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Abstract: Statistical experimental designs such as factorial, optimal, or definitive screening designs
represent the state of the art in biopharmaceutical process characterization. However, such methods
alone do not leverage the fact that processes operate as a mutual interplay of multiple steps. Instead,
they aim to investigate only one process step at a time. Here, we want to develop a new experimental
design method that seeks to gain information about final product quality, placing the right type
of run at the right unit operation. This is done by minimizing the simulated out-of-specification
rate of an integrated process model comprised of a chain of regression models that map process
parameters to critical quality attributes for each unit operation. Unit operation models are connected
by passing their response to the next unit operation model as a load parameter, as is done in real-
world manufacturing processes. The proposed holistic DoE (hDoE) method is benchmarked against
standard process characterization approaches in a set of in silico simulation studies where data are
generated by different ground truth processes to illustrate the validity over a range of scenarios.
Results show that the hDoE approach leads to a >50% decrease in experiments, even for simple cases,
and, at the same time, achieves the main goal of process development, validation, and manufacturing
to consistently deliver product quality.

Keywords: design of experiments; holistic experimental design; integrated process model; optimal
designs; process characterization; biopharmaceutical process validation

1. Introduction

The goal of process characterization in biopharmaceutical development is to establish
scientific evidence that a process is able to consistently deliver quality products. An impor-
tant part of this procedure is to determine the effect of process parameters (PP) on critical
quality attributes (CQA [1,2]). Design of experiments (DoE) is a well-established tool to
design experimental runs that yield such information and is oftentimes followed by data
analysis and inference based on regression models [3,4]. DoE variants such as factorial or
optimal designs facilitate the detection of effects by minimizing or eliminating correlation,
and they are comprised of all possible combinations of effect levels or a subset thereof [5].
These experiments are then conducted in small-scale models for each unit operation (UO),
and results can be used to create mathematical models that quantify the impact of effects.

Of particular interest when defining a control strategy is the range in which PPs can
safely operate while keeping CQA concentrations within acceptable boundaries. Those
proven acceptable ranges (PAR) are part of the control strategy a manufacturer might
submit to a regulatory authority [6]. One way of defining a parameter’s PAR is illustrated
in Figure 1. Using this approach, the PAR is affected by two components: first, the
model prediction, including the statistical intervals and second, the acceptance limits, as
the intersection between the two defines the PAR’s range. Another option could be to
alter the setpoint condition of other PPs (see Section 4.2). This leads to a change in the
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univariate prediction plot by shifting the prediction vertically (orange line in Figure 1).
However, optimization by changing setpoint conditions is usually not the focus of process
characterization. The PAR is required to allow for sufficient process and operator variability
while being conservative enough to keep CQAs within acceptance limits. If the PAR is
too narrow for adequate operability, one can either try to reduce model uncertainty by
investing DoE runs or change acceptance limits by performing spiking runs.
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Figure 1. An example for how the PAR of a process parameter can be calculated. The predicted
mean of the CQA as a function of the PP is shown in orange and the statistical interval around these
predictions is illustrated as dashed lines. Lower and upper PAR boundaries can be defined by the
intersection points of a statistical interval and the CQA acceptance criteria, marked as x.

1.1. Option A: Improving Model Estimates via DoE

To illustrate the effect of DoE runs on model uncertainty, consider the formula for
calculating tolerance intervals for a normally distributed population [7]:
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))
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σ (1)

ŷ is the mean prediction of the model, 1− ψ the nominal proportion of the population
covered by the interval, and α the confidence level. Disregarding the critical value for the
normal distribution z 1+ψ

2
and the standard deviation σ, the dominant factor in this formula

is the square root term, which includes the lower α quantile of the χ2 distribution in its
denominator and converges toward one as N increases. The residual degrees of freedom in
a regression model are calculated as ν = N− p, where p is the number of model parameters.
Note that this is a simplified version of the tolerance interval, and other methods might be
used in a regression setting [8–10]. The graph of the square root term is shown in Figure 2
over a range of possible values of N.

The figure illustrates the strong decrease in this factor for the first values of N before
the curve starts to flatten. While other measures of model quality, e.g., the standard
deviation or parameter covariance are contributing factors in a regression setting, this effect
is representative of the behavior of an interval as the number of observations increases. For
the experimental effort invested in improving parameter estimates and model quality this
means that at some point no large improvements can be achieved in the interval width and,
in turn, the PAR. Then, tackling the second decisive element, the intermediate acceptance
criteria, might be more rewarding.
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1.2. Option B: Improving Acceptance Limits via Spiking Studies

In typical biopharmaceutical process development and characterization, unit oper-
ations are studied individually, and acceptance criteria need to be defined for each UO.
Those intermediate acceptance criteria (iAC) are the second component affecting the PAR
calculation, as shown in Figure 1. A frequently followed but flawed approach to setting
iACs is to calculate this range using three standard deviations (SD) of manufacturing scale
runs [11–13]. A much more scientifically sound method has recently been published where
the only requirement is to have drug substance/product specification. In this approach,
an IPM is used, and iACs for all UOs can be calculated inversely, starting from the specifica-
tions [11]. The same approach is shown here in an illustrative manner: one can correlate the
inputs/loads and outputs/pools of each unit operation, as shown in Figure 3. If the slope
of this correlation equals one, all of the load will be found in the pool, which is not desirable
in a downstream UO. If the slope equals zero, the same (low) pool value will be achieved
regardless of the load values, which is an ideal and robust scenario of a downstream UO.
We can now calculate the iAC by backpropagating the iAC of the next UO (starting with
the DS specifications) through those models. By iteratively applying this technique, the
iACs for the entire process can be calculated. As all models are data-based, conservative
extrapolation needs to be taken into account when making predictions outside the observed
training space of the explanatory variables (here, the input material of each model). As dis-
cussed in [14], for impurities, we assume that every additional amount of loaded impurity
beyond the observed range will be directly propagated into the output/pool of the UO,
which can be mathematically seen as a piecewise regression model with a slope of one (see
Figure 3).
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Figure 4 illustrates the effect of adding a spiking run that shows successful clearance.
The data point is added at UO 3 and the observed trend will be extrapolated, leading to
an increase in iAC in UO 2. Since the iAC of UO 2 is used to calculate the iAC of UO 1,
its iAC will be increased as well, etc. Hence, introducing a spiking run at one UO will
potentially lead to increase in iACs of all previous UOs. Of course, the addition of spiking
runs at extreme levels will be limited by the clearance capacity of the downstream UO.
Note that Figures 3 and 4 show a simplified version for calculating iACs and that the actual
method can involve more advanced statistical methods such as tolerance intervals and
Monte Carlo sampling (for details, see [11]). Furthermore, while a linear correlation is
assumed here, any mathematical model can be used to describe the dependency between
input and output of individual UOs.
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Using spiking runs is not a novelty and commonly used in the industry [15,16].
However, results are usually only reported in documents and in our experience do not
find entrance into mathematical modeling that also accounts for the uncertainty around
individual experiments. Marschall et al. describes how any manufacturing or small-scale
data can be used to calculate iACs and how spiking runs are included in that procedure [11].

At this point, we have demonstrated that both the addition of DoE runs to decrease
model uncertainty as well as the addition of spiking runs to increase iACs can help to gain
process understanding, which helps to increase PARs and facilitates a more flexible control
strategy. However, it remains unclear which combination of DoE or spiking runs would
give the maximum gain in PAR. Therefore, we want to:

• Develop a recommender system, called the holistic design of experiments (hDoE),
that suggests the optimal runs (DoE or spiking) at specific UOs that lead to the fastest
increase in process understanding. Here we define process understanding as the
accuracy and precision of the (unknown) true relation between all PPs and CQAs,
as well as the input/output relation of individual UOs. We describe this method in
Section 3.1;

• Demonstrate that using such a recommender system can lead to a significant reduction
in the required number of total runs of a process characterization study (PCS) using
state-of-the-art workflows. We verify this in a set of simulation studies presented in
Section 3.2;

• Identify an accelerated workflow for PCS using hDoE that can be applied in practice;
see Section 4.1.

2. Materials and Methods
2.1. Optimal Designs

Factorial or fractional factorial designs are generally considered the ideal approach
to creating experimental designs that yield the most information about how process pa-
rameters affect the response. An exhaustive account of such designs can be found in [5].
In practice, however, they are not universally applicable as they often require many runs
and cannot incorporate existing data. Optimal designs constitute a more flexible alter-
native [17–20]. The number of runs required is not a consequence of the chosen type of
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design, e.g., 2k, for a factorial design with two levels and k parameters but can be chosen
more flexibly. Furthermore, optimal designs can be used to augment an existing set of
runs. Both of those properties are important for their application in hDoE, as the procedure
starts off with a minimal set of experiments far smaller than a full factorial design, which
gets augmented in each experiment/evaluation cycle. Based on the working set of already
performed experiments, new runs based on optimal designs are recommended. Optimal
designs optimize specific properties of the design matrix X. For example, D-optimal de-
signs minimize the variance of parameter estimates in a model. As Var

(
β̂
)
= σ2(XTX

)−1,
this is equivalent to maximizing

∣∣XTX
∣∣, the determinant of the squared design matrix and

one can see that this is maximized when the columns of X are orthogonal. However, in
contrast to factorial designs, strict orthogonality is not required and one consequence of
that is that the number of runs in X can be set freely depending on the use case. The rows
in X are then chosen by exchange algorithms from a candidate set of runs, which generally
consists of all possible level combinations for the main effects defined in the model. We
used augmented D-optimal designs to generate the experiments recommended by hDoE.

2.2. Integrated Process Model

An integrated or holistic process model is an in-silico representation of a manufac-
turing process comprised of multiple steps or unit operations. While there are many
approaches to constructing process models (see [21] for an overview), here we consider
the IPM as an empirical ensemble model implemented as a sequence of UO models that
enable predictions of different CQAs as a function of process parameters. To simulate CQA
concentrations, the predicted values are passed on to the next UO as a process parameter
in a Monte Carlo simulation that randomly draws parameter values [22]. This is done over
the entire chain of UOs in the process, from upstream operations to the final drug substance.
For a comprehensive description of the method, please consult [14].

An important aspect of this approach is extrapolation. Because parameter values
are drawn randomly from their corresponding distribution, CQA predictions of one UO
regularly exceed the range of values observed in the training data of the predecessor
UO. This is a problem for the conservative prediction of CQA concentrations, as UOs are
modeled as data-driven regression models. Such models are generally only valid within
the range of the training data and extrapolation can lead to highly biased results [23].

2.3. Simulation Study

We investigated the performance of hDoE in a set of simulation studies illustrating
different situations and processes. Results are compared to a state-of-the-art (SOTA) pro-
cess characterization workflow that consists of conducting experiments based on optimal
designs to investigate the impact of PPs on CQAs per UO. For the reference method, a D-
optimal design was chosen with 6, 12, and 23 runs per UO, which leads to 24, 48, or 92 runs
overall in 4 UOs.

Each process in this simulation study consists of a sequence of unit operations repre-
sented by ground truth equations that map PPs to a CQA. The first UO can be interpreted
as the fermentation step, followed by three downstream UOs. The equations that describe
these UOs satisfy IPM conditions by adhering to the heredity principle [24] and having
linear load dependencies. We then try to find effect coefficients in the presence of added
noise, employing both hDoE and the SOTA method that uses a predefined number of
runs per UO, as described above. For hDoE, we start with a minimal design of 6 runs per
UO (total 24 runs for 4 UOs) and add an additional 30 runs, chosen by the recommender
system. Note that for the simulation study results reported here, only a single run was
recommended per cycle, though results are similar for larger sets of run recommendations.
To calculate OOS rates, an upper drug substance specification for the output/pool of UO 4
was set as three standard deviations above the mean of the ground truth process. Hence,
when adding an infinite number of runs, a minimum OOS rate of 0.00135 ([1–0.9973]/2)
can be achieved. As the OOS rate simulated by the IPM is based on drawing random
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values from a PP distribution, mean and variance must be specified. In this normalized
setting, each PP’s setpoint, i.e., the mean of the distribution, was chosen to be zero and
the variance was set to be the same as that of the observed ground truth data that were
used to derive specification limits. This was kept constant over all simulated hDoE steps to
avoid a misleading optimization trajectory that improves OOS rates by simply reducing PP
variances without increasing process knowledge. Each simulation scenario was repeated
100 times with different random seeds. A summary of simulation parameters is provided
in Table 1.

Table 1. Parameters for the simulation study.

Parameter Value

Number of UOs 4
Parameters per UO 5
CQA type Impurity
hDoE start runs 6
Noise/std ratio for residual error 0.5 (0.9 in study D)
Number of runs recommended per cycle 1
Variable selection method Bi-directional stepwise
p-value threshold for including effect 0.25
p-values threshold for excluding effect 0.05

The number of hDoE steps, repetitions of the simulation studies and the bi-directional
stepwise variable selection method [25] for (re)fitting IPM models were chosen as a com-
promise between accuracy of results and simulation runtime.

For demonstration purposes but without loss of generality, we employ all simulation
studies only for one CQA of the product. However, the methodology is not limited to the
number of investigated CQAs. In practice, one would focus on the CQA, which shows the
highest OOS rate.

2.3.1. Study A: Baseline

This simulation study represents a typical biopharmaceutical process with some
quadratic and interaction effects and coefficients commonly found in characterization
studies. In our experience, approximately 20–40% of all possible effects are practically
significant in a model. A total of 5 factors lead to 20 effects (main, 2-factor interaction, and
quadratic). In the ground truth, we have chosen 4–6 active effects, which equals 20–30%
of all possible effects and is, therefore, within the expectation of a representative biophar-
maceutical process. Moreover, we assume linear load dependencies and heredity between
main and higher-order effects, which is also representative of the authors’ experience. The
ground truth equations for this scenario are as follows:

yUO1 = 8.0 + 0.7 x1 + 0.6 x2 + 0.5 x3 − 0.4 x4 + 0.9 x2
2 + 0.8 x2

3 (2)

yUO2 = 3.4 + 0.5 yUO1 + 0.5 x2 + 0.3 x3 + 0.5 x5 + 0.7 x2x3 + 0.4 x2x5 (3)

yUO3 = 3.0 + 0.3 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (4)

yUO4 = 2.8 + 0.2 yUO3 + 0.1 x1 + 0.2 x3 + 0.2 x5 + 0.3 x1x3 (5)

2.3.2. Study B: Load Effect Set to One

As hDoE leverages the UOs dependency on the load, we investigated its behavior
when the load coefficient is set to one, and its values are passed directly to the output of UO
3, provided other PPs are at setpoint. This mimics the situation where a full propagation of
the CQA through this UO is expected, and no clearance takes place. This is, of course, not
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the desired behavior of a downstream unit operation. In this setting, the load coefficient in
UO 3 was set to one:

yUO3 = 3.0 + 1.0 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (6)

2.3.3. Study C: All Load Effects Set to One

Here we set the load effects of all UOs to one. Every UOs output is directly propagated
to the next UO, which means that there is no information about the load that could be
detected by spiking runs. This a very untypical scenario as usually, we expect some
clearance activity of the downstream UOs (UO 2–4). The purpose of this simulation is
to show that, in the worst case, hDoE performs similarly to standard approaches using
a predefined set of runs.

yUO2 = 3.4 + 1.0 yUO1 + 0.5 x2 + 0.3 x3 + 0.5 x5 + 0.7 x2x3 + 0.4 x2x5 (7)

yUO3 = 3.0 + 1.0 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (8)

yUO4 = 2.8 + 1.0 yUO3 + 0.1 x1 + 0.2 x3 + 0.2 x5 + 0.3 x1x3 (9)

2.3.4. Study D: Disabled Probability-Ratio-Threshold

To highlight the importance of the probability-ratio-threshold (PRT) decision scheme,
a method borrowed from the Metropolis–Hastings algorithm that encourages the detection
of new effects (described in Section 3.1), we repeat the baseline study without PRT. Here,
the decision logic simply recommends the type of run that leads to the largest reduction in
OOS. As PRT is most effective in situations where no clear decision can be made due to
high residual error, the error/standard deviation ratio in the ground truth was increased
from 0.5 to 0.9.

3. Results
3.1. Holistic Design of Experiments

In this contribution, we propose a new tool for process development and characteriza-
tion: holistic design of experiments (hDoE), an iterative approach to experimental design
and evaluation that minimizes the number of runs invested while maximizing the overall
process understanding, as defined in the introduction. As all UOs of the process contribute
to the generation of DS material, we can boil down process understanding to how well the
true distribution of DS product quality is known. To express this in a single measure that
can be used for optimization, we chose the out-of-specification (OOS) rate based on known
DS specifications.

As described in Section 2.2, the IPM connects UOs by passing the output of a UO to the
next one as a load parameter. While the output might be affected by different parameters
and interactions, the univariate relationship between load and output is assumed to be
linear inside the range of observed load values in the training data. However, in the Monte
Carlo simulation of a CQA distribution, simulated load values might exceed this observed
range, in which case the CQA value is handled conservatively to avoid predictions that
are too optimistic (see piecewise load model in Taylor et al. [14]). This means that the
simulated CQA distribution in drug substances is highly dependent on the range of load
parameter values in the training data. Small variations in the training data will lead
to a broadened CQA distribution, accounting for the uncertainty due to extrapolation.
However, in many cases, missing information about load parameters can be supplemented
by performing spiking studies where PPs are kept at setpoint, and only the load is varied.
This is in contrast to classic DoE studies, which examine specific combinations of factors
and disregard the load.

Spiking and DoE runs are the two different types of the experiment proposed by hDoE
in this contribution. Assuming model parameters do not change from one iteration to
the next, DoE runs are expected to improve general process parameter estimates, while
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spiking studies improve estimates of the model’s load coefficient and reduce extrapolation
in the IPM simulation. However, the assumption of unchanging model parameters is
regularly violated when variable selection on newly acquired data results in a new model.
As a consequence, the simulated OOS probability is not guaranteed to be improved in
every iteration.

hDoE starts out by roughly characterizing the process with a minimal D-optimal
design per UO that facilitates fitting the initial regression models. Based on the information
acquired in this first step, a set of runs is proposed. This set consists of DoE and spiking
runs and includes the target UOs in which to perform them. The runs are chosen by how
much they would reduce the OOS probability calculated by the IPM. After conducting
the proposed experiments, the IPM data are supplemented with new information, and
a variable selection step updates models where appropriate.

As OOS predictions and therefore run suggestions are based on models found in
previous steps, the process is biased toward already detected effects. Additionally, the
decision rule is susceptible to noise, especially in early steps, and might consider the value
of adding spiking or DoE runs equivalent. Of course, this is generally not true, as only
DoE experiments enable the detection of new or interaction effects. To mitigate this bias
and encourage the detection of new effects, we employ a technique based on a decision
scheme used in the Metropolis–Hastings algorithm [26]. Let X be the design matrix of the
data already incorporated into the IPM and xDOE and xspiking be new DoE and spiking
samples, respectively, chosen from a set of sample candidates that result in the lowest OOS
probability. We then calculate the ratio of those probabilities α = P(xDOE|X)/P(xspiking

∣∣∣X) ,
draw a number from a uniform distribution, u ∈ [0, 1], and only suggest a spiking run when
u ≥ α. This means that DoE runs are always recommended if P(xDOE|X) ≥ P(xspiking

∣∣∣X) .
Spiking runs, however, are only suggested when the improvement in OOS probability
considerably exceeds that of a DoE run. In the following, we term this the probability-ratio-
threshold (PRT) approach. In our evaluation of the algorithm, PRT generally circumvents
the problem of selecting spiking runs unnecessarily or overlooking effects (see Section 3.2).
Figure 5 illustrates the individual steps and decision processes involved in hDoE.

3.2. Simulation Results
3.2.1. Out-of-Specification Rates

Figure 6 shows that in most scenarios, a high process understanding (quantified as
a low OOS rate) can be achieved with a much smaller number of experiments compared
to the SOTA method that uses a fixed number of DoE runs (in this case, 24, 48 and 92).
This effect is most pronounced in study A, where the mean OOS rate drops to ~2.5% after
only six additional runs recommended by hDoE (30 total), whereas 92 D-optimal runs
calculated beforehand result in an OOS rate of ~7.5% due to the lack of exploration of
load-to-pool dependencies. At first glance, this might appear as an unfair comparison, but
workflows applied in the industry generally do not incorporate spiking runs in a math-
ematical framework to achieve a specific goal, e.g., establishing a control strategy. The
effect of an UOs dependency on the load can also be seen in the results of study B, where
variation around the OOS rate is larger due to setting the load coefficient to one in UO 3 in
the ground truth. This means that no additional information about the load can be acquired
in this UO, and the advantage of systematically recommending spiking studies at this UO
is softened. Study C represents the worst case for hDoE, where the load has no effect in
any unit operation, resulting in OOS rates close to that of the reference method. The larger
variation shown in study D is due to increased noise in the ground truth. This, of course,
affects hDoE as well as the reference method. However, note that variation is drastically
increased when PRT is disabled (purple, dotted lines) compared to the recommended
procedure that uses it when deciding on runs (blue, dotted lines).
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3.2.2. Run Allocation

The drastic decrease in OOS probability over the number of experimental runs in-
vested, shown in Figure 6, is achieved by performing spiking studies at the right UO.
Generally, spiking runs are favored in the early steps of the procedure, as they eliminate
extrapolation in the IPM (see Section 2.2) and therefore lead to the largest reduction in OOS
early on. After this initial phase, larger OOS improvements can be achieved by improving
parameter estimates, prompting hDoE to suggest more DoE runs. Figure 7 illustrates the
allocation of different run types to the four unit operations of the simulation study. In
the y-axis, the plots show the cumulative number of allocated runs over 100 repetitions of
a simulation study, while the corresponding hDoE step can be seen in the x-axis. As the
first UO (e.g., fermentation) is not affected by a load parameter, no spiking runs (dotted
lines) are allocated. In the three simulation studies where the load influences a UO, spiking
runs at UO 4 are recommended in the early steps and, in many of the 100 iterations, also
in UO 3. This makes sense, as the OOS probability in drug substance, i.e., the last UO,
is the main driver of the recommender system and its load coefficient directly affects the
CQA distribution. In the absence of load effects, DoE runs are distributed approximately
equally, while some spiking runs are accumulated due to noise (orange lines). The effect
of increased noise and the absence of PRT are illustrated by the purple line. Much more
spiking runs are invested, as the OOS simulation for the two types of experiment yields
similar results, and choices are made more randomly.
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Figure 7. The cumulative allocation of either spiking or DoE runs in 100 repetitions of the simulation
is shown over each step taken by the hDoE procedure (after the initial 24 runs). In total, each study
distributes 100 × 30 = 3000 runs of any type to the four unit operations.

3.2.3. Parameter Estimates

A low OOS rate alone does not indicate correct models, as it does not account for
aliasing effects in the parameters. Figure 8 shows the distributions of effects identified in
the variable selection procedure at the last hDoE step (54 total runs invested). Each data
point represents the effect size in a particular iteration of the simulation. We added an
estimator of the residual variance in the form of the root mean squared error (RMSE). The
mean estimated value (blue dashed line of each boxplot) converges to the ground truth
(red solid line of each boxplot) for most parameters. Higher-order effect estimates in unit
operations two and three are biased toward zero, i.e., they were not detected in variable
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selection. Note that stepwise variable selection was used for performance reasons in this
simulation, which is known to eliminate effects prematurely [27], and that some of this
bias could be mitigated by using more modern approaches such as leaps and bounds or
other exhaustive algorithms. However, as tolerance intervals are used in the estimation of
model uncertainty [14], overlooking individual effects, which results in larger estimates of
the RMSE, is accounted for correctly in the uncertainty interval. Of course, the quality of
parameter estimates is a direct consequence of the number of DoE runs invested, which in
turn is dependent on when the hDoE procedure is terminated.
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Figure 8. The distribution of effects found by stepwise variable selection at the last hDoE step. Each
point represents the effect size in one of the 100 repetitions of the simulation study. The RMSE was
added as an estimator of residual error.

Parameter estimates, especially for higher-order effects, are naturally not on par with
those from a full D-optimal design with 23 runs per unit operation, see Figures 8 and 9.
However, due to spiking studies invested in the characterization of the process, hDoE
results in the improved estimation of load and intercept effects.
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4. Discussion
4.1. hDoE in Process Characterization

Figure 10 shows how hDoE affects common steps in process characterization. The
result of this procedure is a control strategy, of which PARs are an essential component. We
describe in Section 1 the different courses of action when a PAR is too narrow to be part
of an appropriate control strategy, steps that are also reflected by the hDoE recommender
system. A third option that is currently not incorporated into the recommender system
is to change the setpoint of other PPs that are active in the UO model. We present this
approach as an outlook in Section 4.2. Finally, PAR ranges can be increased by reducing
confidence/coverage levels of the statistical interval, although in most cases, this is not
recommended and only mentioned here for the sake of completeness. We consider the
workflow shown in Figure 10 as an extended version of the state-of-the-art workflow for
process characterization (left column) that incorporates hDoE (right column, green boxes).
This aligns with both the FDA and EMA guidelines for process characterization, as the
former recommends DoE to increase process knowledge [3] and the latter impurity spiking
challenges for downstream operations [28]. hDoE employed in the context of this extended
workflow integrates both types of experiments and provides a systematic method for when
and where to perform them.

4.2. Outlook: Changing PP Setpoints to Increase the PAR

An important aspect of the PAR calculation illustrated in Figure 4 is the univariate
nature of this method. Only the screening range of the current PP is considered, while all
other PPs are kept at their setpoint. As the UO model output, i.e., the CQA, is in most
cases affected by multiple PPs, their setpoint can influence the offset of the univariate mean
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prediction of the target PP (orange line in the figure) significantly. Consequently, a change
in the setpoint of another PP can push the predicted CQA distribution inside/outside the
acceptance limits and change the OOS rate. Similarly, interaction effects with other PPs can
also influence the target PPs effect.

The optimization of PP setpoints is already available in some statistical software [29],
and hDoE could be easily extended to include such recommendations based on their
effect on the OOS rate of the process. While this is generally not the focus of process
characterization studies, the FDA recommends optimization based on setpoint shifts in
the continuous verification phase [3]. This would advance the applicability of the hDoE
recommender system into the domain of process optimization.
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Section 4.2).

5. Conclusions

In this article, we introduced hDoE, an iterative tool for process development and
characterization that facilitates a more effective way of gaining process understanding
related to final product quality. This is essential, as it reduces experimental effort and
time to market. To demonstrate the benefits of this approach quantitatively, we presented
results from simulation studies where we chose the OOS rate as a measure of process
understanding, which should be close to the OOS rate of the true (usually unknown)
process. The benefit of this measure is that it includes both the mean and variability of the
final product quality distribution as well as practically relevant limits (drug specifications).
Other measures, such as the Kullback–Leibler divergence [30], also could have been used.
However, we believe the OOS rate represents a more practically relevant measure and
might be more tangible for process experts. We have demonstrated that hDoE leads to
better overall process understanding with more than a 50% reduction in the number of
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experiments performed for simple scenarios. The reduction of experimental costs can even
be increased for specific cases. hDoE starts out with an initial, minimal set of D-optimal runs
on which the first set of unit operation regression models is fitted. Used as a recommender
tool, either DoE or spiking runs are added in an iterative fashion guided by improvements
in the predicted OOS rate. As the process is biased toward effects already found, we are
using a recommender scheme akin to the one used in the Metropolis–Hastings algorithm to
promote the detection of unknown effects and to improve parameter estimates. Of course,
the overall quality of effect estimates is influenced by the number of runs available to
the algorithm. However, our simulation studies show that a compromise between effects
detected and runs invested can be found using a relatively low number of hDoE runs.

hDoE leverages the link between UOs as modeled by the IPM and thereby improves
OOS rates by strategically recommending spiking studies at specific process steps. It
provides valuable information to biopharmaceutical manufacturers about which type of ex-
periment to perform next, and in which UO, and can decrease the time and money invested
in experimental design. Potentially increased parameter uncertainty due to a lower number
of samples is accounted for in the IPM’s OOS prediction using conservative sampling
and estimation methods such as tolerance intervals. We believe that hDoE is a viable
option for experimental design that yields robust estimates of process properties while
providing better control of the resources invested. This will lead to a substantial reduction
of development costs and time to market, ultimately leading to more affordable drugs.

Author Contributions: Conceptualization, T.Z. and B.P.; methodology, T.Z. and T.O.; software, T.O.
and B.P.; validation, B.P. and T.O.; formal analysis, T.O.; investigation, T.O.; data curation, T.O.;
writing—original draft preparation, T.O. and T.Z.; writing—review and editing, T.O., T.Z., B.P. and
C.H.; visualization, T.O.; supervision, C.H. and T.Z.; project administration, T.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Austrian Research Promotion Agency (FFG) (grant
number: 844608) and within the framework of the Competence Center CHASE GmbH, funded by
the Austrian Research Promotion Agency (grant number 868615) as part of the COMET program
(Competence Centers for Excellent Technologies) by BMVIT, BMDW, and the Federal Provinces of
Upper Austria and Vienna. Open Access Funding by TU Wien.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article.

Acknowledgments: This work was conducted within the COMET Centre CHASE, funded within
the COMET−Competence Centers for Excellent Technologies program by the BMK, the BMDW
and the Federal Provinces of Upper Austria and Vienna. The COMET program is managed by
the Austrian Research Promotion Agency (FFG). The authors acknowledge TU Wien Bibliothek for
financial support through its Open Access Funding Program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ICH. ICH Guideline Q8 (R2) on Pharmaceutical Development; EMA: London, UK, 2017.
2. Burdick, R.; LeBlond, D.; Pfahler, L.; Quiroz, J.; Sidor, L.; Vukovinsky, K.; Zhang, L. Statistical Applications for Chemistry,

Manufacturing and Controls (CMC) in the Pharmaceutical Industry; Springer: Cham, Switzerland, 2017.
3. FDA. Process Validation: General Principles and Practices; US FDA: Rockville, MD, USA, 2011.
4. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021.
5. Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017.
6. EMA. Questions and Answers: Improving the Understanding of NORs, PARs, DSp and Normal Variability of Process Parameters; EMA:

London, UK, 2017.
7. Howe, W. Two-sided tolerance limits for normal populations—Some improvements. J. Am. Stat. Assoc. 1969, 64, 610–620.
8. Krishnamoorthy, K.; Mathew, T. Statistical Tolerance Regions: Theory, Applications, and Computation; John Wiley & Sons: Hoboken,

NJ, USA, 2009.



Bioengineering 2022, 9, 643 15 of 15

9. Wallis, W.A. Tolerance intervals for linear regression. In Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, CA, USA, January 1951.

10. Francq, B.G.; Lin, D.; Hoyer, W. Confidence, prediction, and tolerance in linear mixed models. Stat. Med. 2019, 38, 5603–5622.
[CrossRef]

11. Marschall, L.; Taylor, C.; Zahel, T.; Kunzelmann, M.; Wiedenmann, A.; Presser, B.; Studts, J.; Herwig, C. Specification-driven
acceptance criteria for validation of biopharmaceutical processes. Front. Bioeng. Biotechnol. 2022, 10, 1010583. [CrossRef]

12. Seely, R.; Munyakazi, L.; Haury, J. Statistical tools for setting in-process acceptance criteria. Dev. Biol. 2003, 113, 17–26.
13. Wang, X.; Germansderfer, A.; Harms, J.; Rathore, A. Using statistical analysis for setting process validation acceptance criteria for

biotech products. Biotechnol. Prog. 2007, 23, 55–60. [CrossRef] [PubMed]
14. Taylor, C.; Pretzner, B.; Zahel, T.; Herwig, C. Architectural & Technological Improvements to Integrated Bioprocess Models

towards Real-Time Applications. MDPI Bioeng. 2022, 9, 534.
15. Darling, A. Considerations in performing virus spiking experiments and process validation studies. Dev. Biol. Stand. 1993, 81,

221–229. [PubMed]
16. Shukla, A.; Jiang, C.; Ma, J.; Rubacha, M.; Flansburg, L.; Lee, S. Demonstration of robust host cell protein clearance in biopharma-

ceutical downstream processes. Biotechnol. Prog. 2008, 24, 615–622. [CrossRef]
17. Johnson, R.; Montgomery, D.; Jones, B. An Expository Paper on Optimal Design. Qual. Eng. 2011, 23, 287–301. [CrossRef]
18. de Aguiar, F.; Bourguignon, B.; Khots, M.; Massart, D.; Phan-Than-Luu, R. D-optimal designs. Chemom. Intell. Lab. Syst. 1995, 30,

199–210. [CrossRef]
19. Goos, P.; Jones, B.; Syafitri, U. I-optimal design of mixture experiments. J. Am. Stat. Assoc. 2016, 111, 899–911. [CrossRef]
20. Jones, B.; Allen-Moyer, K.; Goos, P. A-optimal versus D-optimal design of screening experiments. J. Qual. Technol. 2021, 53,

369–382. [CrossRef]
21. Velayudhan, A. Overview of integrated models for bioprocess engineering. Curr. Opin. Chem. Eng. 2014, 6, 83–89. [CrossRef]
22. Mooney, C. Monte Carlo Simulation; Sage: Thousand Oaks, CA, USA, 1997.
23. Hahn, G. The hazards of extrapolation in regression analysis. J. Qual. Technol. 1977, 9, 159–165. [CrossRef]
24. Hamada, C.; Hamada, M. All-subsets regression under effect heredity restrictions for experimental designs with complex aliasing.

Qual. Reliab. Eng. Int. 2010, 26, 75–81. [CrossRef]
25. Desboulets, L.D.D. A review on variable selection in regression analysis. Econometrics 2018, 6, 45. [CrossRef]
26. Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications; Oxford University Press: Oxford,

UK, 1970.
27. Olusegun, A.M.; Dikko, H.G.; Gulumbe, S.U. Identifying the limitation of stepwise selection for variable selection in regression

analysis. Am. J. Theor. Appl. Stat. 2015, 4, 414–419. [CrossRef]
28. Committee for Medicinal Products for Human Use. Process Validation for the Manufacture of Biotechnology-Derived Active Substances

and Data to Be Provided in Regulatory Submissions; EMA: London, UK, 2016.
29. SAS Institute Inc. JMP®16 Profilers; SAS Institute Inc.: Cary, NC, USA, 2020–2021.
30. Joyce, J. Kullback-Leibler Divergence. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany,

2011; pp. 720–722.

http://doi.org/10.1002/sim.8386
http://doi.org/10.3389/fbioe.2022.1010583
http://doi.org/10.1021/bp060359c
http://www.ncbi.nlm.nih.gov/pubmed/17269671
http://www.ncbi.nlm.nih.gov/pubmed/8174806
http://doi.org/10.1021/bp070396j
http://doi.org/10.1080/08982112.2011.576203
http://doi.org/10.1016/0169-7439(94)00076-X
http://doi.org/10.1080/01621459.2015.1136632
http://doi.org/10.1080/00224065.2020.1757391
http://doi.org/10.1016/j.coche.2014.09.007
http://doi.org/10.1080/00224065.1977.11980791
http://doi.org/10.1002/qre.1037
http://doi.org/10.3390/econometrics6040045
http://doi.org/10.11648/j.ajtas.20150405.22

	Introduction 
	Option A: Improving Model Estimates via DoE 
	Option B: Improving Acceptance Limits via Spiking Studies 

	Materials and Methods 
	Optimal Designs 
	Integrated Process Model 
	Simulation Study 
	Study A: Baseline 
	Study B: Load Effect Set to One 
	Study C: All Load Effects Set to One 
	Study D: Disabled Probability-Ratio-Threshold 


	Results 
	Holistic Design of Experiments 
	Simulation Results 
	Out-of-Specification Rates 
	Run Allocation 
	Parameter Estimates 


	Discussion 
	hDoE in Process Characterization 
	Outlook: Changing PP Setpoints to Increase the PAR 

	Conclusions 
	References

