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Abstract: The segmentation of dynamic contrast-enhanced magnetic resonance images (DCE-MRI)
of the kidney is a fundamental step in the early and noninvasive detection of acute renal allograft
rejection. In this paper, a new and accurate DCE-MRI kidney segmentation method is proposed.
In this method, fuzzy c-means (FCM) clustering is embedded into a level set method, with the
fuzzy memberships being iteratively updated during the level set contour evolution. Moreover,
population-based shape (PB-shape) and subject-specific shape (SS-shape) statistics are both exploited.
The PB-shape model is trained offline from ground-truth kidney segmentations of various subjects,
whereas the SS-shape model is trained on the fly using the segmentation results that are obtained for
a specific subject. The proposed method was evaluated on the real medical datasets of 45 subjects
and reports a Dice similarity coefficient (DSC) of 0.953 ± 0.018, an intersection-over-union (IoU) of
0.91 ± 0.033, and 1.10 ± 1.4 in the 95-percentile of Hausdorff distance (HD95). Extensive experiments
confirm the superiority of the proposed method over several state-of-the-art level set methods, with
an average improvement of 0.7 in terms of HD95. It also offers an HD95 improvement of 9.5 and 3.8
over two deep neural networks based on the U-Net architecture. The accuracy improvements have
been experimentally found to be more prominent on low-contrast and noisy images.

Keywords: DCE-MRI; fuzzy c-means; kidney segmentation; level set; statistical shape models; U-Net

1. Introduction

Acute rejection is the most frequent cause of graft failure after kidney transplantation [1].
However, acute renal rejection is treatable, and early detection is critical in order to ensure
graft survival. The diagnosis of renal transplant dysfunction using traditional blood and
urine tests is inaccurate because the failure can be detected after losing 60% of the kidney
function [1]. In this respect, the DCE-MRI technique has achieved an increasingly important
role in measuring the physiological parameters of the kidney and follow-up patients. DCE-
MRI data acquisition is carried out through injecting the patient with a contrast agent
and, during the perfusion, the kidney images are captured quickly and repeatedly at three
second intervals. The contrast agent perfusion leads to contrast variation in the acquired
images. Consequently, the intensity of the images at the beginning of the sequence is
low (pre-contrast interval), gradually increases until reaching its maximum (post-contrast
interval), and then decreases slowly (late-contrast interval). Figure 1 shows a time sequence
of DCE-MRI kidney images of one of the patients that was taken during the contrast agent
perfusion. Accurate kidney segmentation from these images is an important first step
for a complete noninvasive characterization of the renal status. However, segmenting
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the kidneys is challenging due to the motion that is made by the patient’s breathing, the
contrast variation, and the low spatial resolution of DCE-MRI acquisitions [1,2].

Bioengineering 2022, 9, x FOR PEER REVIEW 2 of 19 
 

shows a time sequence of DCE-MRI kidney images of one of the patients that was taken 

during the contrast agent perfusion. Accurate kidney segmentation from these images is 

an important first step for a complete noninvasive characterization of the renal status. 

However, segmenting the kidneys is challenging due to the motion that is made by the 

patient’s breathing, the contrast variation, and the low spatial resolution of DCE-MRI ac-

quisitions [1,2]. 

Pre-contrast  Post-contrast  Late-contrast 

  

 

  

 

 

𝑡 = 1 𝑡 = 2  𝑡 = 47 𝑡 = 48  𝑡 = 81 

Figure 1. Contrast variation in DCE-MRI images of a patient’s kidney scanned at different time in-

stants 𝑡 after bolus injection. The concentration of the contrast agent in the kidney tissue is low at 

the beginning of the acquisition process, yielding low-intensity images (pre-contrast interval), 

reaches its maximum, generating high-intensity images (post-contrast interval), and then decreases 

slowly, resulting again in low-intensity images (late-contrast interval). 

In order to overcome these problems, several researchers have proposed multiple 

techniques to segment the kidney from DCE-MRI images. A careful examination of the 

related literature reveals that level-set-based segmentation methods [3–8] have been the 

most popular for this purpose. In these methods, a deformable model adapts to the shape 

of the kidney, its evolution being constrained by the image properties and prior 

knowledge of the expected kidney shape. In [3], the authors developed a DCE-MRI kidney 

segmentation method employing prior kidney shape and gray-level distribution density 

in the level set speed function in order to constrain the evolution of the level set contour. 

However, their method had large segmentation errors on noisy and low-contrast images. 

Thus, in [4,5], Khalifa et al. proposed a speed function combining the intensity infor-

mation, the shape prior information, and the spatial information modeled by 2nd- and 

4th-order Markov Gibbs random field (MGRF) models, respectively. In order to circum-

vent the issue of the rather similar appearance between the kidney and the background 

tissues, Liu et al. [6] proposed to remove the intensity information from the speed function 

in [5] and to use a 5th-order MGRF to model the spatial information. 

Incorporating the shape information into the level set method typically requires a 

separate registration step [3–6] to align an input DCE-MRI image to the shape prior model 

in order to compensate for the motion that is caused by the patient’s breathing and move-

ment during data acquisition. In a different manner, Hodneland et al. [7] proposed a new 

model that jointly combines the segmentation and registration into the level set’s energy 

function and applied it to segment kidneys from 4D DCE-MRI images. 

From another perspective, the level set contour evolution is guided by deriving a 

partial differential equation in the direction that minimizes a predefined cost functional 

containing several weighting parameters that need manual tuning [3–7]. In contrast, 

Eltanboly et al. [8] proposed a level set segmentation method employing the gray-level 

intensity and shape information without using weighting parameters. Some work [9,10] 

has also been carried out in addressing the intensity inhomogeneity and the low contrast 

problems of DCE-MRI images that are caused during the acquisition process. Based on 

fractional calculus, Al-Shamasneh et al. [9] proposed a local fractional entropy model to 

enhance the contrast of DCE-MRI images. Later, in [10], they presented a fractional Mit-

tag-Leffler energy function based on the Chan-Vese algorithm for segmenting the kidneys 

from low-contrast and degraded MR images. 

Figure 1. Contrast variation in DCE-MRI images of a patient’s kidney scanned at different time
instants t after bolus injection. The concentration of the contrast agent in the kidney tissue is low at
the beginning of the acquisition process, yielding low-intensity images (pre-contrast interval), reaches
its maximum, generating high-intensity images (post-contrast interval), and then decreases slowly,
resulting again in low-intensity images (late-contrast interval).

In order to overcome these problems, several researchers have proposed multiple
techniques to segment the kidney from DCE-MRI images. A careful examination of the
related literature reveals that level-set-based segmentation methods [3–8] have been the
most popular for this purpose. In these methods, a deformable model adapts to the shape of
the kidney, its evolution being constrained by the image properties and prior knowledge of
the expected kidney shape. In [3], the authors developed a DCE-MRI kidney segmentation
method employing prior kidney shape and gray-level distribution density in the level set
speed function in order to constrain the evolution of the level set contour. However, their
method had large segmentation errors on noisy and low-contrast images. Thus, in [4,5],
Khalifa et al. proposed a speed function combining the intensity information, the shape
prior information, and the spatial information modeled by 2nd- and 4th-order Markov
Gibbs random field (MGRF) models, respectively. In order to circumvent the issue of the
rather similar appearance between the kidney and the background tissues, Liu et al. [6]
proposed to remove the intensity information from the speed function in [5] and to use a
5th-order MGRF to model the spatial information.

Incorporating the shape information into the level set method typically requires a
separate registration step [3–6] to align an input DCE-MRI image to the shape prior model in
order to compensate for the motion that is caused by the patient’s breathing and movement
during data acquisition. In a different manner, Hodneland et al. [7] proposed a new model
that jointly combines the segmentation and registration into the level set’s energy function
and applied it to segment kidneys from 4D DCE-MRI images.

From another perspective, the level set contour evolution is guided by deriving a
partial differential equation in the direction that minimizes a predefined cost functional
containing several weighting parameters that need manual tuning [3–7]. In contrast,
Eltanboly et al. [8] proposed a level set segmentation method employing the gray-level
intensity and shape information without using weighting parameters. Some work [9,10]
has also been carried out in addressing the intensity inhomogeneity and the low contrast
problems of DCE-MRI images that are caused during the acquisition process. Based on
fractional calculus, Al-Shamasneh et al. [9] proposed a local fractional entropy model to
enhance the contrast of DCE-MRI images. Later, in [10], they presented a fractional Mittag-
Leffler energy function based on the Chan-Vese algorithm for segmenting the kidneys from
low-contrast and degraded MR images.

More recently, convolutional neural networks (CNNs) have been successfully used
for several image segmentation tasks, including kidney segmentation. For example, Lun-
dervold et al. [11] developed a CNN-based approach for segmenting kidneys from 3D
DCE-MRI data using a transfer learning technique from a network that was trained for
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brain hippocampus segmentation. Haghighi et al. [12] employed two cascaded U-Net mod-
els [13] to segment kidneys from 4D DCE-MRI data. Later on, Milecki et al. [14] developed a
3D unsupervised CNN-based approach for the same reason. Bevilacqua et al. [15] presented
two different CNN-based approaches for accurate kidney segmentation from MRI data.
On the other hand, the authors in [16] integrated a mono-objective genetic algorithm and
deep learning for an MRI kidney segmentation task. Isensee et al. [17] presented the top
scoring model in the CHAOS challenge [18] for an abdominal organs segmentation task, in
which they used an nnU-Net model to segment the left and right kidneys from MRI data.
The CHAOS challenge dataset includes the data of 80 different subjects, including 40 CTs
and 40 MRIs. Each sequence contains an average of 90 scans in CT and 36 in MRI in the
DICOM format.

The research gap is as follows: The common stumbling block facing CNN methods is
that they typically require annotated data of a large size in order to train the network, which
is often difficult to obtain in the medical field. Thus, the aforementioned deep learning
methods struggle to achieve high segmentation accuracy. On the other hand, the level-set-
based kidney segmentation methods [3–8] have proved their effectiveness in achieving a
superior performance with more accurate segmentation. However, unfortunately, almost
all of them need accurate level set contour initialization to be performed manually by the
user. Inaccurate initialization may cause a drop in the segmentation accuracy or even
cause the method to fail. In order to overcome this problem, in [19] we have presented an
automated DCE-MRI kidney segmentation, called FCMLS, based on FCM clustering [20]
and level sets [21]. In our FCMLS method, we constrain the contour evolution by the
shape prior information and the intensity information that are represented in the fuzzy
memberships. In addition, in order to ensure the robustness of the FCMLS method against
contour initialization, we employ smeared-out Heaviside and Dirac delta functions in the
level set method. The FCMLS method has indeed demonstrated its efficiency in segmenting
the kidneys from DCE-MRI images. However, it still has some limitations. First, its
performance drops on low-contrast images, such as those in the pre- and late-contrast parts
of the time sequence in Figure 1. Second, the FCM algorithm is used for computing the
fuzzy memberships of the image pixels before the level set evolution begins. Once the
level set starts evolving, the obtained memberships are not changed, and this might be not
accurate enough in some cases.

In order to enhance the segmentation accuracy of FCMLS, and to improve its robust-
ness on low-contrast images, we have developed a new kidney segmentation method,
named the FML method, in [22]. In this method, we model the correlation between neigh-
boring pixels into the level set’s objective functional by a Markov random field energy
term. We also embed the FCM algorithm into the level set method and iteratively update
the fuzzy memberships of the image pixels during contour evolution. The experimental
results have confirmed the improved accuracy and robustness of this method. However,
the integration of the Markov random field model within the level set formulation has
increased the computational complexity of the FML method significantly.

In this paper, we follow a different strategy in order to improve the segmentation
performance of our previous method without sacrificing the computational complexity.
The shape information plays a key role in kidney segmentation since human kidneys tend
to have a common shape, with between-subject variations. Thus, we seek to take full
advantage of this in our new level set formulation by exploiting the level set method’s
flexibility to accommodate the shape information about the target object that is to be
segmented [23]. Inspired by [24], we employ PB-shape and SS-shape models for kidney
segmentation. The PB-shape model is built offline from a range of kidney images from
various subjects that are manually segmented by human experts, whereas the SS-shape
model is constructed on the fly from the segmented kidneys of a specific patient.

This new methodology is able to generate high segmentation accuracy because the
PB-shape model is used on images with high contrast in the post-contrast interval of the
image sequence. Moreover, the SS-shape model that is generated from those accurate
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segmentations is employed on the more challenging, lower contrast images from pre- and
late-contrast intervals of the sequence, as it more accurately reflects the kidney’s shape
from the same patient. Our early work on this new methodology has been drafted in [25],
on which we build and develop several novel contributions in the present paper. First, we
embed FCM clustering into the level set evolution. Thus, the kidney/background fuzzy
memberships are computed and updated every time the level set contour evolves. Second,
the representation of the shape information in [25] is based on a 1st-order shape method,
which might be inaccurate when some kidney pixels are not observed at all in the images
that are used to construct the shape model. In this paper, we adopt an efficient Bayesian
parameter estimation method [26] in computing the PB-shape and SS-shape models, which
more accurately accounts for the kidney pixels that are possibly not observed during the
model building. Third, we propose an automated and time-efficient, yet effective, strategy
to determine the images from the patient’s sequence, to which the PB-shape model, the
SS-shape model, or both of the models blended together are applied.

The proposed method is used to segment the kidneys of 45 subjects from DCE-MRI
sequences, and the segmentation accuracy is assessed using the Dice similarity coeffi-
cient (DSC), the intersection-over-union (IoU), and the 95-percentile of Hausdorff distance
(HD95) metrics [2,27]. Our experimental results prove that the proposed method can
achieve high accuracy, even on noisy and low-contrast images, with no need for tuning
the weighting parameters. The experiments also show that the segmentation accuracy is
not affected by changing the position of the initial level set contour, which demonstrates
the high consistency of the proposed method. We compare our method’s segmentation
accuracy with several state-of-the-art level set methods, as well as our own earlier methods
[19,22,25]. Furthermore, we compare its performance against the base U-Net model and
one of its modifications named BCDU-Net [28], which is trained for the same kidney seg-
mentation task. The two networks are trained from scratch on our DCE-MRI data, which
are augmented with the KiTS19 challenge dataset [29]. This dataset contains 300 subjects’
data, where 210 out of all of the data are publicly released for training and the remaining
90 subjects are held out for testing. Each subject has a sequence of high quality CT scans,
with their ground-truth labels that are manually segmented by medical students. It also
includes a chart review that illustrates all of the relevant clinical information about this
patient. All of the CT images and segmented annotations are provided in an anonymized
NIFTI format. The comparison results confirm that the proposed method outperforms all
of the other methods.

The remainder of this paper is structured as follows: Section 2 introduces the mathe-
matical formulation of the proposed kidney segmentation method. Then, Section 3 provides
the experimental results and the comparisons. Finally, a discussion and the conclusions are
presented in Section 4.

2. Materials and Methods

In this section, we present the formulation of the proposed segmentation method
in detail.

2.1. Materials

DCE-MRI data are collected from 45 subjects who underwent kidney transplantation at
Mansoura University Hospital, Egypt. In order to acquire the data, a dose of 0.2 mL/kg BW
of Gd-DTPA contrast agent was injected intravenously at a rate of 3–4 mL/s. Meanwhile,
the kidney is scanned quickly and repeatedly, at 3 s intervals, using a 1.5T MRI scanner
with a phased-array torso surface coil. The transition of the contrast agent results in
a variation in the contrast of the images. Therefore, each subject has a dataset of about
80 repeated temporal frames, which are 256× 256 pixels in size. Each image in the sequence
is manually segmented by an expert radiologist at the hospital. A sample sequence of one
subject is shown in Figure 1.
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2.2. Problem Statement and Notations

In DCE-MRI, to evaluate the transplanted kidney function, the kidney needs to be
accurately segmented from each image separately. Let It, t = 1, . . . ,N, be a time-point
image captured at time t from a DCE-MRI sequence of length N. It(x, y) is the intensity of
a pixel (x, y) in the image domain Ω. The target is to label each pixel (x, y) in the image as
kidney (K) or background (B).

2.3. Level-Set-Based Segmentation Model with Fuzzy Clustering and Shape Statistics

Given a DCE-MRI time-point image It , the level set contour ∂Ω partitions the do-
main Ω of the image into a kidney region ΩK and background region ΩB . At any
time t, ∂Ω corresponds to the level set of a higher-dimensional function φt(x, y), i.e.,
∂Ω(t) = {(x, y) | φt(x, y) = 0}. The function φ is defined as the shortest Euclidean distance
between every pixel (x, y) in the image and the contour. The distance is positive for the
pixels inside of the contour, negative outside, and zero on the contour. The level set contour
iteratively evolves in the direction minimizing the following energy function:

E(φ(x, y)) = λ1 L(φ(x, y)) + λ2EFCM(φ(x, y)) (1)

where λ1 and λ2 are positive normalizing parameters that control the impact of the energy
terms. EFCM(φ(x, y)) is an FCM-based energy function computed from the input image
It to attract the contour towards the position of the kidney in the image, which is defined
as follows:

EFCM(φ) =
∫

Ω
Hφε FB(x, y) dxdy +

∫
Ω
[1− Hφε] FK(x, y) dxdy (2)

where Hφε = Hε(φ(x, y)) is the smeared-out Heaviside function, which is defined as follows:

Hφε =


1 φ > ε
1
2 + φ

2ε +
1

2π sin
(
πφ
ε

)
−ε ≤ φ ≤ ε

0 φ < −ε

(3)

where the parameter ε determines the degree of smearing. L(φ) in (1) is a length term that
is responsible for keeping the level set contour φ(x, y) smooth and defined, as follows:

L(φ(x, y)) =
∫
Ω

δφε |∇φ(x, y)| dx dy (4)

where δφε = δε(φ(x, y)) is the Dirac delta function, which is the derivative of Hφε, and is
given as follows:

δφε =

{
0 |φ| > ε
1
2ε +

1
2ε cos

(
πφ
ε

)
|φ| ≤ ε

(5)

FL(x, y) in (2) represents either kidney (for L = K) or background (for L = B) energy
function of the pixel (x, y) in the image and is defined as follows:

FL(x, y) = ωt µL(x, y) PL(x, y) + (1−ωt) µL(x, y) SL(x, y) (6)

where µL(x, y) is the kidney/background fuzzy membership degrees of the pixel
(x, y). PL(x, y) and SL(x, y) are prior probabilities of the pixel (x, y) derived from PB-
shape and SS-shape models, respectively. The weight factor ωt is used to control the
contribution of both models in the segmentation operation. Information about how the
value of ωt is computed for each image in the sequence is explained in Section 2.6.
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According to the calculus of variations, the minimization of the function in (1), with
respect to φ, is given as follows:

∂φ

∂t
= δφε

[
λ1div

(
∇φ

|∇φ|

)
+ λ2 FK(x, y)− λ2 FB(x, y)

]
(7)

Finally, the level set contour is iteratively evolved to the boundary of the object
as follows:

φn+1(x, y) = φn(x, y) + τ
∂φn(x, y)

∂t
(8)

where integer n is a number of time steps, as follows: t = nτ for τ > 0. It is worth noting
that using the smeared-out Heaviside and Dirac delta function is important in order to
obtain a global minimizer for the function in (1), irrespective of the level set initialization in
the image [21].

2.4. FCM Membership Function

Given an image It, the FCM clustering algorithm divides the pixels in the image
domain Ω into two separate clusters, kidney and background, as shown in Figure 2. Ac-
cording to this algorithm, the optimal centroid values of the clusters and the corresponding
membership degrees are obtained by iteratively minimizing an objective function of the
following form [30]:

J = ∑
(x,y) ∈ Ω

∑
L

µL
2(x, y) ||It(x, y)− CL||2 (9)

where CL is the centroid value of kidney (L = K) or background (L = B) clusters, and
µL(x, y) ∈ [0, 1] is the fuzzy membership degree of the pixel (x, y) in the cluster L and
satisfies the condition of µK(x, y) + µB(x, y) = 1. || . || represents the Euclidean distance
between the pixel’s intensity and cluster’s centroid.
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Figure 2. FCM clustering segmentation for a DCE-MRI grayscale image (a) into kidney cluster
(b) and background cluster (c). The values of pixels in 5 × 5 windows centered at the red point are
shown for the original DCE-MRI image in (d), the kidney cluster in (e), and the background cluster
in (f), where CK = 248.3 and CB = 96.2.

In our earlier method [25], the FCM algorithm is used to compute the fuzzy member-
ships of the image pixels before the level set evolution begins. Once the level set starts
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evolving, the obtained memberships are not changed, and this might be not accurate
enough in some cases. We improve this approach in the present paper. First, the kidney and
background centroid values are initially defined as the mean of the pixel intensities inside
and outside of the initial level set contour, respectively. Then, the kidney/background
fuzzy membership degrees of each pixel (x, y) are iteratively updated during the level set
evolution as follows:

µL(x, y) =
||It(x, y)− CL||−2

||It(x, y)− CK||−2 + ||It(x, y)− CB ||−2 (10)

Similarly, the centroid values of the kidney/background clusters are computed
as follows:

CL =
∑(x,y)∈Ω RL(φ(x, y)) It(x, y) µL

2(x, y)

∑(x,y)∈Ω RL(φ(x, y)) µL2(x, y)
(11)

whereRL(φ(x, y)) = RK(φ(x, y)) = Hφε for (L = K), andRL(φ(x, y)) = RB(φ(x, y))
= (1− Hφε) for (L = B). As such, the per-pixel fuzzy memberships and kidney/background
centroids are coupled with the level set function via (10) and (11) and are updated in each
evolution step.

Overall, the membership values of the pixels to a specific cluster depend on the
distances between the intensity of the pixels and the cluster centroid. This means that the
pixels are assigned high membership values (close to 1) to a certain cluster when their
intensities are close to the centroid value and low membership values (close to 0) when
they are far from the centroid. As illustrated in Figure 2, the higher the brightness of a pixel
is in the kidney/background cluster, the higher its probability to belonging to this cluster.
As shown in Figure 2, relying only on fuzzy membership is often not enough to obtain
accurate kidney segmentation, especially on low-contrast images. Thus, we incorporate the
shape prior information with fuzzy memberships to control the level set evolution.

2.5. Statistical Kidney Shape Model

Some earlier approaches (e.g., [6,25]) employ a 1st-order shape method in the con-
struction of a kidney shape model. The major drawback of this method appears when a
pixel is classified as kidney or background in all of the training images. In such cases, the
pixel-wise probability of the observed label will be exactly 1, and the unobserved label’s
probability will be exactly 0, which is often unreasonable. To circumvent this issue, we
adopt the Bayesian parameter estimation method [26] in the construction of the PB-shape
and SS-shape models in our work here. For the PB-shape model, a number N of DCE-MRI
kidney images are selected from varying subjects, and one among them is considered as a
reference image. These images are mutually registered to the selected target image, assum-
ing 2D affine transformation by the maximization of mutual information [31] (Figure 3).
Then, the co-aligned images are manually segmented by an expert. Finally, the obtained
ground-truth segmentations are used to build the shape model, as follows:

For each pixel (x, y) in the co-aligned ground-truth images, when kidney and back-
ground labels are both observed, the empirical kidney/background probability of this pixel
is computed as follows [26,32]:

PL(x, y) =
[
NL(x, y) + β

N + β O(x, y)

] [
N

N + `−O(x, y)

]
(12)

where O(x, y) denotes the number of observed labels, which in this case equals 2, because
both labels are observed. NL(x, y) indicates how many times the label L is observed. β
is a pseudo count added to the count of each observed label, and l is the total number
of possible region labels (kidney and background). On the other hand, when a kidney or
background label is observed in all of the images, O(x, y) equals 1 and the probability of
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the observed label is computed from (12), while the probability of the unobserved label is
computed as follows:

PL(x, y) =
[

1
`−O(x, y)

] [
1− N

N + `−O(x, y)

]
(13)
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Figure 3. PB-shape model constructed using the Bayesian parameter estimation method: Some
DCE-MRI kidney images before (a) and after (b) affine registration. Column (c) shows manually
segmented kidneys after alignment. Column (d) shows the PB-shape model constructed before (top)
and after (bottom) affine registration.

According to the above steps, an example PB-shape model is shown in Figure 3. The
same methodology is also adopted in the construction of the SS-shape model, but from a
set of images selected on the fly from the specific patient’s sequence being segmented.

2.6. Sequence Partitioning and the Weight Factor

In order to segment the kidney of a specific patient, we partition the patient’s DCE-
MRI sequence into three subsets. The already-constructed PB-shape model is employed to
segment the kidneys from the images in the first subset S1. The obtained kidney segmenta-
tions are used to construct the SS-shape model, which is blended with the PB-shape model
to segment the kidneys from the images in the second subset S2. The images in the third
subset S3 are segmented using only the SS-shape model.

We propose to employ an automated, fast approach for this sequence partitioning.
First, all of the images in a given patient sequence are co-aligned via affine transformations
to the reference image used in the PB-shape model construction. Then, for each image It in
the sequence, the mean of the pixel intensities in the kidney region is computed using the
PB-shape model as follows:

mt =

∑
(x, y) ∈ Ω

PK(x, y)It(x, y)

∑
(x, y) ∈ Ω

PK(x, y)
(14)

Note that this step does not require any kidney segmentation beforehand, thus can be
carried out before starting our segmentation method. Figure 4 shows these mean values
across the sequence in Figure 1. A number N1 of images with the highest mean values
(indicated by red circles in Figure 4) is selected to constitute the subset S1. Images of length
N2 whose mt values come next (indicted by black diamonds) are selected to form the subset
S2. Finally, the remaining N3 images (∑3

i=1 Ni = N) in the sequence constitute the subset
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S3. Accordingly, the weight factor ωt in (6) is computed for each image in these subsets
as follows:

ωt =


1 ∀ It ∈ S1

(N2 − i)/N2 ∀ It ∈ S2

0 ∀ It ∈ S3

(15)

where i is the index of the image It in S2, as decreasingly ordered by its mt value. The
dashed green line in Figure 4 shows the values of ωt across the subject’s sequence shown
in Figure 1.
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Figure 4. Changes of the mean of pixel intensities in the kidney region mt and weight factor ωt across
the subject’s DCE-MRI sequence of Figure 1. Red circles indicate the highest contrast images included
in subset S1 (N1 = 20 ), while black diamonds refer to the next highest contrast images that comprise
subset S2 (N2 = 10 ).

Note that this partitioning procedure collects the high contrast images of the post-
contrast interval of the MRI sequence in S1, thus allowing the PB-shape model alone
(ωt = 1) to accurately segment the kidneys from the S1 images. The SS-shape model is
constructed from the segmented kidneys from the S1 images and used together with the PB-
shape model (while ωt is gradually decreasing) to segment the images in S2. The SS-shape
model is incrementally updated on the fly while working on the S2 images (Figure 5). As a
new segmentation becomes available, it is added onto the set employed that is to update
the SS-shape model. Once all of the S2 images are segmented, the SS-shape model is not
updated anymore.
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Figure 5. An SS-shape model constructed using Bayesian parameter estimation and updated during
segmentation with S2 images of the subject’s sequence in Figure 1. As i increases, the model more
precisely captures the patient’s kidney shape (N2 = 10).
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Note that the partitioning procedure keeps the more challenging, lower contrast
images from the pre- and late-contrast intervals of the sequence in S3. However, the
SS-shape model is solely (ωt = 0) able to precisely segment those S3 images as it more
accurately captures the kidney’s shape of this specific patient.

Finally, a flowchart of the proposed kidney segmentation method is shown in Figure 6.
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3. Results

The performance of the proposed method was evaluated on DCE-MRI datasets of
45 subjects. The segmentation accuracy was assessed using DSC (mean ± standard devia-
tion), IoU (mean± standard deviation), and HD95 (mean± standard deviation) metrics [2].
The PB-shape model was trained from the 30 ground-truth images of 30 different subjects.
The parameters of the proposed method were experimentally set as follows: ε = 1.5, λ1 = 6,
λ2 = 6, N1 = 20, N2 = 10, and β = 1. The values of all of the parameters were not changed
or further tuned in all of the conducted experiments.

3.1. Method Performance with Comparisons to Other Methods

We first evaluated the performance of the proposed method on the gathered DCE-
MRIs. Figure 7 depicts the segmentation process by our method for two different images.
It shows the level set contour evolution during the segmentation procedure after different
iterations. The figure also shows the final segmentation result. As shown in Figure 7, the
proposed method can efficiently drive the contour towards the boundary of the kidneys in
the images.

We then compared the segmentation performance of this new method against the
following previous methods: FCMLS [19], FML [22], and PBPSFL [25]. In our experiments,
we initialized—on purpose—the level set contour extremely far away from the kidney in
all of the methods. We reported the performances on all of images and also on a particular
set of low-contrast images (the first 5 images from each subject, totaling 225 images) in
terms of DSC, IoU, and HD95 in Table 1.
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Figure 7. Evolution of the level set contour during the segmentation of the kidney from two DCE-MRI
images (one per row) by the proposed method. (a) Initial level set contour. (b–d) Contour after 10, 30,
and 40 iterations. (e) Final segmented kidneys obtained after 60 iterations.

Table 1. Comparison between the segmentation performance of the proposed method and our
previous methods.

Method
All Images Low-Contrast Images

DSC IoU HD95 DSC IoU HD95

FCMLS [19] 0.941 ± 0.042 0.89 ± 0.056 1.78 ± 6.21 0.88 ± 0.137 0.80 ± 0.156 8.18 ± 22.8
PBPSFL [25] 0.952 ± 0.041 0.90 ± 0.043 1.11 ± 1.7 0.923 ± 0.13 0.88 ± 0.056 1.93 ± 2.32
FML [22] 0.956 ± 0.019 0.91 ± 0.035 1.15 ± 1.46 0.936 ± 0.024 0.88 ± 0.042 1.94 ± 1.58
Proposed 0.953 ± 0.018 0.91 ± 0.033 1.10 ± 1.4 0.942 ± 0.02 0.90 ± 0.034 1.56 ± 1.46

The results in Table 1 demonstrate the improvement of the proposed method over our
previous methods by achieving the highest mean DSC and IoU values and the lowest mean
HD95 values, with a noticeable advantage on the low-contrast images. The lower standard
deviation values of all of the evaluation metrics confirm the new method’s more consistent
performance compared to the other methods. Figure 8 shows a qualitative comparison
between these methods on two low-contrast images from two different subjects. Clearly, the
proposed method achieves notably better segmentation accuracy than the other methods.

In order to further confirm the high-performance of the proposed method over the
PBPSFL method [25], the two methods are used to segment the kidneys from the images
that were corrupted by additive Gaussian noise (mean 0, variance 0.01, image intensities
are normalized to range [0, 1]). Figure 9 visually compares the segmentation performances
of both of the methods on a number of noisy images, while quantitative comparison results
are given in Table 2.

The proposed method clearly outperforms the PBPSFL method in the presence of
noise. It has a higher mean DSC and IoU, and lower mean HD95 values. While the two
methods share the idea of using both the PB-shape and the SS-shape models, the higher
performance of the new method can be attributed to the better shape model that was
constructed, as explained in Section 2.5, and to updating the FCM memberships during the
level set evolution.
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Figure 9. Performance of our method in the presence of noise compared with PBPSFL [25]. (a) DCE-

MRI kidney images with added Gaussian noise and the initial level set contour are shown in red. 

Segmented kidneys are shown in red with DSC values extracted from original and noisy images by 

Figure 8. Segmentation results of the proposed method and our previous methods. (a) DCE-MRI
kidney images with initial level set contour. Segmentation results (red outlines) with overlaid ground-
truth segmentations (green outlines) along with corresponding DSC are shown for: (b) FCMLS
method [19], (c) PBPSFL method [25], (d) FML method [22], and (e) proposed method.
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Figure 9. Performance of our method in the presence of noise compared with PBPSFL [25].
(a) DCE-MRI kidney images with added Gaussian noise and the initial level set contour are shown in
red. Segmented kidneys are shown in red with DSC values extracted from original and noisy images
by PBPSFL method [25] (b,c) and by the proposed method (d,e). Ground-truth segmentations are
shown in green.
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Table 2. Comparison between the segmentation performance of the proposed method and the PBPSFL
Method on noisy images.

Method
All Images Low-Contrast Images

DSC IoU HD95 DSC IoU HD95

PBPSFL [25] 0.944 ± 0.022 0.89 ± 0.039 1.71 ± 1.7 0.93 ± 0.025 0.87 ± 0.042 2.47 ± 1.85
Proposed 0.952 ± 0.016 0.91 ± 0.029 1.20 ± 1.0 0.95 ± 0.018 0.90 ± 0.033 1.41 ± 1.24

The efficiency of the proposed method is further demonstrated by comparing its
accuracy against those of a number of state-of-the-art level-set-based methods. Table 3
compares the accuracy of the results of all of the images by the proposed method and our
previous FCMLS [19], PBPSFL [25], FML [22] methods, as well as by the shape-based (SB)
method [33], the vector level set (VLS) [34], the 2nd-order MGRF level set (2nd-MGRF) [4],
and a parametric kernel graph cut (PKGC) [35]. The DSC values of the PKGC and the
2nd-MGRF methods are reported in [5,6], using the same DCE-MRI datasets that were
used in our study. As neither the output segmented kidneys that were obtained by these
two methods nor the faithful implementations of the two methods are available to us, we
are not able to compute/report the IoU and HD95 values of the two methods. Clearly, as
shown in Table 3, the proposed method achieves the best segmentation accuracy compared
with to other methods.

Table 3. Comparison between the segmentation accuracy of the proposed method and the
existing methods.

Method DSC IoU HD95

PKGC [35] 0.820 ± 0.180 - -
VLS [34] 0.902 ± 0.083 0.84 ± 0.12 3.62 ± 7.29
SB [33] 0.912 ± 0.043 0.84 ± 0.07 2.64 ± 1.63
FCMLS [19] 0.941 ± 0.042 0.89 ± 0.056 1.78 ± 6.21
2nd-MGRF [4] 0.943 ± 0.028 - -
PBPSFL [25] 0.952 ± 0.041 0.90 ± 0.043 1.10 ± 1.69
FML [22] 0.956 ± 0.019 0.91 ± 0.035 1.15 ± 1.46
Proposed 0.953 ± 0.018 0.91 ± 0.033 1.1 ± 1.4

While we have not tried yet to optimize the time performance of the implementation of
the new method, it takes about 8.4 min on the average to segment a sequence of 80 images
with 256 × 256 sized pixels. However, the execution time of our previous method [25]
segmenting the same sequence is 11.2 min. This demonstrates that the proposed method
is faster than our previous method. All of the runtimes were calculated using MATLAB
(R2015a) implementations of the methods on a 1.80 GHz Intel Core i7 CPU with 16 GB
of RAM.

3.2. Ablation Experiments

We have performed an ablation study in order to assess the contribution of each
component to the proposed method’s performance. We then evaluated the effect of some
user-supplied parameters on the obtained segmentation accuracy. In our ablation study,
we compared three scenarios. First, we evaluated the performance of our level-set-based
method incorporating only fuzzy memberships and the PB-shape model. The FCM algo-
rithm was used to compute the fuzzy memberships of the input image before the level
set evolution began, and the memberships were not changed afterwards. In the second
scenario, the FCM algorithm was embedded into the level set method, and the fuzzy
memberships were updated as the level set evolved. The third scenario represented our
complete approach, integrating the SS-shape model with the PB-shape model and the
embedded fuzzy memberships. In all three of the scenarios, we assessed the impact on
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the final segmentation accuracy. The quantitative and qualitative comparison results are
reported in Table 4 and Figure 10.

Table 4. Ablation study: Segmentation performance of the proposed method in the three scenarios.

Method
All Images Low-Contrast Images

DSC IoU HD95 DSC IoU HD95

PB-shape + Fuzzy
memberships 0.945 ± 0.055 0.89 ± 0.056 1.63 ± 3.87 0.884 ± 0.12 0.81 ± 0.128 5.61 ± 12.54

PB-shape + Embedded
fuzzy memberships 0.946 ± 0.029 0.89 ± 0.048 1.63 ± 1.97 0.918 ± 0.06 0.85 ± 0.096 3.18 ± 4.28

PB-shape + Embedded
memberships + SS-shape 0.953 ± 0.018 0.91 ± 0.033 1.10 ± 1.4 0.942 ± 0.02 0.90 ± 0.034 1.56 ± 1.46
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Figure 10. Segmentation results of two DCE-MRI images reflecting the effective role of each compo-
nent in the proposed method. (a) DCE-MRI kidney images with the initial contour in red. Segmented
kidneys in red, alongside their DSC values, obtained by our level-set-based method incorporating
PB-shape model with (b) Fuzzy memberships, (c) Embedded fuzzy memberships, and (d) Embedded
fuzzy memberships and the SS-shape model. Ground-truth segmentations are in green.

While the segmentation accuracy in Table 4 for all of the images improved from
Scenario 1 to Scenario 2 to, eventually, Scenario 3, the impact was more prominent on
low-contrast images. Updating the fuzzy memberships during the contour evolution
improved the segmentation accuracy of the low-contrast images by about 3%, 4%, and 2.5
mm in terms of the mean DSC, IoU, and HD95, respectively. Moreover, the incorporation
of the SS-shape model yielded a further improvement of about 3% in DSC, 5% in IoU, and
1.6 mm in HD95. As shown in Figure 10, the proposed method in Scenario 3 could more
efficiently segment and catch the boundary of the target kidneys, thus generating more
accurate segmentations. Overall, the results in Table 4 and Figure 10 highlight the benefit
of the proposed integration of the embedded fuzzy memberships and the SS-shape model
along with the PB-shape model into our level set framework.

Then, we studied the effect of some user-supplied parameters on the proposed method.
We first investigated the impact of changing the values of N1 and N2 on the segmentation
accuracy. Table 5 reports these results for three combinations of N1 and N2 values, demon-
strating that the proposed method achieved the best segmentation accuracy when N1 = 20
and N2 = 10 as this allows more images to build the SS-shape model.
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Table 5. Segmentation performance of the proposed method for different N1 and N2 values.

Experiment N1 N2
All Images Low-Contrast Images

DSC IoU HD95 DSC IoU HD95

1 15 15 0.949 ± 0.021 0.90 ± 0.038 1.34 ± 1.43 0.942 ± 0.022 0.89 ± 0.038 1.58 ± 1.46
2 20 10 0.953 ± 0.018 0.91 ± 0.033 1.10 ±1.4 0.942 ± 0.02 0.90 ± 0.034 1.56 ± 1.46
3 10 20 0.946 ± 0.027 0.89 ± 0.038 1.41 ± 1.62 0.94 ± 0.023 0.88 ± 0.041 1.61 ± 1.48

Afterwards, we evaluated the proposed method’s performance against different level
set initializations. Figure 11 shows the accuracy of the proposed method on a sample
DCE-MRI image with the level set contour that was initialized in different positions in the
image. From the visual results and the reported DSC values in Figure 11, the segmentation
accuracy was not changed in all cases. This confirms the method’s high and consistent
performance, regardless of where the level set contour is initialized in the image.
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Figure 11. Segmentation results using the proposed method on a DCE-MRI image with different
level set contour initializations (top row, red outlines). The segmented kidney (bottom row, red
outlines), for any initialization, closely matches the ground-truth (green outlines), as evidenced by
the associated DSC.

3.3. Comparison to U-Net-Based Deep Neural Networks

In recent years, CNN in general, and the U-Net architecture in particular [13], have
been applied to various medical image segmentation problems with good results [11–18].
Therefore, we have compared the proposed method versus a base U-Net CNN and one
of its variants named BCDU-Net [28]. Both of the networks were trained from scratch
on data from 18 subjects, were validated against data from 12 subjects, and were tested
using the remaining 15 subjects. In order to prevent the models from overfitting, the data
of each subject were augmented by performing the following operations on each image
in the sequence: vertical and horizontal flipping, random x− and y-translations, rotation
by ±45◦, ±90◦, 180◦ angles, and noising by adding Gaussian noise with zero mean and a
variance of 0.01, 0.02, and 0.05 (the image intensities were normalized to range [0, 1]). The
augmentation results in a total number of 16,404 images for training and 10,980 images
for validation.

In order to further enlarge the data, following [18,36], we used high quality CT scans of
210 subjects from a KiTS19 dataset [29]. We manually split each image into two sub-images
of size 256 × 256 for the left and right kidneys. This eventually increased the number of
training and validation images to 40,050 and 10,980, respectively. The two networks were
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trained for 200 epochs using the Adam optimizer and an initial learning rate 0.0001, which
decays by a factor of 0.1 whenever the validation loss is not reduced for 10 consecutive
epochs. In order to further avoid overfitting, we used dropout regularization with a
50% ratio during the training. The training was carried out on a workstation with dual
2.20 GHz Intel Xeon Silver 4114 CPUs with 128 GB of RAM and two Nvidia GPUs in a
Python environment, using Keras API with Tensorflow backend. The trained networks
were then used to segment the kidney from the test subjects. Table 6 presents a comparison
between the segmentation accuracies that were obtained by the proposed method, the
U-Net model, and the BCDU-Net model with three dense blocks.

Table 6. Comparison between the segmentation performance of the proposed method versus U-Net
and BCDU-Net models.

Method
All Images Low-Contrast Images

DSC IoU HD95 DSC IoU HD95

U-Net [13] 0.940 ± 0.041 0.89 ± 0.069 10.30 ± 23.8 0.88 ± 0.071 0.77 ± 0.13 19.9 ± 28.8
BCDU-Net [28] 0.942 ± 0.038 0.89 ± 0.062 4.62 ± 12.35 0.90 ± 0.057 0.82 ± 0.089 7.89 ± 12.27
Proposed 0.957 ± 0.016 0.93 ± 0.019 0.80 ± 1.03 0.952 ± 0.014 0.90 ± 0.026 0.85 ± 0.76

It can be seen from Table 6 that the BCDU-Net model had a considerably better
performance than the base U-Net model, yet our method performed notably better than
it. The mean DSC and IoU of the proposed method were higher than those of the U-Net
and BCDU-Net models. Moreover, the mean HD95 values definitely showed the gap
between the accuracy of our method and the two models. The HD95 metric characterized
the divergence between the boundary surfaces of the segmentation result and the ground-
truth kidney [2,27]. As such, unlike DSC, it was more sensitive to the shape deviations of
the segmentation result against the ground-truth [27]. On the other hand, the standard
deviations of DSC, IOU, and HD95 indicated that the proposed method was much more
consistent and stable than the U-Net and BCDU-Net models. The improvement was
more profound on the low-contrast images. It is important to mention that the behavior
of the proposed method is easier to explain, as well as the interpretation of the results,
compared to the deep U-Nets. For example, obtaining rather a noisy kidney contour from
the segmentation result would suggest increasing the weighting factor λ1 in our method,
as a corrective action.

4. Conclusions

Kidney segmentation from DCE-MRI images is important for the assessment of renal
transplant function. This paper has proposed a new and accurate method to automati-
cally segment kidneys from DCE-MRI image sequences. The paper makes the following
contributions:

1. It integrates the FCM clustering algorithm, the level set method, and both PB-shape
and SS-shape statistics for this problem for the first time in literature;

2. The FCM clustering algorithm is embedded into the level set method; a pixel’s kid-
ney/background fuzzy memberships are coupled with the level set evolution, con-
sidering the image intensities directly, as well as the kidney’s shape indirectly. This
allows the proposed method to precisely capture the kidney, even on noisy and
low-contrast images;

3. The PB-shape and the SS-shape models are built using Bayesian parameter estima-
tion, which statistically accounts for kidney pixels that are possibly not observed
in the images that are used for the model building, thus rendering more accurate
shape models;

4. An automated, simple, and time-efficient strategy is proposed for partitioning the
patient’s sequence into three subsets in order to properly determine the blending
factor between the PB-shape and the SS-shape models;
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5. The experiments that were performed on 45 subjects demonstrate the accuracy of the
proposed method and its robustness against noise, low contrast, and contour initial-
ization with no need for tuning the method’s parameters. The comparisons with several
state-of-the-art level set methods, and two CNN based on the U-Net architecture,
confirm the superior and consistent performance of the proposed method.

Nevertheless, the proposed method has some limitations. First, incorporating the
shape information into the level set method requires a prerequisite registration step in
order to align an input DCE-MRI image to the shape prior model in order to compensate
for the motion due to patient’s breathing and movement during the data acquisition.
Any errors occurring in this alignment step would affect the segmentation performance.
Second, similar to all of the level-set-based methods, the level set contour evolution in our
method is guided by a partial differential equation containing several weighting parameters.
Moreover, we use a weight factor that controls the contribution of the two shape statistics
in the segmentation procedure. All of these weighting parameters require proper setting.
Third, our new method takes about 7 s to segment one image of a size of 256 × 256 pixels,
which is not suitable for real-time operation yet.

Our current research is directed towards improving the proposed method and alle-
viating its limitations. In our experiments, the values of the weighting parameters are
experimentally chosen and then fixed throughout all of the conducted experiments without
further tuning. We plan to investigate other weighting strategies in order to systematically
find out the proper values for these weights, similarly to the scheme that was proposed
in [37]. We also plan to investigate combining kidney segmentation and registration into
the level set’s energy function. Simultaneously solving this issue for both of the tasks
would diminish the propagation of errors from one task to the other. Last but not least, in
an attempt to improve the time performance of the proposed method, we are working on
converting the MATLAB code to C++ code that is optimized for GPU computing.
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