposed the Next-ViT, a new
paradigm that fuses convolutional and Transformer modules during every stage, aiming to
improve model efficiency and achieve industrial-scale deployment of the CNN-Transformer
hybrid architecture. Therefore, how to achieve efficient computation in a multi-branch
hybrid framework is also a problem that needs more research and experiments.

5.3. Higher-Order Statistics Require More Exploration

It is well known that first-order statistics may limit modeling capabilities; however,
second-order statistics are difficult to apply in GPUs because they introduce additional
computations. In our study, covariance normalization realized by Newton–Schultz itera-
tions achieved end-to-end training with acceptable computational costs, providing a new
approach for higher-order statistics applications. In a preliminary study, we explored the
influence of the number of Newton–Schultz iterations. Although the more iterations, the
better the fitting, the experimental results showed that the existence of a certain fitting bias
is beneficial to the generalization performance of the model. Our research may show that
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second-order information has higher discriminative representation power for the fusion fea-
tures of two branches. A very smooth thought is whether statistics larger than second-order
can perform better or whether it is an effective combination of first-order and second-order
information that needs more research to explore. In addition, when the computational costs
are no longer a hindrance, attention mechanisms based on higher-order statistics are an
exciting concept. At present, some studies have used second-order statistical information
to construct attention modules [39,40]. Furthermore, the kinds of feature representations
that can be enhanced by higher-order information should be investigated.

5.4. Limitations and Future Work

Despite the excellent and encouraging classification results, our research has several
limitations. First, the number of samples in each category in our dataset was not balanced,
which is a characteristic of most clinical diseases: there are always more remission samples
than severe case samples. UC severity classification is a more refined identification, and
simple upsampling or downsampling of the data cannot provide effective improvements.
Although class weighting based on loss can improve the classification accuracy of small
sample categories, this process inevitably reduces the overall accuracy. Second, due to
differences between the equipment and endoscopist manipulations, it is challenging to
construct a model with strong generalizability. In our study, the data were obtained
from only two large centers, and multicenter verification was lacking. In the future, we
will consider collecting multisource data and applying our model to colonoscopy video
processing. Moreover, we will explore the non-substitutability of the dual-branch hybrid
architecture and applications of higher-order attention mechanisms.

6. Conclusions

In this paper, we proposed PHF3, a novel dual-branch hybrid feature fusion framework
with the PvT and ResNet50 for UC severity classification in endoscopic images. Compared
with the ViT, the PvT can learn higher-resolution representations, which is beneficial for
learning the diffuse lesion features of UC. Moreover, the PvT has high operation efficiency.
The designed FFM structure solves the feature fusion problem of the CNN and PvT as
the feature resolution pyramid changes, thereby effectively combining local features and
global representations, while the SOP module enhances discriminant information by using
second-order statistics. The comparative ablation studies were encouraging, showing that
the PHF3 model exhibited better performance than the comparison methods and can, thus,
be used as an auxiliary tool for UC severity assessment. We hope that our work provides
new ideas for combining convolution and Transformer and its application in assisted
recognition in colonoscopy images.
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Abbreviations

The following abbreviations are used in this manuscript:
UC Ulcerative colitis
MES Mayo endoscopic subscore
CNNs Convolutional neural networks
ViT Vision Transformer
PvT Pyramid vision Transformer
PHF3 Pyramid hybrid feature fusion framework
FFM Feature fusion module
SOP Second-order pooling
FC Fully connected layer
OPE Overlapping patch embedding
SR Spatial reduction
MHA Multihead attention
SGD Stochastic gradient descent
ROC The receiver operating characteristic curve
AUC The area under the receiver operating characteristic curve
Clahe Contrast-limited adaptive histogram equalization
GPUs Graphics processing units
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