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Abstract: Topology optimization is currently the only way to provide bone microstructure information
by enhancing a 600 µm low-resolution image into a 50 µm high-resolution image. Particularly, the
recently proposed localized reconstruction method for the region of interest has received much
attention because it has a high possibility to overcome inefficiency such as iterative large-scale
problems of the conventional reconstruction. Despite the great potential, the localized method
should be thoroughly validated for clinical application. This study aims to quantitatively validate
the topology optimization-based localized bone microstructure reconstruction method in terms of
accuracy and efficiency by comparing the conventional method. For this purpose, this study re-
constructed bone microstructure for three regions of interest in the proximal femur by localized and
conventional methods, respectively. In the comparison, the dramatically reduced total progress time
by at least 88.2% (20.1 h) as well as computational resources by more than 95.9% (54.0 gigabytes)
were found. Moreover, very high reconstruction accuracy in the trabecular alignment (up to 99.6%)
and morphometric indices (up to 2.71%) was also found. These results indicated that the localized
method could reconstruct bone microstructure, much more effectively preserving the originality of
the conventional method.

Keywords: topology optimization; bone microstructure; resolution enhancement; trabecular
alignment; morphometric indices; proximal femur

1. Introduction

The bone microstructure is a major determinant of bone strength and density [1].
Considering the bone microstructure is essential for accurate bone health diagnosis. Bone
microstructure-based assessment can analyze mechanical bone strength with up to 94%
accuracy [2,3]. However, the current clinical field cannot adequately utilize microstructure
information regarding bone quality owing to the limited resolution of imaging modali-
ties. Routine computed tomography (CT) provides in vivo images with a pixel resolution
of approximately 600 µm [4], which is insufficient for representing trabecular bone mi-
croarchitecture with a thickness of 50–100 µm [5–7]. Currently, bone diagnosis relies
on bone quantity information that can represent bone strength with approximately 60%
accuracy [1,8]. Hence, innovative approaches to obtain bone microstructure information
are required to address the limitations of current imaging techniques and minimize the risk
of misdiagnosis and/or overdiagnosis of bone health.

Image resolution enhancement provides bone microstructure information by enhanc-
ing a low-resolution (LR) image into a high-resolution (HR) image. This enables the use
of existing medical imaging modalities without increasing the radiation dose. Image reso-
lution enhancement techniques are largely classified into image processing-based, neural
network-based, and topology optimization-based methods. The first method, used for
decades, is defined as the conventional method. Image processing-based resolution en-
hancement focuses on obtaining clearer skeletal images via denoising [9], sharpening [10],
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deblurring [11], and contrast enhancement [12]. It demonstrates very fast and easy charac-
teristics as rule-based approaches; however, they also show lower robustness for enhance-
ment performance based on the various conditions of LR input images. Hence, image
processing-based approaches have not yet implemented routine resolution skeletal image
reconstruction into a high-resolution bone microstructure image.

With the emergence of deep learning, artificial neural network-based image resolution
enhancement techniques have shown remarkable potential. AlexNet [13], VGGNet [14],
UNet [15], ResNet [16], and SRCNN [17] are some of the representative approaches. They
find and use key features for image resolution enhancement by learning the correlation
between LR and HR images. Their superiority has been widely recognized and applied
in various fields [18–20] including medicine [21,22]. However, artificial neural network-
based approaches have not yet been used for bone microstructure reconstruction due to
insufficient training data. Note that artificial neural networks inherently depend on the
quantity and quality of training data. While LR images, or neural network input, are
sufficiently large and easily obtainable in the clinical field, in vivo HR bone microstructure
images, or a neural network target (i.e., output), are few and rarely acquired owing to
excessive radiation dose [23], except for cadavers [24,25] or animals [26,27].

Alternatively, topology optimization-based bone microstructure reconstruction [28]
has recently attracted considerable attention. This approach is based on the physiological
principle of bone remodeling metabolism (i.e., Wolff’s law [29]: self-optimizing capabil-
ities), in contrast to the aforementioned approaches. This method reconstructs the bone
microstructure at selected sites (e.g., the region and volume of interest) to achieve maximum
strength and minimum pixel-wise density difference via topology optimization. To the
best of our knowledge, topology optimization is the only method for bone microstructure
reconstruction that successfully reconstructs low-resolution clinical images (e.g., CT scan
images) into high-resolution bone microstructure images [28]. However, it requires exces-
sive computational resources, such as large-scale and iterative finite element (FE) analysis.
This method requires at least 20 h for a 2D image reconstruction, which is exacerbated
for 3D image reconstruction. Therefore, topology optimization-based reconstruction re-
quires groundbreaking improvement in computational efficiency for application in the
clinical field.

The computational burden of the conventional topology optimization-based method
is due to the structural behavior calculation of a global model (i.e., the entire skeletal
system), including the region of interest. The calculation, which is a large-scale prob-
lem, is performed in every iteration, and its complexity increases as the size of the global
model increases and the dimension expands. Thus, if the localized model is constructed
by extracting the ROI from the global model, and only the ROI is reconstructed without
considering the other skeletal regions, its computational efficiency can be significantly
improved. Based on this requirement, a recent study [30] proposed localized bone mi-
crostructure reconstruction with physiological local load estimation [31] only for the ROI.
However, this localized approach did not deal with the efficiency and accuracy of recon-
struction compared to the conventional approach. Therefore, quantitative and thorough
validation should be performed so that localized bone microstructure reconstruction based
on topology optimization can be utilized reliably in the clinical field.

This study aims to quantitatively validate the topology optimization-based localized
bone microstructure reconstruction method in terms of accuracy and efficiency by com-
paring the conventional method. Hence, the bone microstructure was first reconstructed
for an ROI based on topology optimization using the conventional method with a global
model and global loads. Next, the bone microstructure for the ROI was reconstructed based
on topology optimization using the localized method with a localized model and estimated
local loads. Finally, the reconstructed results were compared for computational efficiency
and reconstruction accuracy.
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2. Materials and Methods

This study validates localized bone microstructure reconstruction based on topology
optimization in three steps (Figure 1). Section 2.1 presents the conventional topology
optimization-based bone microstructure reconstruction for generating bone microstructures
(i.e., control group) for the ROIs. Section 2.2 presents the novel topology optimization-
based bone microstructure reconstruction for generating localized bone microstructures
(i.e., experimental group) for the same ROIs. Lastly, Section 2.3 describes the quantitative
comparison of the results generated by the two methods.

Figure 1. Overall validation procedure for the localized bone microstructure reconstruction method.
The red arrows represent the external global load, and the blue arrows represent the estimated
local load.

2.1. Conventional Topology Optimization-Based Bone Microstructure Reconstruction Using the
Global Model

The primary principle of bone microstructure reconstruction using topology opti-
mization is based on the similarity in structural behavior between continuum-level and
micro-level models. A previous study reported that the stress and strain distributions of
a micro-level containing bone microstructure could be reproduced well using continuum
models [32]. Accordingly, the conventional method reconstructs the bone microstructure
of the ROI based on topology optimization by considering the structural behavior of the
global model under global loads. Note that the global model is an FE model representing
the skeletal system, including cortical bone and cancellous bone, captured in LR. Global
loads are external loads induced by the muscle force applied to the cortical bone of the
global model.
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The conventional approach to bone microstructure reconstruction consists of two
steps: mesh refinement and topology optimization. First, mesh refinement constructs
a resolution-enhanced global model by dividing each element into n × n sub-elements
as small as the representable size of the bone microstructure. Note that the element
size is smaller than the average thickness of the trabecular bone of 100 µm. The elastic
moduli of the sub-elements constituting the ROI and the other region are calculated using
Equations (1) and (2), respectively. Equation (1) refers to a solid isotropic material using the
penalization (SIMP) method [33] to represent the micro-level material property. Equation (2)
is the bone mineral density (BMD)–elastic modulus relationship in the literature to represent
the continuum-level material property [32]. The Poisson’s ratio of all the elements was
0.3 [32].

Ei = ρ
γ
i E0 (1)

Ei = 0.3044(2ρi)
1.49E0 i f ρi ≤ 0.84

Ei = 0.1908(2ρi)
2.39E0 i f ρi > 0.84

(2)

where ρ
γ
i represents the relative density of the ith finite element, E0 denotes the reference

elastic modulus set to 15 GPa, and γ is the penalization exponent of 3.
Second, topology optimization reconstructs the bone microstructure in the ROI by

iteratively updating the bone distribution at the micro level. This update continues until
the bone microstructure has maximum mechanical efficiency, while maintaining patient-
specific bone distribution information at the continuum level (Wolff’s law [29]). This
step achieves maximum mechanical efficiency and patient information preservation by
minimizing ROI compliance and density deviation between the reconstructed and input
bones. Note that the mechanical efficiency was evaluated via large-scale FE analysis of the
global model with every update. The topology optimization can be formulated as follows:

Minimize f (ρ) =
J

∑
j=1

cj(
1
2

uT
j Kuj) (3)

Subject to g(ρ) =
1
N
‖ρ− ρ0‖

2 ≤ ε (4)

where f (ρ) is the compliance, cj is the weight under load condition j, uj is the displacement
under load condition j, and K is the stiffness matrix. ρ denotes the density matrix of the
ROI set as a design variable, and a total of N variables are set. ρ has a value between 0.01
(i.e., bone marrow) and 1 (i.e., completely filled bone). ρ and ρ0 are the relative density
matrices of the reconstructed and original models, respectively. ε is a small constant value,
set at 0.01, and N is the total number of finite elements in the ROI.

2.2. Novel Topology Optimization-Based Localized Bone Microstructure Reconstruction Using the
Localized Model

The primary principle of localized bone microstructure reconstruction using topology
optimization is identical to that of the conventional method described in Section 2.1. The
chief differentiator of the novel method is the localization of the ROI, which contributes
to computational burden reduction. Accordingly, the novel approach for localized bone
microstructure reconstruction consists of three steps: localization, mesh refinement, and
topology optimization.

First, localization constructs a localized FE model for the ROI, which includes simple
ROI extraction from the global model and complex estimation of physiological local loads
for the ROI. Extraction of the ROI can be implemented anywhere within the global model,
including the cortical bone region. The physiological local loads for the ROI were calculated
using static condensation in the FE analysis using the method proposed previously [31].
First, the cut boundary displacements of the ROI are calculated via FE analysis using the
same global model and global loads as the conventional method. Then, the reaction forces
at the cut boundary are calculated by applying the calculated displacement to the boundary
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of the ROI. Finally, the physiological local loads for the ROI are estimated, as shown in
Equation (5). Note that the resultant reaction forces in the cut boundary and local loads in
the ROI should be zero via static condensation.

{Local load for the ROI} = {Fc}
{F′c} ' K′cc{Dc} −K′clK

−1
ll K′ lc{Dc}

(5)

where, Fc and F′c are the cut boundary forces from the global and localized models, respec-
tively. K is the stiffness matrix, and the subscripts g, c, and l indicate the global model, cut
boundary, and local model, respectively. The K and K′ matrices are derived from the global
and localized models, respectively. Dc is the displacement of the cut boundary of the ROI
and is obtained by the computational analysis of the global model.

Mesh refinement and topology optimization are the same as in the previous methods.
Mesh refinement divides the elements of the localized FE model into sub-elements. The
material properties of the localized FE model are given by Equation (1). Topology optimiza-
tion reconstructs the localized FE model by updating the density of each element using
Equations (3) and (4). Note that the two steps in the novel method use the localized FE
model and estimate local loads with improved computational resources compared to the
conventional method.

2.3. Numerical Validation Based on Quantitative Comparison Using Proximal Femur

This study used the proximal femur with a resolution of 600 µm as the LR input for
both the methods being compared. The proximal femur has been widely used in many
studies as a validated model to investigate the internal structure with perimeter control [34],
structural behavior in scaffold-implanted bone [4], interactions between solitary waves and
the bone [35], and trabecular alteration in aging [36].

This study also set three ROIs for reconstruction: femoral head, neck, and intertrochanteric
region. They have characteristic trabecular patterns, as shown in Figure 2. The femoral
head [37], femoral neck, and intertrochanteric region [38] are generally considered significant
for assessing skeletal diseases. The three ROIs sizes were set for this study: 4.8 × 4.8 mm2

(8 × 8 pixels), 9.6 × 9.6 mm2 (16 × 16 pixels), and 14.4 × 14.4 mm2 (24 × 24 pixels).

Figure 2. Low-resolution input model of a synthetic proximal femur with three regions of interest:
femoral head (ROI 1), femoral neck (ROI 2), and intertrochanteric region (ROI 3).

Further, this study reconstructed bone microstructures of 50 µm resolution. It was
demonstrated that finite element analysis for human cancellous bone tissue reaches a
convergence with a very slight difference of 1.65% at a smaller resolution than 156 µm [39].
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Based on the facts, this study carefully determined the element size to be 50 µm, which is
much smaller than the size validated in the previous studies.

The bone microstructures were reconstructed under the three daily activity loads
(i.e., one-legged stance, abduction, and adduction) described previously [40,41] as the
global loads. The three loads have hip contact forces and abductor muscle forces of different
magnitudes and directions as shown in Figure 3. For one-legged stance, abduction, and
adduction, 2317 N, 1158 N, and 1548 N of hip contact forces were applied toward the center
of the femoral head with 24◦, −15◦, and 56◦ angles against the vertical axis. Moreover,
703 N, 351 N, and 468 N of abductor muscle forces were applied toward the center of the
greater trochanter with 28◦, −8◦, and 35◦ angles against the vertical axis. The hip contact
forces and abductor muscle forces were applied to the femoral head and greater trochanter
sur-face as distributed form to avoid stress concentration problems. The normalized
weighting factors (cj in Equation (3)) for the one-legged stance (6000 cycles per day), ab-
duction (2000 cycles per day), and adduction (2000 cycles per day) were set at 0.6, 0.2, and
0.2, respectively.

Figure 3. Three load conditions to consider daily activities.

Finally, computational efficiency and reconstruction accuracy were analyzed for val-
idation. The former was evaluated by measuring the required computational resources
and total progress time for the reconstruction. The latter was evaluated using trabecular
alignment and morphometric indices [7]. The alignment indicates how well the localized
bone microstructure reconstruction expresses the characteristic pattern of a trabecular bone.
Morphometric indices quantify how accurately the method can reconstruct the bone mi-
crostructure. This study used bone volume fraction (BV/TV), trabecular thickness (Tb.Th),
trabecular separation (Tb.Sp), and trabecular number (Tb.N) as the indices.

All calculations in this study were performed on a personal computer (Intel Core™
i9-10900K, 3.70 GHz, 128 GB RAM, Santa Clara, CA, USA). ANSYS 2021 R2 was used for
all FE analyses, and the preconditioned conjugate gradient (PCG) method [42] was used as
the FE equation solver. This study also used the method of moving asymptotes (MMA) [43]
as an optimizer.

3. Results

Table 1 shows the computational resources required and the total progress time of
bone microstructure reconstruction. The localized method required significantly fewer
computational resources compared to the conventional method. The conventional method
required very excessive memory of 56.2 GB which is the sum of the used memory for
the three loading conditions. Particularly, the amount of required huge memory was the
same in all the bone microstructure reconstruction processes. This is the representative
problem of the conventional method that used the same global FE model regardless of
the size and location of the ROIs. Conversely, the localized method required very small
memories for the bone microstructure reconstruction of the same ROIs as follows: 0.3 GB
(4.8 × 4.8 mm2), 1.0 GB (9.6 × 9.6 mm2), and 2.3 GB (14.4 × 14.4 mm2). These requirements
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are due to the localization of the ROIs (Figure 2), which reduced the total number of
elements required from 2,149,488 (94.2 × 104.4 mm2) to 9216 (4.8 × 4.8 mm2), 36,864
(9.6 × 9.6 mm2), and 82,944 (14.4 × 14.4 mm2). Moreover, the localized method showed
that the required memory increased almost squarely as the ROI size increased due to
the two-dimensional FE model, unlike the conventional method. Note that the absolute
required memory significantly reduced by at least 95.9% compared to the conventional
method, although it increased according to the ROI size.

Table 1. Comparison of the total progress time and required computational resources between the
conventional and localized methods.

Region of
Interest Index

4.8 × 4.8 mm2 9.6 × 9.6 mm2 14.4 × 14.4 mm2

Conv. 1

Result
Loc. 2

Result
Imp. 3

(%)
Conv. 1

Result
Loc. 2

Result
Imp. 3

(%)
Conv. 1

Result
Loc. 2

Result
Imp. 3

(%)

Femoral head
Time (h) 22.8 2.0 91.23 21.6 1.3 93.98 22.8 2.7 88.16
Iteration 363 689 - 320 457 - 351 607 -

Resource (GB) 56.4 0.3 99.47 56.1 1.0 98.22 56.3 2.3 95.91

Femoral neck
Time (h) 13.3 0.7 94.74 13.2 0.8 93.94 21.7 1.8 91.71
Iteration 200 233 - 210 289 - 278 474 -

Resource (GB) 56.4 0.3 99.47 56.1 1.0 98.22 56.3 2.3 95.91

Intertrochanter
Time (h) 22.9 1.8 92.14 21.1 1.1 94.79 27.6 1.4 94.93
Iteration 317 648 - 343 362 - 372 353 -

Resource (GB) 56.4 0.3 99.47 56.1 1.0 98.22 56.3 2.3 95.91

1 Conv.: Conventional; 2 Loc.: Localized; 3 Imp.: Improvement.

Comparing the total progress time, the localized method showed dramatic improve-
ment in computational efficiency by at least 88.2%. The localized method required a
maximum of 2.7 h while the conventional method required a minimum of 13.2 h. Along
with reduced memory, the progress time per iteration for reconstruction greatly reduced
from 4.08 min (94.2 × 104.4 mm2) to 0.18 min (4.8 × 4.8 mm2), 0.18 min (9.6 × 9.6 mm2),
and 0.24 min (14.4 × 14.4 mm2). Interestingly, the localized method converged more than
the conventional method via iterations, except for the intertrochanter for the ROI of size
14.4 × 14.4 mm2, although the optimization formulation and ROI are the same for the
two methods. For example, the localized and the conventional methods required 607 and
351 iterations for the reconstruction of the same femoral head of 14.4 × 14.4 mm2, respec-
tively. It should be emphasized that the localized method needs only about 2 h despite the
increase in iterations.

Figure 4 shows that the two methods reconstructed nearly identical trabecular mi-
croarchitectures. Most of the primary trabecular patterns are very similar with a minimal
alignment angle difference of less than 2.1◦. The maximum deviations in alignment angle
according to the location of ROIs are 0.7◦ (femoral head of 9.6 × 9.6 mm2), 2.1◦ (femoral
neck of 14.4 × 14.4 mm2), and 1.9◦ (intertrochanter of 4.8 × 4.8 mm2), respectively. The
error rates of these angle differences are 2.0%, 2.1%, and 2.1%, respectively. Further, the
reconstruction accuracy of alignment is well maintained regardless of location and size. A
small difference is also observed in the detailed pattern of the small branches among the
main trabeculae. Although, the overall pattern is almost the same. Unlike the conventional
method, the localized method tends to reconstruct bone microstructures at each node of the
elements on the cut boundary of the ROIs. This is conspicuous in the femoral neck, which
has very few trabecular bones.

Moreover, the localized method also well depicts the characteristic trabecular patterns
in the proximal femur with the conventional method as shown in Figure 5. The principal
compressive group in the femoral head is well aligned along the hip contact force. The
non-orthogonal intersection among the main trabeculae is well represented in the femoral
neck. The orthogonal intersection among the secondary compressive and tensile groups
is clearly described in intertrochanter. These results obviously indicate that the localized
method has the same underlying principle as the conventional method. Note that topology
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optimization reconstructs bone microstructure to achieve maximum strength preserving
minimum pixel-wise density difference based on the self-optimizing capabilities of bone.

Figure 4. Trabecular architecture comparison of the low-resolution input (first column), the result
of the conventional method (second column), and the result of the localized method (third column)
according to the three different ROI locations and sizes.

Figure 5. Bone microstructure reconstruction result of 14.4 × 14.4 mm2 by the conventional and
localized method for the proximal femur.

The morphometric indices of the microstructure reconstructed using the localized
method are almost consistent with those reconstructed using the conventional method,
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as shown in Table 2. The deviations of BV/TV are minimal, less than 0.28% for all ROIs.
Interestingly, it was found that the ROI with higher BV/TV has smaller BV/TV errors for
all ROIs. For example, the femoral neck with BV/TV of 20.9% showed the biggest error of
0.28% in the 4.8 × 4.8 mm2. Whereas the femoral head with BV/TV of 56.9% showed the
lowest error of 0.02%. The Tb.Th, Tb.Sp, and Tb.N for the femoral head and intertrochanter
showed a difference smaller than 6.9%. However, the femoral neck had larger index errors
than the other ROIs. The Tb.Th, Tb.Sp, and Tb.N for the femoral neck region showed a
maximum difference of 17.8%. This error increases as the size of the femoral neck decreases,
although the absolute error is not large.

Table 2. Comparison of trabecular morphometric indices between the conventional and localized
method.

Region of
Interest Index

4.8 × 4.8 mm2 9.6 × 9.6 mm2 14.4 × 14.4 mm2

Conv. 1

Result
Loc. 2

Result
Error
(%)

Conv. 1

Result
Loc. 2

Result
Error
(%)

Conv. 1

Result
Loc. 2

Result
Error
(%)

Femoral head

BV/TV (%) 56.89 56.87 0.02 56.41 56.37 0.04 54.96 54.93 0.03
Tb.Th (µm) 262.65 245.34 6.59 268.84 255.73 4.88 249.06 241.76 2.93
Tb.Sp (µm) 312.65 292.30 6.51 326.25 310.87 4.71 320.63 311.54 2.84

Tb.N (mm−1) 2.17 2.32 6.91 2.10 2.20 4.76 2.21 2.27 2.71

Femoral neck

BV/TV (%) 21.14 20.86 0.28 20.02 19.93 0.09 22.30 22.21 0.09
Tb.Th (µm) 113.97 95.81 15.93 125.18 110.21 11.96 141.04 132.16 6.30
Tb.Sp (µm) 667.81 571.04 14.49 785.63 695.62 11.46 772.05 727.30 5.80

Tb.N (mm−1) 1.85 2.18 17.84 1.60 1.81 13.12 1.58 1.68 6.33

Intertrochanter

BV/TV (%) 50.31 50.25 0.06 40.59 40.53 0.06 35.40 35.36 0.04
Tb.Th (µm) 192.65 181.59 5.74 169.00 158.39 6.28 165.57 155.71 5.96
Tb.Sp (µm) 298.85 282.43 5.49 388.62 365.00 6.08 474.70 447.04 5.83

Tb.N (mm−1) 2.61 2.77 6.13 2.40 2.56 6.67 2.14 2.27 6.07

1 Conv.: Conventional; 2 Loc.: Localized.

4. Discussion

Image resolution enhancement is a very important technique in the clinical field
because it can provide more determinant information about bone health by enhancing a low-
resolution (LR) image into a high-resolution (HR) image. One of the techniques, localized
bone microstructure reconstruction based on topology optimization is the current only
method that can reconstruct a bone microstructure HR image from its clinical routine LR
image with high computational efficiency. However, this approach further needed thorough
validation of the efficiency and accuracy of bone microstructure reconstruction compared
with the conventional approach. As the essential step toward clinical application, this study
validated the performance of the localized method by comparing it with the conventional
method in terms of accuracy and efficiency of bone microstructure reconstruction. As
a result, the localized method reconstructed nearly the same bone microstructure as the
conventional method in a much shorter time.

This is the first study to investigate the computational efficiency of the localized bone
microstructure reconstruction method by juxtaposing the results of the conventional and
localized methods. The conventional method required at least 13.2 h and approximately
56.2 GB of memory for two-dimensional bone microstructure reconstruction. If reconstruc-
tion is extended to three dimensions, the total progress time and computational resource
requirements increase, making its application to the clinical field, despite its high accuracy,
difficult. Moreover, high-end computers have become indispensable owing to the massive
computational resources required. However, this study demonstrated that the localized
method can predict the bone microstructure in a shorter time, allowing the simultaneous
analysis of bone microstructures in multiple ROIs. This possibility is due to at least 88.2%
improvement in the total progress time and at least 95.9% improvement in the computa-
tional resources required. These computational efficiency results clearly demonstrate the
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clinical applicability of the topology optimization-based bone microstructure reconstruction
method as a means of bone microstructure prediction.

This study quantitatively demonstrated that the localized method accurately expressed
the bone microstructure with high accuracy and has a high predictive performance for
the actual bone microstructure. The bone microstructure formed via the localized method
showed a very similar structure to the conventional method with the main trabecular
alignment angle alignment difference of less than 2.1◦ and an error rate of less than 17.8%
in the morphometric indices. Although slight differences in the shape and angle of some
side branches exist, the effect of these differences is negligible since the structure of the
main trabecular bone along the main trajectory in each ROI is responsible for the struc-
tural behavior of the bone. The overall prediction performance in the femoral neck region
was lower than that in the other regions. Note that the addition or deletion of a sin-
gle strut in the area can be exaggerated since the femoral neck comprises of only a few
thin bone microstructures [28]. However, as seen from the comparison by ROI size, the
bone microstructure can be predicted sufficiently well if the size of the selected ROI is
sufficiently large.

This study strengthened the reliability of the localized bone microstructure recon-
struction method by following the first step of the systematic validation process. It is well
known that the validation of bone metabolism-related simulation is conducted at four levels:
proof-of-concept, case, population, and specimen-specific validation studies [27]. The first
level, the prerequisite of all validation, investigates whether the proposed model produces
similar patterns of actual bone distribution at large. As a proof-of-concept study of topology
optimization-based localized bone microstructure reconstruction, this paper quantitively
analyzed its reconstruction performance by comparing the conventional method. This
study showed the results reconstructed by the localized method were similar in terms of
the trabecular pattern and morphometric indices of the conventional method. Note that
the conventional method has already been validated in a previous study [28] for its high
predictive performance on the actual bone microstructure. The reconstructed trabecular
bone had the characteristic trabecular patterns and the morphometric indices were in good
agreement with the anatomical data in the literature. This implies that the localized method
accurately reconstructs the actual trabecular bone microstructure with high resolution as
well as observes the principle of the conventional method.

As mentioned previously, the bone microstructure results of the localized method
showed good agreement with those of the conventional method. However, the microstruc-
tures reconstructed by the localized method were slightly different near the cut boundaries
of the ROIs. This difference might be caused by the different resolutions of the load applied
to the ROI in the two methods. In the conventional method, external global loads were
applied to the cortical bone of the refined global model. Subsequently, the effect of loading
is transmitted to the ROI. Thus, the resolution of the load transmitted to the ROI boundary
is the same as that of the refined sub-element. In contrast, the localized method uses the
estimated loads from the LR global model. This creates a different microstructure at the
cut boundary compared with the conventional method since a load is applied for each size
of the LR element. This phenomenon might be a numerical error due to Saint Venant’s
principle [44]. This also affected the number of iterations; the localized method required
more iterations than the conventional method.

The limitations of this study must be addressed. First, it validated the localized method
in only two dimensions. For clinical applications, this validation should be expanded to
three dimensions. Nevertheless, the results of this study show that computational efficiency
can be improved sufficiently using a localized model. Second, this study used synthetic
proximal femurs. The femur contains a bone microstructure that is generated via purely
mechanical stimulus. However, the actual bone is modeled using both nonmechanical
and mechanical stimuli. Bone-based validation is essential for exactness. Finally, this
study used optimization parameters such as the sensitivity filtering radius and objective
scaling factor as default values used in the literature [45,46]. However, these parameters
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were responsible for the efficiency of the optimization process. Thus, future work should
consider optimization parameters for efficient bone microstructure reconstruction.

5. Conclusions

This study is the first study to quantitatively validate the topology optimization-
based localized bone microstructure reconstruction method using the estimated local bone
load for the ROI by comparing the computational efficiency and reconstruction accuracy.
The morphometric indices, trabecular alignment angle, and trabecular bone shape and
morphology of the localized method were in agreement with the conventional method. In
addition, the localized method showed an improvement in computational efficiency of up
to 88.2% compared to the conventional method. This implies that the localized method
can simulate bone reconstruction with high computational efficiency and accuracy for
the ROI. Additionally, it demonstrated that the localized method could predict the bone
microstructure in a shorter time, allowing the simultaneous analysis of bone microstructures
in multiple ROIs. Thus, the localized bone microstructure reconstruction method would
contribute to improving the evaluation accuracy of bone strength in patients via bone
microstructure prediction. In addition, this study could be an important foundation for
further studies in the field of clinical radiology as well as biomedical engineering.
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