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Abstract: Gesture recognition using surface electromyography (sEMG) serves many applications,
from human–machine interfaces to prosthesis control. Many features have been adopted to enhance
recognition accuracy. However, studies mostly compare features under a prechosen feature window
size or a classifier, biased to a specific application. The bias is evident in the reported accuracy drop,
around 10%, from offline gesture recognition in experiment settings to real-time clinical environment
studies. This paper explores the feature–classifier pairing compatibility for sEMG. We demonstrate
that it is the primary determinant of gesture recognition accuracy under various window sizes and
normalization ranges, thus removing application bias. The proposed pairing ranking provides a
guideline for choosing the proper feature or classifier in future research. For instance, random forest
(RF) performed best, with a mean accuracy of around 74.0%; however, it was optimal with the mean
absolute value feature (MAV), giving 86.8% accuracy. Additionally, our ranking showed that the
proper pairing enables low-computational models to surpass complex ones. The Histogram feature
with linear discriminant analysis classifier (HIST-LDA) was the top pair with 88.6% accuracy. We also
concluded that a 1250 ms window and a (−1, 1) signal normalization were the optimal procedures
for gesture recognition on the used dataset.

Keywords: analysis; classification methods; electromyography; hand gestures; signal processing

1. Introduction

Hand gesture classification is an essential means of interaction and control for humans
across many fields such as virtual reality (VR) [1], control of robotic arms [2], or hand
prostheses [3]. Many methods are used to detect hand gestures, such as visual methods
using cameras [4], kinematic methods using sensors activated by motion [5], brain electrical
activity [6], and muscles signal activation methods utilizing surface electromyography
sensors (sEMG) [7,8]. Among these methods, sEMG has excellent advantages and has been
prominently used in medical devices, human–machine interaction [2,9], and prosthesis
control [10,11], as it provides a safe, easy-to-use, and noninvasive way to measure the
energy of muscles.

The relatively new progress in several fields made electromyography sensors more
affordable and sensitive. For instance, Prakash et al. [12] developed an sEMG armband that
obtained a 1.4-times greater signal-to-noise ratio (SNR) on average and a 45% increase in
sensitivity compared to a commercially available EMG sensor. Thanks to those advance-
ments, sEMG has become a more reliant gesture recognition option for various applications.
Dwivedi et al. [1] proposed a virtual reality experience to rehabilitate upper limb amputees
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via sEMG hand gesture classification with a random forest classifier. They obtained a
representation of the manipulated object movement in VR, achieving up to 92% accuracy
while performing the gestures, reaching up to 83% classification accuracy, after optimizing
the feature window size, its stride, and the number of base models of the classifier.

More studies explored other aspects of sEMG gesture recognition. Khushaba et al. [13]
investigated the aspect of the window size and its effect with a varying number of EMG
channels. They examined window sizes varying from 32 ms to 256 ms and the number of
channels varying from 8 to 128/256. They concluded that high-definition EMG setups with
numerous channels could obtain good performance with small window sizes. In another
study, Chen et al. [14] investigated multiple models with varying window sizes, showing
that some models outperform others when the window size is expanded.

Due to dependency on sEMG signals in such applications [15], their classification
and processing procedures were extensively investigated [16,17], such as features [18],
using very common features for sEMG. Nevertheless, the bulk of the literature focuses
on a prespecified control environment, which limits the generalization of the findings
outside the chosen settings, such as the classifier used. For instance, Phinyomark et al. [19]
investigated the effects of different sEMG features, such as mean absolute value (MAV) and
waveform length (WL). They found some features redundant while recommending others.
However, they analyzed all time domain features using the linear discriminant analysis
classifier (LDA) only under a fixed feature window size, not including the classifier’s
complexity or bias effect.

From an application perspective, most studies consider a prechosen application, ren-
dering their results incompatible with other ones. For example, offline gesture recognition
studies, with large windows, usually obtain around 95% accuracy [20,21], while real-time
studies, with small windows, obtain around 80–85% accuracy [22]. Benalcazar et al. [23]
proposed a multi-stage model of signal acquisition, preprocessing, features, classification,
and postprocessing. Using the KNN classifier, they surpassed a commercial armband’s
accuracy by 3% on five gestures. They used a 1 s window with a 250 ms stride, as they
agreed that real-time classification has to be under 300 ms.

Hence, the distinct settings in the literature raise the need for a comprehensive study
of the variations in sEMG processing concurrently with the fewest predetermined condi-
tions. A thorough analysis would encompass the feature choice and the complexity of
the classification method effects on accuracy while simultaneously exploring the feature
window size and preprocessing steps such as the signal normalization range. Such an
analysis would serve as a solid base for other research points and applications regardless
of their study settings.

In this regard, Mendes Junior et al. [24] provided a broad study, investigating mul-
tiple classifiers using sEMG features from the literature. They used a feature selection
technique to determine the optimally combined features for each classifier. Moreover, they
illustrated the impact of multiple dimensionality reduction techniques on classification as a
preprocessing step. However, without a standard window size, their techniques, using a
2000 ms window, can be computationally expensive and cause perceptible delay for real-
time gesture classification. This limitation was shown by Smith et al. [25], who confirmed
an inversely proportional relationship between classification error and the window size.
Thus, their results are not generalizable to other window sizes.

This study proposes the existence of feature–classifier pairing compatibility, which
radically governs the recognition performance and was tested with varying window sizes
and normalization ranges to obtain the best settings for various research points and ap-
plications without bias. Secondly, we suggest that the window size is optimal for gesture
recognition in a range beyond the window sizes used in real-time applications. As a final
investigation point, we expected a normalization range that maintains signal polarity,
including more information, to be optimal for most feature–model pairs. From several
normalization formulas [26–28], we used the task peak values, as they suit the scope of
gesture recognition.
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By investigating the pairing compatibility in different scenarios, we removed any bias
towards a prechosen application or circumstance; thus, the results become generalizable.
We discuss the findings of the combinatorial settings and rank them by performance.
Consequently, we deduce from the paper’s hypotheses that a compatible feature–model
pair with a moderately large window will surpass any configuration. Research that benefits
from this analysis varies from real-time with a small window to offline recognition and
from the limited computation using linear models to higher-end systems with ensemble
models without much delay.

2. Materials and Methods
2.1. Data Collection

The data were from a previous study [29] using an acquisition device from Noraxon
(Scottsdale, AZ, USA) (Myosystem 1400 L) in Figure 1 from 12 fully operational right-
handed participants, six males and six females. All participants signed a consent form
approved by Simon Fraser University. The signals were obtained using eight bipolar
sensors, 16 channels, at a sampling rate of 1000 Hz, with an amplification gain of 500.
Participants completed three different label sets; each had 16 hand gestures, a total of 48,
shown on a screen with the object and gesture to perform. A further description of the
gestures with images is in the original data collection study [29]. Signal samples are shown
in Figure 2. With two sessions, 12 participants, three label sets, five repetitions, 12 features,
and ten classifiers, we conducted more than 40,000 feature–classifier pairing experiments,
which are described in Figure 3 and can be broken down as follows:

• Sessions: Two data collection sessions were performed. In the first, electrodes were
on the forearm, whereas in the second, they were on the wrist, providing different
scenarios to test if our hypotheses generalize to them.

• Label groups: For each session, three sets of gesture signals were collected. The first
was 16 hand grasps of different objects taken from Cutkosky’s grasp taxonomy [30].
The second had 16 gestures from American Sign Language (ASL) [31]. The third
contained hand positions [32], such as pronation and supination.

• Repetitions: Each gesture in each label group was performed by every participant 5
times, each lasting for 5 s. For details, see [29].

The dataset was chosen due to its variations to test hypotheses in multiple scenarios,
such as different placements of the sensors.

Figure 1. The MyoSystem 1400L sEMG data acquisition device.
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Figure 2. Samples of Participant 4’s acquired sEMG signals.
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Figure 3. A diagram showing the breakdown of the data categories in the dataset.

2.2. Hypotheses’ Testing Experiments

To study the feature–model relationship, we evaluated models of differing assump-
tions, as we supposed that their assumptions were crucial to this relationship. We evaluated
them on several sEMG features under a spectrum of feature window sizes and normal-
ization ranges to test the feature–model compatibility hypothesis and find its optimal
processing settings. We used the Python programming language for this study.

2.2.1. Feature–Classifier Pairing Impact on Recognition Performance

We used various classifiers with different assumptions to thoroughly investigate the
pairing impact. The list of classifiers used and their theoretical assumptions are:

• Logistic regression (LR) [33] assumes the linearity between data features and classes’
log probability.

• Linear discriminant analysis (LDA) [34] is another linear method that assumes each
class’ data are Gaussian in the feature space with the same covariance matrix.

• Support vector machine with linear kernel (SVM-LIN) [35] is a linear classifier that
depends on the fringe points of each of the classes to obtain the best linear boundary
to separate the classes with allowed slack.

• Quadratic discriminant analysis (QDA) [36] is a quadratic model with similar as-
sumptions to LDA, except for each class’s covariance matrix’s uniqueness.

• The Naive Bayes (NB) [37] model assumes the conditional independence between
features given the data’s class.

• The decision tree (DT) [38] classifier sequentially splits the feature space based on
learned thresholds.

• K-nearest neighbors (KNN) [39] stores the training data, without learning, to assign
test data to the majority class of the K-nearest neighbors in the feature space.
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• Random forest (RF) [40] is an ensemble of decision trees and is a critical classifier.
In RF, a bagging technique, each tree is trained independently.

• Gradient boosting (GB) [41] is a boosting ensemble of decision trees, using misclassi-
fied points of a DT to enhance the training of the next one.

• Support vector machine with radial basis kernel (SVM-RBF) [35] has the same con-
cept as SVM-LIN; however, it uses a kernel, a function resembling a metric in a
hypothesized space, instead of the dot product.

Deep learning was excluded due to the dataset size. In each session, 400,000 samples
were recorded per participant for each label group [29]. Applying our smallest window,
100 ms, yielded 4000 samples, which is very small for deep learning. In addition, a sizable
amount of data is needed to ensure that even a small neural network is well-fit to the
data and not underfitting. Otherwise, our results can be biased toward the collected
data distribution and not the overall distribution. Another primary reason is the many
hyperparameters require tuning for optimal performance. These hyperparameters require
much more experiments on top of the 40,000 we conducted, rendering the study size too
large to present adequately.

We paired the classifiers with twelve different commonly used sEMG features from the
literature [24], each applied separately per sEMG electrode signal using a non-overlapping
window. The features and their equations are included in Table 1.

Table 1. Signal features’ equations and variables.

Feature Formula Variables

Root mean
square (RMS) [19]

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (1) N: window size

xi: current reading

Integrated
EMG (IEMG) [19]

IEMG =
N

∑
i=1
|xi| (2) N: window size

xi: current reading

Mean absolute
value (MAV) [19]

MAV =
1
N

N

∑
i=1
|xi| (3) N: window size

xi: current reading

Waveform
length (WL) [19]

WL =
N−1

∑
i+1
|xi+1 − xi| (4)

N: window size
xi: current reading
xi+1: next reading

Log detector
(LOG) [19]

LOG = exp

(
1
N

N

∑
i=1

log(|xi|)
)

(5) N: window size
xi: current reading

Simple square
integral (SSI) [19]

SSI =
N

∑
i=1

x2
i (6) N: window size

xi: current reading

Variance of
EMG (VAR) [19]

VAR =
1

N − 1

N

∑
i=1

(xi − x̄)2 (7)
N: window size

xi: current reading
x̄: signals’ mean
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Table 1. Cont.

Feature Formula Variables

Willison
amplitude
(WA) [19]

WA =
N−1

∑
i=1

f (|xi − xi+1|)

where f (x) =

{
1, i f x ≥ δ

0, otherwise

(8)

N: window size
xi: current reading
xi+1: next reading
δ: threshold value

Slope sign
change

(SSC) [19]

SSC =
N−1

∑
i=2

f ([xi − xi−1]× [xi − xi+1])

where f (x) =

{
1, i f x ≥ δ

0, otherwise

(9)

N: window size
xi−1: prior reading
xi: current reading
xi+1: next reading
δ: threshold value

Skewness
(SKW)

SKW =
∑N

i=1(xi − x̄)3/N
δ3 (10)

N: window size
xi: current reading

x̄: signals’ mean
δ: signals’ std. dev.

Kurtosis
(KURT)

KURT =
∑N

i=1(xi − x̄)4/N
δ4 (11)

N: window size
xi: current reading

x̄: signals’ mean
δ: signals’ std. dev.

Signal
histogram

(HIST)

HIST =
1
S

S

∑
j=1

N

∑
i=1

I(Bl < xj,i ≤ Bh) (12)

N: window size
xj,i: current reading

j: sensor number
Bl , Bh: bin bounds

2.2.2. Influence of Window Size on Feature–Classifier Pairing

Nine windows sizes, 100, 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 ms, with a non-
overlapping stride, were included to monitor if some feature–classifier pairs surpassed
others by altering the window size. This impact is essential for the performance–delay
balance of gesture recognition. The pairs were then ranked by balanced accuracy. We
regarded the processor computation time as negligible. Smith et al. [25] reported a time of
500 µs to compute their features, and processors have come a long way since then.

2.2.3. Sufficiency of Signal Normalization Range

We evaluated four normalization ranges as a preprocessing step. The normalization
parameters were obtained from training data only and used on each participant’s training
and test data individually.

Signal normalization was applied as the first step before signal segmentation and
filtering. Standard normalization was applied to the signals using the peak and lowest
signal values for each sensor per subject, which was subject-specific.

Despite applying a single feature to the eight sEMG signals, we normalized the signals
to compare the results between participants with varying signal amplitudes. The training
data value can influence the classifiers. Normalization also ensured that such classifiers
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do not depend on specific sensors, whose signal amplitudes might change for the same
participant, known as the inter-session variance for sEMG gesture recognition.

De Luca et al. [42] and Konrad et al. [43] explained that signal normalization for sEMG
is essential to make sEMG independent of unwanted signal acquisition characteristics
and to compare sEMG signals and their use between several users or variations in sensor
placement, while our study included two different placements of the sensors among the
12 participants. We experimented with three ranges preserving the signal polarity: (−1, 1),
(−2, 2), as well as normalization-free raw signals. We added (0, 1) normalization as a
typical machine learning procedure. We analyzed these procedures using non-tunable
feature–model pairs with 100, 500, and 1000 ms window sizes to remove any bias towards
any single configuration.

2.3. Control Settings for Results’ Generalization

For the conclusions to be valid and extendable, we must guarantee that no information
is passed from the testing data to the models. We carefully formulated conditions and rules
to test any hypothesis in this study to hold this criterion.

2.3.1. Conducting Trials on a Subset of Participants and Label Groups

We only used three random participants’ data to conduct the experiments. Using
only 3 participants to dissect ensured that the study’s findings did not suffer from two
hindrances. The first predicament arose from using data from one participant, which could
incorporate too many anomalies; thus, the drawn conclusions cannot be generalized to the
rest of the participants. Alternatively, selecting too many participants for analysis would
jeopardize generalizing the findings because it would be prone to high bias.

Further, we used only the labels from the first session of the grasp gestures group
to examine the research hypotheses without learning from all labels’ groups or sensor
placements. The whole dataset was used to validate the research’s findings.

2.3.2. Data Splitting by Repetition

We removed the first and last seconds of each 5 s gesture repetition to ensure the
elimination of most noise in the data. The resulting 3 s did not include signals corresponding
to the transition between gestures and belonged solely to the label gesture. We split each
participant’s data by repetitions to ensure no data leakage between training and testing.
In all experiments, we used four training repetitions (80%) and one test repetition (20%)
with cross-validation, changing the repetitions assignment at each iteration.

For each feature, each participant’s data consisted of 8 columns, the features, except for
the HIST feature, in which the number of columns was equal to the number of bins.
After data cleaning and removing transitions between gestures, the rows were reduced
from 400,000 to 240,000 for each participant per label set in each session. The number of
rows varied depending on the window size used.

2.3.3. Classifiers’ Training and Evaluation per Single Participant

For each participant in this study, we used 12 features, and per each feature, ten
classification models were trained and evaluated using cross-validation. Each of the
participant’s models was trained on their training subset and evaluated on their test
subset for each cross-validation step without inter-participant testing, thus making them
subject-specific. For each cross-validation fold, we removed a repetition from training to
evaluate each hyperparameter configuration for the three subjects. We used the optimal
hyperparameters to produce the cross-validation results on all the data. We used this
cross-validation method to ensure that the reported accuracy results were not biased based
on the testing repetition, but rather, the mean of multiple test repetitions’ performance.

We used the balanced accuracy metric as it is used for multi-class classification while
addressing the class imbalance. The balanced accuracy metric weighs the accuracy of each
class depending on the number of points of this class such that each class’s accuracy has
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the same contribution to the total accuracy. We interchanged the “balanced accuracy” and
“accuracy” to mean the balanced accuracy metric throughout the paper.

2.3.4. Hyperparameters’ Tuning for Optimizable Classifiers

We performed grid search cross-validation for six classifiers with the hyperparameters
to optimize them. The grid is in Table 2.

Table 2. Grid search values for classifiers’ hyperparameters.

Classifier Hyperparameter Grid Values

SVM-LIN C 0.1, 1, 5, 25, 45, 65, 85, 105, 125, 145

DT Pruning Coeff
Split Min Samples

0.0, 0.01, 0.02, 0.03, 0.04, 0.05
5, 10, 15

KNN
Distance Metric

Neighbors Weights
Neighbors (K)

Minkowski, Euclidean
Uniform, Distance

5, 10, 15

RF Pruning Coeff.
# Base Models

0.0, 0.01, 0.02, 0.03, 0.04, 0.05
25, 50

GB Pruning Coeff.
# Base Models

0.0, 0.0025, 0.005, 0.0075, 0.01, 0.0125
25, 50

SVM-RBF C 0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90

We started by evaluating a hyperparameter value, then evaluated the effect of its
increment or decrement. We iterated until increasing or decreasing beyond the previous
two limits degraded the classifier’s performance. We then generated a range of values
between the upper and lower limits.

We applied the grid search with cross-validation to each feature to yield optimized
hyperparameters for each feature–model pair. The search ensured that the pair results were
objective, as each model was tuned specifically for the feature used. Due to the number
of hyperparameters investigated, we were unable to cover all of them, such as the kernel
scale for SVM-RBF, for which we used the fixed value of 1

n f eatures∗VAR .

3. Results
3.1. Feature Normalization

We tested the normalization first as a preprocessing step of the sEMG signals. In
Figure 4, we applied four normalization ranges, each per subfigure, to the raw sEMG
data, followed by applying the RMS, IEMG, MAV, WL, and LOG features, on the x-axis,
with varying window sizes, as separate rows, to check if the effect was feature-independent
without bias to a specific configuration. Figure 4 shows the averaged accuracy of non-
tunable classifiers, LR, LDA, and QDA. As shown in Figure 4, (−1, 1), normalization gave
the best results; thus, it was applied before processing the data for the investigation points
to come.
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Figure 4. Averaged accuracies of logistic regression (LR), linear discriminant analysis (LDA),
and quadratic discriminant analysis (QDA) for (A) no normalization, (B) (0, 1) normalization, (C) (−1,
1) normalization, and (D) (−2, 2) normalization on Participants 4, 5, and 6 data using non-tuned
features with varying window sizes.

3.2. Tunable Features and Classifiers’ Grid Search

We tuned the WA, SSC, and HIST features to optimize them first. In Figures 5 and 6,
showing one classifier per column and the window sizes as rows, the x-axis contains the
threshold values, whereas the y-axis shows the accuracy.

Notably, Figure 5 shows a specific threshold range that gave the best accuracy across
all classifier–window configurations; thus, the peak of this range was the optimal threshold
for WA for this dataset. Similarly, SSC experienced a shared range of threshold values
whose peak was chosen as the optimal threshold in Figure 6. The optimal values used for
WA, SSC, and HIST were 0.065, 0.0066, and 30, respectively, and were used in the following
experiments. We report the accuracy of two linear models, LR and LDA, and a quadratic
model, QDA, to include the models’ different assumptions and varying complexities.
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Figure 5. Classification accuracy of (A) logistic regression (LR), (B) linear discriminant analysis
(LDA), and (C) quadratic discriminant analysis (QDA) with multiple WA threshold values on varying
window sizes using the sEMG data of Participants 4, 5, and 6.
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Figure 6. Classification accuracy of (A) logistic regression (LR), (B) linear discriminant analysis
(LDA), and (C) quadratic discriminant analysis (QDA) with multiple SSC threshold values on varying
window sizes using the sEMG data of Participants 4, 5, and 6.

The grid search yielded the optimal hyperparameters for the models in Table 3 for
each pair to tune each model to its paired feature. The grid results showed that the optimal
hyperparameters were the same for all features and window sizes, indicating that these
values tuned the models to the recognition task and not towards a specific setting, a feature,
or a window size.

Table 3. Grid search optimal hyperparameters for classification models using the sEMG data of
Participants 4, 5, and 6.

Classifier Hyperparameters

SVM-LIN C = 80 (for Win = 100), 85 (for other Win Sizes)

DT Pruning Coeff = 0; Split Min Samples = 5

KNN Distance Metric = Minkowski
Neighbors Weights = Uniform; Neighbors (K) = 5

RF Pruning Coeff = 0; # Base Models = 50

GB Pruning Coeff = 0; # Base Models = 50

SVM-RBF C = 90

3.3. Processing Window Sizes

From Figures 5 and 6, we noticed that window expansion enhanced the accuracy no-
tably, aligning with our hypothesis. To investigate if expanding the window was beneficial
to the feature–classifier pairings, we illustrate the mean classification accuracy for the three
participants, in Figure 7, per each model–feature pair with window sizes of 100, 250, 500,
750, 1000, 1250, 1500, 1750, and 2000. The optimal window size in Figure 7 is 1250 ms; thus,
it was used in the experiments to come.
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Figure 7. Features’ mean test accuracy for different window sizes of all classifiers using the sEMG
data of Participants 4, 5, and 6.

3.4. Feature–Classifier Pairs’ Compatibility and Ranking

We finally evaluated the accuracy of all feature–classifier pairs, averaged over all
participants’ data from the first session of the grasp labels using the optimal window size
of 1250 ms. The distributions of the accuracy results are shown in Figure 8.
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Figure 8. Distribution of accuracy for all feature–model pairs for the grasp label group on all
participants’ data from the first session.
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Figure 8 is summarized in Figure 9, whose first column contains the descending order
of the best features on the optimal window of 1250 ms from top to bottom. The models are
ranked, in descending order, from left to right, for each feature, containing each feature–
model pair’s accuracy. Figure 9 shows that the IEMG and RMS features, at 79.0% and 78.1%
accuracy without threshold tuning, performed the best on average. At the same time, the
SKW and KURT were much less efficient regardless of the classifier, averaging around
32.1% and 31.9%, respectively.

 Model Mean Accuracy Rank Per Feature 

0
1

2
3

4
5

6
7

8
9

10
11

RF
86.788

SVM-LIN
84.688

NB
84.219

LDA
84.063

SVM-RBF
83.351

LR
78.733

KNN
77.274

GB
74.844

DT
73.403

QDA
62.778

RF
86.510

SVM-RBF
85.365

LDA
84.670

NB
83.368

LR
78.958

KNN
78.767

GB
76.007

SVM-LIN
73.472

DT
72.865

QDA
61.163

RF
86.528

SVM-LIN
83.750

NB
82.917

SVM-RBF
81.319

LDA
81.146

LR
77.188

GB
75.990

KNN
73.924

DT
73.229

QDA
59.462

RF
86.823

NB
84.219

LDA
84.063

SVM-RBF
83.351

KNN
77.274

LR
76.510

GB
75.347

DT
73.073

SVM-LIN
69.236

QDA
62.778

RF
86.424

NB
82.917

SVM-RBF
81.319

LDA
81.146

GB
75.660

LR
75.208

KNN
73.924

DT
72.188

SVM-LIN
59.948

QDA
59.462

SVM-LIN
80.556

SVM-RBF
80.156

RF
78.264

LDA
78.073

NB
74.826

KNN
73.646

LR
73.542

GB
66.302

DT
64.479

QDA
53.767

RF
81.806

LDA
81.007

NB
78.924

SVM-RBF
76.319

LR
73.264

KNN
69.549

GB
68.003

DT
67.812

SVM-LIN
60.990

QDA
54.635

LDA
88.628

SVM-LIN
82.760

SVM-RBF
82.014

RF
78.438

LR
77.448

KNN
76.649

GB
65.365

NB
65.035

DT
64.392

QDA
22.569

SVM-RBF
78.958

SVM-LIN
77.899

LDA
77.240

RF
74.983

LR
74.306

NB
72.205

KNN
71.424

GB
63.976

DT
62.760

QDA
46.562

RF
68.993

SVM-RBF
67.778

SVM-LIN
67.587

LDA
66.528

LR
64.080

NB
62.222

KNN
60.608

DT
58.611

GB
58.299

QDA
26.510

LDA
37.483

NB
35.590

RF
35.139

SVM-LIN
35.087

SVM-RBF
35.069

LR
34.253

KNN
32.205

GB
29.844

DT
26.059

QDA
19.983

RF
38.281

SVM-LIN
35.035

NB
34.340

SVM-RBF
34.010

LR
33.542

LDA
33.316

GB
31.250

KNN
29.462

DT
28.194

QDA
21.823

 F
ea

tu
re

 M
ea

n 
Ac

cu
ra

cy
 R

an
k 

IEMG
79.014%

RMS
78.115%

SSI
77.545%

MAV
77.267%

VAR
74.819%

WL
72.361%

LOG
71.231%

HIST
70.330%

WA
70.031%

SSC
60.122%

SKW
32.071%

KURT
31.925%

Figure 9. Feature accuracy ranking on the 1250 ms window with the classifiers’ sub-ranking using all
participants’ grasp data.

The results in Figure 8 are also summarized in Figure 10 with the descending order of
the models on the 1250 ms optimal window in the left-most column, from top to bottom.
The features are ranked, in descending order, from left to right, for each model, showing the
same pairs, but using the model as the primary index. The figure shows that the random
forest model was the best for the grasp group with 74.1% accuracy averaged on all features,
yet HIST-LDA was the top pair at 88.63%.

 Feature Mean Accuracy Rank Per Model 

0
1

2
3

4
5

6
7

8
9

MAV
86.823

IEMG
86.788

SSI
86.528

RMS
86.510

VAR
86.424

LOG
81.806

HIST
78.438

WL
78.264

WA
74.983

SSC
68.993

KURT
38.281

SKW
35.139

HIST
88.628

RMS
84.670

MAV
84.063

IEMG
84.063

VAR
81.146

SSI
81.146

LOG
81.007

WL
78.073

WA
77.240

SSC
66.528

SKW
37.483

KURT
33.316

RMS
85.365

MAV
83.351

IEMG
83.351

HIST
82.014

VAR
81.319

SSI
81.319

WL
80.156

WA
78.958

LOG
76.319

SSC
67.778

SKW
35.069

KURT
34.010

MAV
84.219

IEMG
84.219

RMS
83.368

VAR
82.917

SSI
82.917

LOG
78.924

WL
74.826

WA
72.205

HIST
65.035

SSC
62.222

SKW
35.590

KURT
34.340

RMS
78.958

IEMG
78.733

HIST
77.448

SSI
77.188

MAV
76.510

VAR
75.208

WA
74.306

WL
73.542

LOG
73.264

SSC
64.080

SKW
34.253

KURT
33.542

IEMG
84.688

SSI
83.750

HIST
82.760

WL
80.556

WA
77.899

RMS
73.472

MAV
69.236

SSC
67.587

LOG
60.990

VAR
59.948

SKW
35.087

KURT
35.035

RMS
78.767

MAV
77.274

IEMG
77.274

HIST
76.649

VAR
73.924

SSI
73.924

WL
73.646

WA
71.424

LOG
69.549

SSC
60.608

SKW
32.205

KURT
29.462

RMS
76.007

SSI
75.990

VAR
75.660

MAV
75.347

IEMG
74.844

LOG
68.003

WL
66.302

HIST
65.365

WA
63.976

SSC
58.299

KURT
31.250

SKW
29.844

IEMG
73.403

SSI
73.229

MAV
73.073

RMS
72.865

VAR
72.188

LOG
67.812

WL
64.479

HIST
64.392

WA
62.760

SSC
58.611

KURT
28.194

SKW
26.059

MAV
62.778

IEMG
62.778

RMS
61.163

VAR
59.462

SSI
59.462

LOG
54.635

WL
53.767

WA
46.562

SSC
26.510

HIST
22.569

KURT
21.823

SKW
19.983

 M
od

el
 M

ea
n 

Ac
cu

ra
cy

 R
an

k 

RF
74.081%

LDA
73.113%

SVM-RBF
72.418%

NB
70.065%

LR
68.086%

SVM-LIN
67.584%

KNN
66.225%

GB
63.407%

DT
61.422%

QDA
45.958%

Figure 10. Classifier accuracy ranking on the 1250 ms window with the features’ sub-ranking using
all participants’ grasp data.

Finally, we investigated if the results generalized for the Sign Language group,
the hand movements group, and the other sensor placements. Figure 11 contains the mean
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accuracy of the features for participants’ signals from all sessions and sensor placements
of all groups of labels. Most features gave the models a good performance, except with the
SKW and KURT features. We noticed that the tunable features gave worse accuracy than
others, except for the HIST feature; yet, it had the most outlier results.
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Figure 11. Accuracy distribution averaged over features for both sessions of (A) grasp gestures,
(B) Sign Language gestures, and (C) unique movements gestures using all participants’ data.

4. Discussion

The feature–classifier ranking in Figure 9 supports the primary claim of the study
of the prominence of their compatibility regardless of the models’ complexity, as models’
ranking changed per feature. This change is stressed by the SVM-LIN being the best model
for the WL feature despite performing poorly on several features. We next found that the
optimal accuracy of the 1250 ms window in Figure 7 proved the need to use relatively
large window sizes to include sufficient information for optimal classification performance,
as proposed. As for the normalization range, Figure 4 implies that the (−1, 1) range
was sufficient for the best performance with no substantial enhancement by expanding
the range.

Showing the need for proposed feature–model compatibility, we provide the ranking
of the pairs in Figures 9 and 10 to guide future research. The compatibility ranking
showed simpler models, such as LDA, keeping up with ensemble models, such as RF,
on certain features, such as HIST, RMS, and MAV, therefore giving accurate recognition
with low computation; thus, it is necessary to choose the appropriate pair for sEMG gesture
classification. For example, the ranking concluded the Willison amplitude (WL) feature as
the best suited for linear models, as support vector machine with linear kernel (SVM-LIN)
outperformed all, including ensembles. In opposition, SVM-LIN performed poorly on
the VAR feature, while other linear ones surpassed the gradient boosting (GB) ensemble.



Bioengineering 2022, 9, 634 14 of 18

We noticed the general behaviors of individual features or classifiers from their pairings’
performances.

Focusing on the models’ behavior in Figure 9, we note that random forest (RF) was
the top classifier choice with a small variability compared to the rest, as noted in Figure 8.
In contrast, quadratic discriminant analysis (QDA) performed worst on all feature pairings,
indicating that the theoretical assumptions of QDA are not suitable for the classification
task at hand. This claim was supported by the HIST feature’s high to acceptable results in
Figure 9 on all classifiers, except for QDA. Such comparisons proved that the classifier’s
theoretical assumptions, known as theoretical bias, and its compatibility with the feature
play an immensely more significant role in the recognition process than its complexity, as
the ensemble models surpassed the linear ones for some features, while failing for others.

Concentrating on the features’ results in the ranking, we concluded that IEMG, RMS,
MAV, and SSI were the top-performing ones unconditionally, regardless of the window
or the application type, real-time or offline recognition. Nonetheless, we realized that
SKW, KURT, and SSC, mainly tunable features, offered a poor performance independent of
the window in Figure 7 despite giving an acceptable performance for the three subjects’
data used for tuning. Such results showed that the tuned values did not generalize to
the other participants. Figure 8 also concurs with this behavior, in which all models
performed accurately on all pairings, but for the SSC, SKW, and KURT features, giving
a low recognition accuracy all around with a distinctive overfitting issue. We inferred
from these two notes that these features were signal-dependent in gesture recognition and
must be tuned for each user individually, regardless of the classifier or feature window.
Despite the HIST feature being one of the best-performing features, it yielded significant
out-of-distribution results when generalized to other participants in Figure 11, confirming
the need for user-specific feature tuning. We only report 12 commonly used features
from the time domain due to the numerous features in the literature and the number of
results discussed in the paper, from normalization ranges to pairing choice. However,
more features such as wavelets or auto-regressive features can be explored in future
work. Auto-regressive features depend on the auto-regression model’s order, requiring
extensive investigation. Other features from the literature, such as time domain power
spectral descriptors (TDPSDs), average intensity HOG (AIH), and time domain descriptors
(TDDs) can also be considered for future research. Moreover, our research investigated
single feature–classifier compatibility; yet, feature selection and combination’s effect on the
compatibility could be a future research topic, using this study as a basis.

Concerning the feature window assumption, Figure 7 indicates that the 1250 ms
window was optimal for all features. This supports our assumption that the optimal
window for a classification task with this many labels, 16 gestures, is above the range of
real-time applications, incorporating more information from signals for recognition. This
result goes along with other findings in the literature [25]; however, the optimal window
depends on the classification’s difficulty, reflected in the number of labels of 16 hand
gestures. Thus, we analytically demonstrated that a small window does not encompass
enough information to achieve the best performance. Furthermore, overextending the
window in Figure 7 can have counter outcomes, allowing signal noise to deteriorate the
recognition performance throughout differing control settings. However, a moderate
window of 250 ms achieved acceptable accuracy for real-time applications, losing around
7% accuracy from the optimal window performance. This trade-off is a known accuracy–
delay paradigm in the sEMG gesture recognition literature and investigated under specific
environment controls [25]. However, our study verified it with various classifiers, features,
and window sizes, thus having the slightest bias to any specific model or feature. Increasing
the window size removes most disparities between the features, making the feature choice
less impactful. The effect of the windows’ overlap and the window stride was not covered
in this study, which could be analyzed in the future.

As for the signal normalization proposal, (−1, 1) normalization gave superior results
for non-normalized features in Figure 4, whereas normalization between 0 and 1 gave a
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worse performance. From this observation, it is clear that the signals’ polarity plays a vital
role in gesture recognition, as all procedures with negative to positive ranges performed
better than 0 to 1 normalization. On top of that, equalizing the upper and lower limits,
−1 to +1, performed better than non-normalized signals, yet expanding the range, −2
to +2, did not significantly impact the accuracy. Thus, a basic polarity-preserving signal
normalization that balances the limits of the range is optimal regardless of the feature–
classifier pair.

Experiments yielded very similar results for different sensor placements and other
gestures, such as Sign Language and unique movements in Figure 11. Thus, our guidelines
are generalizable to other recognition tasks and armband wearings.

Gesture classification treats false positive and false negative error equally; hence,
the balanced accuracy metric is used throughout the literature in this area and our study.
Despite that, statistical analysis and other metrics might give an insight into the feature–
classifier relationship as a future point, which was excluded due to the number of points
investigated, for example, statistic techniques such as Shapley additive explanations (SHAP)
or maximum relevance minimum redundancy (MRMR).

Other aspects of signal variation can be future research points for the feature–classifier
compatibility. The sampling rate of the signals and noise elimination applied as pre-
processing are future investigation areas to conclude about their effect on the proposed
compatibility. Validating the findings of this study on more participants’ data who differ
in ethnicity and dominant hand is a future point to research. Moreover, there are other
hyperparameters of the classifiers we used to include. However, due to the study’s size, we
could not add all of them. The inclusion of more hyperparameters of the classifiers will
further solidify the results of the study in the future, such as SVM scale optimization for
the RBF kernel exclusion.

5. Conclusions

This paper introduced an unexplored aspect of surface electromyography (sEMG)
gesture recognition, which we labeled feature–classifier compatibility. We showed that,
under varying signal preprocessing choices, hyperparameter tuning, window sizes, and for
different users, a relationship exists between the pairing choice of the classifier and EMG
feature. This conclusion was supported by the results of the experiments with more than
40,000 feature–classifier pairs. We concluded that pairing compatibility was the most influ-
ential for sEMG gesture recognition, even more than the quality of the classifier or feature
used. Our research avoided bias to a particular feature or classifier, as most studies focus on
an application that uses only one classifier or feature. The pairing compatibility is ranked
as a foundation for future research as it gave the best pairing with a pre-chosen feature
or classifier in an application or a feature–classifier pair with comparable performance.
Moreover, more studies are needed on this point, such as extending the compatibility
investigation to more features or feature selection.

In addition, we presented the best normalization, window size, and hyperparameter
tuning we obtained through out our experiments. These advantages are beneficial to any
gesture recognition application, specifically those with limited computational capabilities.

The compatibility’s importance was evidenced by the SVM-LIN achieving the best
on the WL feature, 80.56% accuracy, and the second-worst on the MAV feature, 69.24%
accuracy. The ranking showed that linear models compete with complex ones on specific
features, as the HIST-LDA feature–model pair performed best with 88.63% accuracy for
16 gestures without any further optimization. To highlight the importance of the sug-
gested compatibility, Mendes et al. [24] obtained 94% accuracy for six gestures only after
dimensionality reduction and feature selection. We suggest feature selection and dimen-
sionality reduction as future optimization research to enhance our compatibility ranking
performance further. Thus, it enables low-computation gesture recognition and implies
that the models’ complexity in gesture recognition is not as effective as believed. We
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presented the optimal hyperparameters under different scenarios for future research of
various conditions.

Secondly, we found that the 1250 ms window was optimal for this recognition task’s
16 hand gestures. In comparison, raising or lowering its size reduced the classification
accuracy. Nonetheless, real-time applications that require window sizes of less than 300 ms
would benefit from the fact that the 250 ms window provided acceptable accuracy with
a 7% reduction from optimal performance. We further concluded that the inequalities
between feature performances faded for larger window sizes.

As for the normalization, the common signal normalization, from −1 to +1, was
unconditionally most suited for gesture recognition independent of the task. Other ranges
were equally or less valuable, particularly ones removing the signal polarity.

Other factors can be investigated in future studies regarding the proposed compatibil-
ity, such as the inclusion of more participants, features, and other metrics for analysis.
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